
170
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 1, April 2018

AARF-HT: Adaptive Auto Rate Fallback for High-

Throughput IEEE 802.11n WLANs

Hery Munanzar
1
, Teuku Yuliar Arif

2
 and Syahrial

3

1,2,3Electrical and Computer Engineering Department, Faculty of Engineering, Syiah Kuala University, Indonesia

Abstract: Wireless Local Area Network (WLAN) has been

progressing rapidly. The IEEE 802.11n Physical (PHY) layer

provides wider channel bandwidth, shorter guard interval, and up to

four data streams. Therefore PHY 802.11n has a maximum of 128

data rate options from 6.5 Mbps to 600 Mbps. In addition, Medium

Access Control (MAC) has been added Aggregate MAC Protocol

Data Unit (AMDPU) scheme. If AMPDU is transmitted with a data

rate corresponding to the channel conditions, then the probability

AMPDU is received without error becomes increased. MAC

determines the data rate used for transmitting AMPDU using a rate

adaptation algorithm. Therefore some papers have proposed rate

adaptation algorithms based on channel conditions. In this paper we

propose a new rate adaptation algorithm that we call Adaptive Auto

Rate Fallback for High Throughput (AARF-HT). Our development

is done using NS-3 simulator version 3.26. AARF-HT algorithm

performance is also tested through a number of simulations

extensively. The simulation results show the data rate adaptation

function based on the channel width, guard interval and the number

of spatial streams in IEEE 802.11n WLAN has functioned well. The

test results also show the AARF-HT algorithm resulted in higher

throughput compared to the AARF algorithm.

Keywords: Rate Adaptation, AARF, High Throughput, 802.11n,

AARF-HT.

1. Introduction

The IEEE 802.11n standard, which is the fourth generation

Wireless Local Area Network (WLAN), has developed in

Physical (PHY) and Medium Access Control (MAC) layers.

Development in PHY is 20/40 MHz channel bandwidth,

Guard Interval (GI) 800 ns / Short GI (SGI) 400 ns, and uses

Multiply Input Multiple Output (MIMO) 1/2/3/4 spatial

streams. If a maximum configuration of 40 MHz channel

bandwidth, SGI and 4 spatial stream is used, the WLAN

IEEE 802.11n has 128 data rate options, from 6.5 Mbps to

600 Mbps as shown in Table 1. The 802.11n PHY layer is

called High Throughput PHY (HT-PHY) [1].

In MAC 802.11n, a more efficient frame format developed

using the Aggregate MAC Service Data Unit (AMSDU)

scheme and the Aggregate MAC Protocol Data Unit

(AMPDU) scheme. The AMSDU scheme is used to improve

the efficient use of MAC headers, where multiple MAC

Service Data Units (MSDU) with the same destination

address are transmitted using only one MAC header as shown

in Figure 1. Unlike the AMPDU scheme, it is used to

improve the efficiency of PHY layer headers by means of

multiple MAC Protocol Data Units (MPDU) that have the

same destination address, transmitted using only one PHY

header as shown in Figure 2. In addition, MAC 802.11n has

used the Enhance Distributed Channel Access (EDCA)

access channel method that provides Quality of Service

(QoS) functions.

As for the explanation in the IEEE 802.11 standard, MAC

determines the data rate used for MPDU transmission using a

rate adaptation algorithm. However, the IEEE 802.11

standard does not specify how the rate adaptation algorithm

works in determining the data rate used for MPDU

transmission. Therefore some papers have proposed rate

adaptation algorithms for WLANs to produce optimal

throughput according to channel conditions.

Several rate adaptation algorithms based on proposed

channel conditions specifically for the high throughput of

WLAN IEEE 802.11n are Minstrel-HT [2], RAMAS [3],

L3S [4], MiRA [5], CRA [6] and HiWiLA [7]. However, the

increase or decrease of data rate in Minstrel-HT, MiRA and

CRA is based on random probing method which resulted in

the possibility that the selected data rate is not suitable with

channel condition. In contrast to RAMAS, L3S, HiWiLA is

done based on order probing and produces optimal

throughput. However, these three algorithms are only used

for adaptation rates up to 2 and 3 spatial streams. Other

papers have proposed another approach to increase

throughput in WLANs [8]-[9].

In this paper, we propose a new rate adaptation algorithm

developed from the Adaptive Auto Rate Fallback (AARF)

algorithm [10]. The AARF algorithm increases and decreases

the data rate also based on the order probing, however the

AARF performs the probing data rate does not consider the

channel bandwidth, guard interval and the number of spatial

streams which is provided on the IEEE 802.11n WLAN.

Therefore in this paper we propose AARF algorithm for

High-Throughput (AARF-HT) in order to adapt 802.11n data

rate according to the channel condition.

In the AARF-HT algorithm we add channel width, guard

interval, spatial stream and maximum number of data rate

index attributes. With the addition of these attributes, AARF-

HT provides the number of data rate options according to the

combination of attribute values used. Each choice of data rate

we give the index rate number. These rate index number will

be increased or decreased by AARF-HT. We implemented

and tested the performance of the AARF-HT algorithm using

the NS-3 network simulator [13]. The simulation results

show that AARF-HT can adapt the WLAN IEEE 802.11n

rate based on channel condition and produce optimal

throughput.

The next section of this paper is organized as follows.

Section II describes related works related to the proposed

rate adaptation algorithm for the IEEE 802.11n standard and

the AARF algorithm on the NS-3 Simulator. Section III

describes the AARF-HT algorithm development and testing

methodology. The development and performance results of

the AARF-HT algorithm are shown in Section IV. Finally,

Part V presents the conclusion.

171
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 1, April 2018

2. Related Works

Based on literature studies, many papers have proposed rate

adaptation algorithm. But most of the proposed algorithms

are designed for older IEEE 802.11b/a/g WLAN standards.

Several recent algorithms have been proposed for rate

adaptation in the IEEE 802.11n High Throughput WLAN. In

this section we briefly describe each of the proposed rate

adaptation algorithms.

2.1 Rate adaptation algorithm for legacy IEEE 802.11

Most papers, such as [10]-[12], have proposed a rate

adaptation algorithm for older WLAN standards, i.e. IEEE

802.11b/a/g. Paper [11] has proposed Auto Rate Fallback

(ARF) algorithm in which rate adaptation is performed on the

transmitter side which increases or decreases the data rate in

sequence based on the number of MPDU successfully or

failed to be delivered constantly. The AARF and Adaptive

Multi-Rate Retry (AMRR) algorithm is developed from the

ARF algorithm in which the increment data rate is based on

the successful delivery of MPDU with a dynamic value [10].

However the rate adaptation on the AARF and AMRR fails

to adjust to the dynamic channel conditions. The Minstrel

algorithm has been proposed by [12], where the probing data

rate is done randomly. Minstrel however takes a long time

when the probing data rate is done on many data rate options.

All algorithms proposed by [10]-[12] and also [16]-[19] are

based on the adaptation of modulation schemes and coding

rates used in IEEE 802.11b/a/g. They do not consider new

PHY/MAC developments on IEEE 802.11n High-

Throughput WLAN such as number of Spatial Streams,

Guard Interval, Channel Width and MPDU aggregation.

2.2 Rate adaptation Algorithm for WLAN IEEE

802.11n

Some papers have proposed rate adaptation algorithms for

IEEE 802.11n High Throughput WLAN such as Minstrel-HT

[2], RAMAS [3], L3S [4], MiRA [5] CRA [6] and HiWiLA

[7]. Minstrel-HT is a enhancement of Minstrel for IEEE

802.11n WLAN. Minstrel-HT creates a group rate of channel

wide awareness, guard interval and number of streams. The

three parameters also determine the maximum number of

available group rates. In each group contains eight data rates

differentiated by the type of modulation and coding rate used.

Minstrel-HT performs probing data rate at two different

periods i.e. sampling period and non-sampling period. In the

sampling period, Minstrel-HT performs a probing data rate

by selecting a random data rate from all available data rates

in each group. If the data rate sampling yields a higher

throughput than the previous data rate, then Minstrel-HT uses

the data rate for subsequent MPDU transmissions, but if not

then keep using the previous data rate. Throughput is

calculated based on Frame Error Rate (FER) taking into

account Exponential Weighted Moving Average (EWMA).

In the non-sampling period, Minstrel-HT performs a probing

data rate using the three best data rate options established in

the sampling period, namely best throughput, second best

throughput and best probability. During the non-sampling

period, MPDUs are always delivered using the best

throughput rate. If the MPDU loss occurs then retransmission

still uses the best throughput rate until the maximum number

of retransmissions is reached. If the MPDU continues to

experience loss, then the next MPDU transmission using the

second best throughput rate. Similarly, if the rate of second

best throughput also experiences MPDU loss, then the data

rate is reduced to the best probability rate.

MiRA [5] is a practical rate adaptation used for MIMO

Table 1. Data Rate of WLAN IEEE 802.11n

 M

 C

 S

Modulation R Nss

Data rate (Mbps)

20 MHz 40 MHz

GI SGI GI SGI

0 BPSK 1/2 1 6.5 7.2 13.5 15

1 QPSK 1/2 1 13 14.4 27 30

2 QPSK 3/4 1 19.5 21.7 40.5 45

3 16-QAM 1/2 1 26 28.9 54 60

4 16-QAM 3/4 1 39 43.3 81 90

5 64-QAM 2/3 1 52 57.8 108 120

6 64-QAM 3/4 1 58.5 65 121.5 135

7 64-QAM 5/6 1 65 72.2 135 150

8 BPSK 1/2 2 13 14.4 27 30

9 QPSK 1/2 2 26 28.9 54 60

10 QPSK 3/4 2 39 43.3 81 90

11 16-QAM 1/2 2 52 57.8 108 120

12 16-QAM 3/4 2 78 87.7 162 180

13 64-QAM 2/3 2 104 115.6 216 240

14 64-QAM 3/4 2 117 130 243 270

15 64-QAM 5/6 2 130 114.4 270 300

16 BPSK 1/2 3 19.5 21.7 40.5 45

17 QPSK 1/2 3 39 43.3 81 90

18 QPSK 3/4 3 58.5 65 121.5 135

19 16-QAM 1/2 3 78 86.7 162 180

20 16-QAM 3/4 3 117 130 243 270

21 64-QAM 2/3 3 156 173.3 324 360

22 64-QAM 3/4 3 175.5 195 364.5 405

23 64-QAM 5/6 3 195 216.7 405 450

24 BPSK 1/2 4 26 28.9 54 60

25 QPSK 1/2 4 52 57.8 108 120

26 QPSK 3/4 4 78 86.7 162 180

27 16-QAM 1/2 4 104 115.6 216 240

28 16-QAM 3/4 4 156 173.3 324 360

29 64-QAM 2/3 4 208 231.1 432 480

30 64-QAM 3/4 4 234 260 486 540

31 64-QAM 5/6 4 260 288.9 540 600

Figure 1. AMSDU frame format

Figure 2. AMDPU frame format

172
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 1, April 2018

channels with slow fading characteristics. The MiRA is

designed compatible with 802.11n standards, so it can be

implemented in 802.11n devices and without any changes to

the receiver side. MiRA overcomes MPDU loss by applying

a zigzag rate adaptation between intra-mode and inter-mode

on MIMO. MiRA first performs probing rate in MIMO intra-

mode, but if throughput fails to be increased in intra-mode,

then MiRA zigzag to inter-mode MIMO. The probing

interval of MiRA is also adapted, which limits the probing

number when throughput is low. MiRA also considers frame

aggregation and Block Acknowledgement (ACK) schemes

when performing the best data rate probing. Just like

Minstrel-HT, MiRA calculates the estimated statistic

throughput using EWMA. However, the use of zigzag

method in MiRA can lead to resource wastage.

Paper [6] has proposed a Cognitive Rate Adaptation (CRA)

algorithm for IEEE 802.11n High Throughput WLAN. CRA

performs cognitive data rate probing and increases or

Start

Initialization:

successThreshold = 80;

timerTimeout = 15;

rate = 0; success = 0;

failed = 0;

recovery = false;

retry = 0; timer = 0;

GetDataTxVector

chWidth>20MHz ?

N

rate = {0,1,2,3,4,5,6,7};

TxPowerLevel = default;

LongRetryCount = 7;

Short GI=false; Nss=1; Ess=1;

chWidth =20MHz;

Aggregation=false;

Stbc=false;

Y

A

MPDU

Transmitted?

Y

ACK received ?

Y

timer++;

success++;

failed=0;

recovery=false;

retry=0;

(success=successThreshold

atau timer=timerTimeout

dan rate < 7) ?

Y

rate++;

timer = 0;

success = 0;

recovery = true;

N

timer++;

failed++;

retry++;

success = 0;

recovery = true ?

N

((retry - 1) % 2) = 1 ?Nretry >= 2 ?NStop N

Y

timer = 0;

Y

timerTimeout =

minTimerThreshold;

successThreshold =

m_minSuccessThreshold;

rate != 0 ?

Y

Rate - - ;

A

Y

retry = 1 ?Ntimer = 0;

Y

successThreshold = (Min

(successThreshold * successK ,

maxSuccessThreshold));

timerTimeout = (Max (timerTimeout *

m_timerK , minSuccessThreshold));

rate != 0 ?

Y

Rate - - ;

N

N

N

Figure 3. Flowchart of AARF algorithm

173
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 1, April 2018

decreases MCS (Modulation and Coding Scheme) also

cognitively so that the probing process can take place

quickly. CRA distinguishes candidate data rate based on

performance statistics displayed by each data rate. CRA can

make transmission more resistant to sudden changes of

channel conditions by probing data rate in same MCS group.

Minstrel-HT, MiRA, CRA and also [20]-[21] used a random

probing data rate method. This method has a drawback that

the magnitude of the randomly selected sample rate results in

a lower throughput than the previous data rate [15].

Paper [3] has proposed a Level Adaptation for Multi-

Antenna System (RAMAS) algorithm that performs

sequential data rate probing. The data rates available in IEEE

802.11n are grouped into two groups, the modulation group

and enhancement group. Enhancement group consists of

spatial stream, guard interval and channel width. In each

group are applied different rules to increase or decrease the

data rate in sequence. Probing data rate is performed on both

groups simultaneously, but in poor channel condition

RAMAS fails to find optimal data rate.

Paper [4] has proposed a Long-Term Stability and Short-

Term Responsiveness (L3S) algorithm for rate adaptation in

IEEE 802.11n. L3S uses the statistical information

throughput, ACK and FER for each data rate used. This

statistical information is used to estimate channel conditions.

The statistical information collected by the transmitter is

divided into two categories, namely Long-term statistics and

Short-term statistics. Both statistical information is always

updated based on MPDU transmission results. Statistical

information is always reset when data rate changes occur.

The L3S algorithm also determines how long a data rate is

used, when and how a new data rate probing is performed,

and whether to switch to a new data rate or not.

Paper [7] has proposed the High Throughput Wireless Link

Adaptation (HiWiLA) algorithm in which metric links are

calculated using the Received Signal Strength Indicator

(RSSI) and MAC throughput. HiWiLA performs probing

data rates in sequence based on predefined states. State on

HiWiLA is a combination of the use of the number of

streams, bandwidth, guard intervals and AMSDU. So probing

data rate on RAMAS, L3S, HiWiLA algorithm is done based

on order probing and generate optimal throughput. However,

the design of these three algorithms is only used for

adaptation rates up to 2 and 3 spatial streams.

Other papers have proposed another approach to increase

throughput in WLANs. Paper [8] improved spectral

efficiency in Optimum Rate Adaptation (ORA) by employing

Selection Combining (SC) for selection combining diversity

schemes. Paper [9] proposes a new mechanism for

calculating TXOP duration in IEEE 802.11e-based WLANs.

The proposed algorithm considers the data rate, channel error

rate and packet length to calculate the TXOP duration

adaptively. Evaluation of algorithm performance has been

done using simulation and shows higher throughput result

and lower delay in network.

3. Research Methodology

 3.1 Method for Development of AARF-HT Algorithm

The development of AARF-HT algorithm in this research is

done according to the development and implementation of

new algorithm in NS-3 simulator [14] as shown in figure 4 as

follows:

1. Identify the new functionality required for the
implementation of the AARF-HT algorithm model and
the attributes provided for the AARF-HT configuration.

2. Identify the functionality and attributes currently
available on the AARF algorithm model as in Fig. 3.

3. Identify the reusable parts of the AARF model currently
available.

4. Identify the dependencies required for the AARF-HT
coding to be made.

5. Evaluate the NS-3 Simulator coding style for AARF-
HT implementation.

6. Determination of source three on the NS-3 Simulator
for placement of AARF-HT source code source in the
NS-3 version 3.26 directory.

7. Determination of the include guard for AARF-HT.
8. Determination of AARF-HT Namespace for NS-3

Simulator.
9. Writing C++ coding for the implementation of functions

required AARF-HT.

Figure 4. New algorithm development method in NS-3

Access Point (AP)

1 M 2 M 3 M

Station (STA)

100 M

Figure 5. Simulation topology

174
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 1, April 2018

10. Writing C++ coding for attribute implementation
required AARF-HT.

11. Testing of AARF-HT algorithm implementation on NS-
3.26. To test the implementation of new algorithms on
NS-3, tools have been provided by running the
command ./test.py. The implementation of the new
algorithm is said to be successful if testing with ./test.py
does not generate an error.

 3.2 Simulation Method for AARF-HT Performance

Evaluation

After the testing phase of AARF-HT algorithm

implementation in NS-3 has succeeded and no more error

message appeared, next is testing performance of AARF-HT

algorithm in performing adaptation rate in WLAN IEEE

802.11n according to channel condition. The purpose of the

testing phase is to ascertain whether all functions contained

in the AARF-HT algorithm are functioning properly or not.

Some functions of the AARF-HT algorithm to be tested such

as MPDU transmission function using and without using

AMPDU, MPDU transmission function using various

combination of spatial stream number, Guard Interval size

and channel bandwidth size as well as testing controlling the

use of 802.11n data rate according to channel condition for

resulting in optimal throughput.

To test all the functions and attributes of the AARF-HT

algorithm, a simulation is made using scenarios as shown in

Figure 5. In the test simulation there is one Access Point

(AP) and one Station (STA) that support IEEE 802.11n

WLAN standard. Each PHY from AP and STA support

usage of channel bandwidth of 20 MHz and 40 MHz at 5

GHz frequency, 800 ns and 400 ns Guard Interval support,

and MIMO support up to four spatial streams. MAC AP and

STA support AMPDU with a maximum size of 65535 bytes.

In the AP there is a Constant Bit Rate (CBR) application that

sends data packets of 1420 bytes continuously to the STA 1

meter (m) away from the AP. Then STA moves away from

the AP at a speed of 1 meter per second (m/s) to a distance of

100 m from the AP. The data transmission throughput is

measured at the STA per meter of movement in units of

megabits per second (Mbps). The throughput of the AARF-

HT algorithm is then compared with the Constant Rate

throughput of each HtMcs data rate for AARF-HT

performance to be evaluated. Other parameters used in the

test simulations are shown in Table 2.

4. Result and Discussion

In this section we describe the results of the development and

performance evaluation of the AARF-HT algorithm.

4.1 Development of AARF-HT Algorithm

The 802.11n standard already has other parameters that can

affect throughput of channel width, guard interval and

number of spatial streams. Channel Width affects the

magnitude of the throughput generated, whereby if the

greater the channel width, the greater the throughput

generated. In the 802.11n standard the channel width

selection has two ranges of 20 and 40 MHz, Guard Interval

will affect the waiting time for ACK reception, the smaller

the ACK wait time will be the greater the throughput

generated. This is because the shorter the time required for

decision making in case of frame fails.

In the 802.11n standard the guard interval selection is two

times 400 ns and 800 ns. The number of spatial streams

influences the throughput as the greater the number of spatial

streams the greater the throughput will be generated. This is

because more and more paths will be passed during the

transmission process. In the 802.11n standard there are four

choices of spatial stream usage that are 1, 2, 3 and 4.

Based on these explanations and based on the AARF-HT

algorithm development method described in Part III we have

designed and implemented the AARF-HT algorithm in two

new NS-3 files: aarf-ht-wifi-manager.h and aarf-ht-wifi-

manager.cc. Both files are placed in the directory

/ns3.26/src/wifi/model/. The complete pseudo code

implementation of the AARF-HT algorithm is shown in

Pseudo code 1.

The AARF-HT pseudo code algorithm consists of four parts,

the initialization part (lines 2-20), the functioning part of the

successful transmission of MPDU transmission, without or

using AMPDU (lines 23-48), the MPDU/AMPDU delivery

failure checking function section (lines 51-70) and parts of

the DataTxVector checking function (lines 72-97).

In the initialization section, we add new attributes that were

not previously available on the AARF algorithm, which is

chWidth (channel width), sgi (short guard interval), ss

(number of spatial streams), and maxHtRateId (maximum

number of ID of HT rate). These four attributes are used to

identify the HT data rate list supported by STA and AP.

Additionally we also added the nSuccessfulMpdus

(number of successful transmission of MPDU) and

maxAMPDU (maximum size of AMPDU) attributes used when

a terminal enables AMPDU transmission mode.

Table 2. Simulation Parameters

Parameters Explanation

Node

 Number of AP and STA 1 AP and 1 STA

 Minimum and maximum distance Min. 1 m and max. 100 m

 Speed movement of STA 1 m/s

Channel

 Propagation loss model LogDistancePropagationLoss

 Propagation delay model ConstantSpeed

PHY

 Frequency 5 GHz

 Channel width 20 and 40 MHz

 Guard interval 800 ns and 400 ns

 TxGain / RxGain 1 dB / 1 dB

 Maximum MIMO 4 x 4

 TxPower 16.0206 dB

MAC

 Maximum size of AMPDU 65535 byte

 RTS/CTS threshold 65535 byte (disable)

 EDCA access category Best Effort

Network

 IPv4 subnet 10.1.1.0/24

Transport

 Type of protocol UDP

Application

 Application model OnOffApplication

 Packet size 1420 byte

 CBR 600 Mbps

 Application start / stop 0.5 s / 100 s

175
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 1, April 2018

In AARF-HT, for each received ACK then the value of the

success attribute will be updated depending on whether the

MPDU is sent using AMPDU or not. If not, then the attribute

value success is incremented. But if using AMPDU, then the

value of attribute success summed with nSuccessfulMpdus.

So, MPDU transmission using AMPDU can accelerate the

attribute's success value to its threshold value. If the success

is greater than or equal to successThreshold and the current

rate (index rate) is smaller than maxHtRateId then AARF-HT

increments the rate index.

For any MPDU/AMPDU transmission failure, AARF-HT

increment failed attribute. Then checked, if state in recovery

condition and retry equal to 1 then update the value of

successThreshold and timerTimeout. Update

successThreshold value is done by selecting a smaller

value between successThreshold multiplication with

successK or maxSuccessThreshold. Update

timerTimeout value is done also by selecting bigger value

between timerTimeout multiplication with TimerK or

minSuccessThreshold. The decrement is then performed

on the index rate if the current rate index is not equal to zero.

But if the retry-1 modulus 2 equals 1 is fulfilled then updates

to the successThreshold and timerTimeout values are

performed as follows: timerTimeout is equal to

minTimerThreshold and successThreshold is equal to

minSuccessThreshold. The decrement is then performed

on the index rate if the current rate index is not equal to zero.

The GetDataTxVector() function is used to specify the

transmission TxVector parameter of an MPDU/AMPDU.

This function begins with a function calling GetChWidth(),

GetShortGuardInterval()and GetNumberOfSupport-

Antenna() to obtain channel bandwidth, guard interval and

Pseudocode 1. AARF-HT algorithm

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

34:

35:

36:

37:

38:

39:

40:

41:

42:

43:

44:

45:

46:

47:

48:

49:

50:

51:

52:

53:

54:

55:

56:

57:

58:

59:

60:

61:

62:

63:

64:

65:

66:

67:

68:

69:

70:

Initialization:

maxSuccessThreshold = 60

minSuccessThreshold = 10

minTimerThreshold = 15

successK = 2; timerK = 2

rate = 0

success = 0

failed = 0

recovery = false

retry = 0

timer = 0

successThreshold = minSuccessThreshold

timerTimeout = minTimerThreshold

chWidth = 0

sgi = true

ss = 0

maxHtRateId = 0

nSuccessfulMpdus = 0

maxAMPDU = 0

GetDataTxVector ()

For each ACK:

begin

 if maxAMPDU < 2 × MPDU then

 timer++

 success++

 failed = 0

 recovery = false

 retry = 0

 if ((success = successThreshold || timer = timerTimeout)

 && (rate < maxHtRateId)) then

 rate++

 timer = 0

 success = 0

 recovery = true

else

success += nSuccessfulMpdus

failed = 0

recovery = false

retry = 0

if ((success >= successThreshold)

 && (txrate < maxHtRateId)) then

rate++

timer = 0

success = 0

nSuccessfulMpdus = 0

recovery = true

end

For each packet loss:

begin

 timer++

 failed++

 retry++

 success = 0

 if recovery=true then

 if (retry = 1) then

 successThreshold = (Min (successThreshold × successK,

 maxSuccessThreshold));

 timerTimeout = (Max (timerTimeout × timerK,

 minSuccessThreshold))

 if (m_rate != 0) then rate--

 timer = 0

 else

 if (((retry - 1) % 2) == 1) then

 timerTimeout = minTimerThreshold

 successThreshold = minSuccessThreshold

 if (rate != 0) then rate--

 if (retry >= 2) then timer = 0

end

Pseudocode 1. AARF-HT algorithm (continued)

71:

72:

73:

74:

75:

76:

77:

78:

79:

80:

81:

82:

83:

84:

85:

86:

87:

88:

89:

90:

91:

92:

93:

94:

95:

96:

97:

GetDataTxVector ()

begin

chWidth = GetChannelWidth ()

sgi = GetShortGuardInterval ()

maxAMPDU = GetAggregation ()

streams = GetNumberOfSupportedRxAntennas ()

if (chWidth=40 && sgi=true && ss=4) then rate = {0 ~ 127)

if (chWidth=40 && sgi = true && ss = 3) then rate = {0 ~ 95)

if (chWidth=40 && sgi = true && ss = 2) then rate = {0 ~ 63)

if (chWidth=40 && sgi = true && ss = 1) then rate = {0 ~ 31)

if (chWidth=40 && sgi = false && ss=4) then rate = {0 ~ 63)

if (chWidth=40 && sgi = false && ss=3) then rate = {0 ~ 47)

if (chWidth=40 && sgi = false && ss=2) then rate = {0 ~ 31)

if (chWidth=40 && sgi = false && ss=1) then rate = {0 ~ 15)

if (chWidth=20 && sgi = true && ss=4) then rate = {0 ~ 63)

if (chWidth=20 && sgi = true && ss=3) then rate = {0 ~ 47)

if (chWidth=20 && sgi = true && ss = 2) then rate = {0 ~ 31)

if (chWidth=20 && sgi = true && ss = 1) then rate = {0 ~ 15)

if (chWidth=20 && sgi = false && ss=4) then rate = {0 ~ 31)

if (chWidth=20 && sgi = false && ss=3) then rate = {0 ~ 23)

if (chWidth=20 && sgi = false && ss=2) then rate = {0 ~ 15)

if (chWidth=20 && sgi = false && ss=1) then rate = {0 ~ 7)

maxHtRateId = (8 × (chWidth/20) × (sgi+1) × (streams)) - 1

return WifiTxVector (rate, GetDefaultTxPowerLevel (),

 GetLongRetryCount (), sgi, streams, 0, channelWidth,

 GetAggregation (), false)

End

176
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 1, April 2018

the number of antennas used by the transmitter. From the

information then made a list of tramsiter index rate. For

example, if chWidth = 20, sgi = false and streams = 1

then the available rate index is 0-7, that means the transmitter

has a choice of data rate 6.5 to 65 Mbps. However if

chWidth = 40, sgi = true and streams = 4 then the

available rate index is 0-127 or available data rate options up

to 600 Mbps. This function also calculates the maximum

index of the data rate stored in the maxHtRateId variable.

The final part of this function returns the value of the

TxVector parameter used for MPDU/AMPDU transmission.

After the testing phase of AARF-HT algorithm

implementation in NS-3 has succeeded and no more error

message appeared, next is testing performance of AARF-HT

algorithm in performing rate adaptation in WLAN IEEE

802.11n according to channel condition. When the

./test.py command is executed then the NS-3 simulator

compiles the entire build module file program found in the

NS-3 simulator. We have tested the implementation of the

AARF-HT algorithm using the ./test.py tool. The test

results show the AARF-HT has been running well where

"399" passed, "3" skipped, "0" failed, "0" crashed and "0"

valgrind errors.

4.2 AARF-HT Performance Evaluation

Figure 6 shows the AARF-HT rate adaptation simulation

results in the IEEE 802.11n WLAN where MPDU

transmission is performed without using the AMPDU

scheme. In the simulation, 40 MHz channel width has been

used, SGI has enabled and the maximum number of streams

used is 4. Based on the implementation of AARF-HT

algorithm as shown in Pseudo code 1, AP and STA have 128

data rate options such as shown in Table 1. The simulation

results show, when the STA is at a distance of 1 m from the

AP and MPDU begins to be transmitted using the data rate

with index rate = 0, resulting in a throughput of 25 Mbps.

Then when the STA is at a distance of 2 m from the AP, the

throughput starts rising to 34 Mbps to match the throughput

generated by the HtMcs-31 data rate up to a distance of

approximately 20 m. This increase in throughput occurs

because at that distance each MPDU transmission is

successful so AARF-HT continues to increase the index rate

until it reaches data rate equal to HtMcs-31. However, after

passing the distance of 20 m, the throughput began to

decrease as a result of channel quality decreased so that

AARF-HT adjusted the data rate according to the channel

condition.

At a distance of 20 to 100 meters, AARF-HT managed to

adapt the 802.11n rate according to the channel conditions.

This success is evidenced by the resulting throughput

matching the optimal throughput generated by HtMcs-24 to

Ht-Mcs31 data rates. When channel quality changes, the

throughput generated by AARF-HT decreases, but again

achieves the throughput generated by the constant rate.

Therefore it can be said that MPDU transmission function

without AMPDU and adaptation of data rate based on

channel condition successfully performed by AARF-HT

algorithm.

Figure 7 shows the simulation results of AARF-HT rate

adaptation in the IEEE 802.11n WLAN where MPDU

transmission is performed using the AMPDU scheme. The

PHY parameters used are the same as those generated by

Figure 6 which are 40 MHz channel widths, using SGI and

using a maximum of 4 spatial streams resulting in 128 data

rate options. The simulation results show, when STA is at a

distance of 1 m from AP and AMPDU begin to be

transmitted using data rate with index rate = 0 yielding 25

Mbps throughput. However when STA is at a distance of 2-

10 m from the AP, the throughput rises to 425 Mbps to match

the throughput generated by the HtMcs-31 data rate up to a

distance of approximately 20 m.

Figure 7. Throughput of AARF-HT vs. constant rate

(AMPDU = enable; channel width = 40 MHz; SGI =

true; streams = 4)

Figure 6. Throughput of AARF-HT vs. constant rate

(AMPDU = disable; channel width = 40 MHz; SGI =

true; streams = 4)

177
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 1, April 2018

This increase in throughput occurs because at that distance

every success AMPDU delivery so that AARF-HT continues

to increase the index rate to achieve the data rate HtMcs-31.

However, after passing a distance of 20 m, the throughput

began to decrease as a result of channel quality decreased so

that AARF-HT re-adjusted the data rate used for AMPDU

delivery in accordance with channel conditions.

The throughput generated by the AARF-HT algorithm shown

in Figure 7 is much higher than the throughput shown in

Figure 6. This condition proves that the MPDU delivery

function using AMPDU scheme in AARF-HT algorithm has

functioned well and AMPDU scheme capable to increase

throughput in 802.11n network. However the throughput

generated at a distance of 1 m is still low due to AARF-HT

always transmits AMPDU with index rate equal to 0. So it

takes several seconds to achieve the optimal throughput

generated by index rate = 127 using HtMcs-31 data rate.

Figure 8, Figure 9 and Figure 10 show the throughput

generated by the AARF-HT algorithm using a combination of

channel width, guard interval and the number of different

spatial streams. The throughput shown in Figure 8 is

generated by the AARF-HT algorithm where MPDU

transmission is performed using the AMPDU scheme, using

20 MHz bandwidth, SGI and using four spatial streams.

Based on the use of the combination of PHY parameters,

AARF-HT has 64 data rate options that can be used to

transmit AMPDU. When the STA is at a distance of 1 m

from the AP, the resulting throughput is 25 Mbps. However

at a distance of 5-20 m, the throughput is increase of up to

248 Mbps equals the throughput generated by the HtMcs-31

constant rate. As the STA continues to move away from the

AP up to a distance of 100 m, the throughput generated by

the AARF-HT algorithm can match the optimal throughput of

the HtMcs constant rate.

The throughput shown in Figure 9 and Figure 10 is generated

by the AARF-HT algorithm where MPDU transmission is

performed using the AMPDU scheme, using 20 MHz

bandwidth and 800 ns GI. However Figure 9 uses 3 spatial

Figure 8. Throughput of AARF-HT vs. constant rate Figure 9. Throughput of AARF-HT vs. constant rate

(AMPDU = enable; channel width = 20 MHz; SGI = true; (AMPDU = enable; channel width = 20 MHz; SGI = false;

streams = 4). streams = 3).

Figure 10. Throughput of AARF-HT vs. constant rate Figure 11. Throughput of AARF-HT vs. AARF algorithm

(AMPDU = enable; channel width = 20 MHz; SGI = false;

streams = 2).

178
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 1, April 2018

streams and Figure 10 uses 2 spatial streams. Based on the

use of the combination of PHY parameters, AARF-HT in

Figure 9 has 24 data rate options and in Figure 10 has 16 data

rate options that can be used to transmit AMPDU. When the

STA is at a distance of 1 m from the AP, the resulting

throughput is 25 Mbps. However, when using 3 spatial

streams at a distance of 2-20 m throughput an increase of up

to 175 Mbps matches the resulting throughput of HtMcs-23

constant rate. As the STA continues to move away from the

AP up to a distance of 100 m, the throughput generated by

the AARF-HT algorithm can match the optimal throughput of

the HtMcs-22, HtMcs-21 to HtMcs-16 constant rates.

Similarly, when using 2 spatial streams at a distance of 2-

20m, the throughput is increase of up to 119 Mbps also

matches the throughput generated by the HtMcs-15 constant

rate. As the STA continues to move away from the AP up to

a distance of 100 m, the throughput generated by the AARF-

HT algorithm can match the optimal throughput of the

HtMcs-14 to HtMcs-8 constant rate. Thus Figure 8, Figure 9

and Figure 10 prove that the MPDU delivery function uses

various combinations of channel bandwidth size, SGI = true

or false and the number of different spatial streams have the

AARF-HT algorithm working properly.

Figure 11 shows the comparison of AARF-HT algorithm

throughput with various MAC and PHY configurations and

the AARF algorithm. The AARF-HT algorithm generates a

higher throughput than the AARF algorithm either without

using AMPDU or using AMPDU. The throughput generated

from the AARF-HT using AMPDU is higher than the AARF-

HT without using AMPDU. Figure 11 also shows that

throughput is strongly influenced by channel width, guard

interval and number of spatial streams used. Based on figure

11 it can be seen that the 40 MHz channel width produces a

higher throughput than at 20 Mhz. Use of 400 ns Guard

intervals (activated using Boolean sgi = true) results in lower

throughput of guard interval = 800 ns (activated using

Boolean sgi = false). Furthermore, four spatial streams result

in higher throughput than three spatial streams, three spatial

streams resulting in higher throughput than two spatial

streams and two spatial streams resulting in higher

throughput than a single spatial stream.

5. Conclusions

We have improved the AARF algorithm to be used in the

IEEE 802.11n WLAN and call it the AARF-HT algorithm. In

the AARF-HT algorithm we have added the chWidth, sgi,

streams and maxHtrateId attributes. The attributes are

used by the GetDataTxVector() function in order for

AARF-HT to know the channel width, guard interval,

number of spatial streams and the maximum number of

indexes supported by HT-PHY. The AARF-HT algorithm

has also added the maxAMPDU and nSuccessfulMpdus

attributes. The maxAMPDU attribute is used by the

GetDataTxVector() function in order for AARF-HT to

know the maximum size of AMPDU. The

nSuccessfulMpdus attribute is used by the function of

checking the success of MPDU transmission using AMPDU

so that AARF-HT can know the number of MPDU received

without error. The results of the AARF-HT rate adaptation

simulation on the IEEE 802.11n WLAN, where MPDU

transmission is performed without and using the AMPDU

scheme, has worked well. This is evidenced by the

throughput generated AARF-HT has been able to adapt to

changes in channel quality and generate maximum

throughput in accordance with the constant rate. MPDU

transmission function test results using various combinations

of channel width, guard intervals and different spatial stream

numbers show the AARF-HT algorithm is working properly.

AARF-HT has also generated maximum throughput constant

rate. The simulation results also show that the throughput of

AARF-HT algorithm is higher than AARF.

References

[1] IEEE, “Standard for Wireless LAN Medium Access

Control (MAC) and Physical Layer (PHY)

Specifications Amendment 5: Enhancements for

Higher Throughput,” IEEE Std 802.11n-2009, vol.,

no., pp.1-565, Oct. 29 2009.

[2] F. Fietkau and D. Smithies, “Linux Wireless Minstrel

High Throughput.,” Minstrel-Ath9k driver

http://linuxwireless.org/en/users/Drivers/ath9k.

[3] D. Nguyen and J. J. Garcia-Luna-Aceves, “A practical

approach to rate adaptation for multi-antenna

systems,” 2011 19th IEEE International Conference on

Network Protocols, Vancouver, BC, 2011, pp. 331-340.

[4] A. B. Makhlouf and M. Hamdi, “Practical Rate

Adaptation for Very High Throughput WLANs,”

in IEEE Transactions on Wireless Communications,

vol. 12, no. 2, pp. 908-916, February 2013.

[5] I. Pefkianakis, S. B. Lee and S. Lu, “Towards MIMO-

Aware 802.11n Rate Adaptation,” in IEEE/ACM

Transactions on Networking, vol. 21, no. 3, pp. 692-

705, June 2013.

[6] S. Seytnazarov and Young-Tak Kim, “Cognitive rate

adaptation for high throughput IEEE 802.11n

WLANs,” 2013 15th Asia-Pacific Network Operations

and Management Symposium (APNOMS), Hiroshima,

Japan, 2013, pp. 1-6.

[7] R. Karmakar, S. Chattopadhyay and S. Chakraborty,

“Dynamic link adaptation for High Throughput wireless

access networks,” 2015 IEEE International Conference

on Advanced Networks and Telecommuncations

Systems (ANTS), Kolkata, 2015, pp. 1-6.

[8] M. I. Hasan and S. Kumar, “Spectral Efficiency

Evaluation for Selection Combining Diversity Schemes

under Worst Case of Fading Scenario,” International

Journal of Communication Networks and Information

Security, Vol. 7, No. 3, pp. 123-130, 2015.

[9] M. Yazdani, M. Kamali, N. Moghim and M. Ghazvini,

“A Fair Access Mechanism Based on TXOP in IEEE

802.11e Wireless Networks,” International Journal of

Communication Networks and Information Security,

Vol. 8, No. 1, pp. 11-17, 2016.

[10] M. Lacage, M.H. Manshaei, and T. Turletti, “IEEE

802.11 rate adaptation: a practical approach,”

Proceedings of the 7th ACM international symposium

on Modeling, analysis and simulation of wireless and

mobile systems, pages 126–134, 2004.

[11] A. Kamerman and L. Monteban, “WaveLAN-II: A

highperformance wireless LAN for the unlicensed

179
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 1, April 2018

band,” Wireless Bell Labs technical journal, 2(3):118–

133, 1997.

[12] Cerowrt, The Cerowrt site (2017), Internet (online),

http://blog.cerowrt.org/papers/minstrel-sigcomm-

final.pdf.

[13] Nsnam, The Network Simulator NS-3 site (2017),

Internet (online), https://www.nsnam.org

[14] Nsnam, The NS-3 Manual, Internet (online),

https://www.nsnam.org/docs/release/3.27/manual/ns-3-

manual.pdf

[15] T. Y. Arif, R. Munadi and Fardian, “Evaluation of the

Minstrel-HT Rate Adaptation Algorithm in IEEE

802.11n WLANs,” International Journal of Simulation

Systems, Science & Technology, Vol. 18, No. 1, pp.

11.1-11.7, March 2017.

[16] S. H. Wong, H. Yang, S. Lu, and V. Bharghavan,

“Robust rate adaptation for 802.11 wireless networks,”

in Proc. ACM MobiCom, 2006, pp. 146–157.

[17] J. Camp and E. Knightly, “Modulation rate adaptation in

urban and vehicular environments: Cross-layer

implementation and experimental evaluation,” in Proc.

ACM MobiCom, 2008, pp. 315–326.

[18] G. Judd, X. Wang, and P. Steenkiste, “Efficient channel-

aware rate adaptation in dynamic environments,” in

Proc. ACM MobiSys, 2008, pp. 118–131.

[19] H. Rahul, F. Edalat, D. Katabi, and C. Sodini,

“Frequency-aware rate adaptation and MAC protocols,”

in Proc. ACM MobiCom, 2009, pp. 193–204.

[20] S. Byeon, K. Yoon, O. Lee, W. Cho, S. Oh, and S. Choi,

“MoFA: Mobility-Aware Frame Aggregation in Wi-Fi,”

in Proc. ACM CoNEXT, Dec. 2014.

[21] S. Byeon, K. Yoon, C. Yang and S. Choi, “STRALE:

Mobility-aware PHY rate and frame aggregation length

adaptation in WLANs,” IEEE INFOCOM 2017 - IEEE

Conference on Computer Communications, Atlanta,

GA, 2017, pp. 1-9.

