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Abstract: Wireless Local Area Network (WLAN) has been 

progressing rapidly. The IEEE 802.11n Physical (PHY) layer 

provides wider channel bandwidth, shorter guard interval, and up to 

four data streams. Therefore PHY 802.11n has a maximum of 128 

data rate options from 6.5 Mbps to 600 Mbps. In addition, Medium 

Access Control (MAC) has been added Aggregate MAC Protocol 

Data Unit (AMDPU) scheme. If AMPDU is transmitted with a data 

rate corresponding to the channel conditions, then the probability 

AMPDU is received without error becomes increased. MAC 

determines the data rate used for transmitting AMPDU using a rate 

adaptation algorithm. Therefore some papers have proposed rate 

adaptation algorithms based on channel conditions. In this paper we 

propose a new rate adaptation algorithm that we call Adaptive Auto 

Rate Fallback for High Throughput (AARF-HT). Our development 

is done using NS-3 simulator version 3.26. AARF-HT algorithm 

performance is also tested through a number of simulations 

extensively. The simulation results show the data rate adaptation 

function based on the channel width, guard interval and the number 

of spatial streams in IEEE 802.11n WLAN has functioned well. The 

test results also show the AARF-HT algorithm resulted in higher 

throughput compared to the AARF algorithm.  
 

Keywords: Rate Adaptation, AARF, High Throughput, 802.11n, 

AARF-HT.  
 

1. Introduction 
 

The IEEE 802.11n standard, which is the fourth generation 

Wireless Local Area Network (WLAN), has developed in 

Physical (PHY) and Medium Access Control (MAC) layers. 

Development in PHY is 20/40 MHz channel bandwidth, 

Guard Interval (GI) 800 ns / Short GI (SGI) 400 ns, and uses 

Multiply Input Multiple Output (MIMO) 1/2/3/4 spatial 

streams. If a maximum configuration of 40 MHz channel 

bandwidth, SGI and 4 spatial stream is used, the WLAN 

IEEE 802.11n has 128 data rate options, from 6.5 Mbps to 

600 Mbps as shown in Table 1. The 802.11n PHY layer is 

called High Throughput PHY (HT-PHY) [1]. 

In MAC 802.11n, a more efficient frame format developed 

using the Aggregate MAC Service Data Unit (AMSDU) 

scheme and the Aggregate MAC Protocol Data Unit 

(AMPDU) scheme. The AMSDU scheme is used to improve 

the efficient use of MAC headers, where multiple MAC 

Service Data Units (MSDU) with the same destination 

address are transmitted using only one MAC header as shown 

in Figure 1. Unlike the AMPDU scheme, it is used to 

improve the efficiency of PHY layer headers by means of 

multiple MAC Protocol Data Units (MPDU) that have the 

same destination address, transmitted using only one PHY 

header as shown in Figure 2. In addition, MAC 802.11n has 

used the Enhance Distributed Channel Access (EDCA) 

access channel method that provides Quality of Service 

(QoS) functions. 

As for the explanation in the IEEE 802.11 standard, MAC 

determines the data rate used for MPDU transmission using a 

rate adaptation algorithm. However, the IEEE 802.11 

standard does not specify how the rate adaptation algorithm 

works in determining the data rate used for MPDU 

transmission. Therefore some papers have proposed rate 

adaptation algorithms for WLANs to produce optimal 

throughput according to channel conditions. 

Several rate adaptation algorithms based on proposed 

channel conditions specifically for the high throughput of 

WLAN IEEE 802.11n are Minstrel-HT [2], RAMAS [3], 

L3S [4], MiRA [5], CRA [6] and HiWiLA [7]. However, the 

increase or decrease of data rate in Minstrel-HT, MiRA and 

CRA is based on random probing method which resulted in 

the possibility that the selected data rate is not suitable with 

channel condition. In contrast to RAMAS, L3S, HiWiLA is 

done based on order probing and produces optimal 

throughput. However, these three algorithms are only used 

for adaptation rates up to 2 and 3 spatial streams. Other 

papers have proposed another approach to increase 

throughput in WLANs [8]-[9]. 

In this paper, we propose a new rate adaptation algorithm 

developed from the Adaptive Auto Rate Fallback (AARF) 

algorithm [10]. The AARF algorithm increases and decreases 

the data rate also based on the order probing, however the 

AARF performs the probing data rate does not consider the 

channel bandwidth, guard interval and the number of spatial 

streams which is provided on the IEEE 802.11n WLAN. 

Therefore in this paper we propose AARF algorithm for 

High-Throughput (AARF-HT) in order to adapt 802.11n data 

rate according to the channel condition. 

In the AARF-HT algorithm we add channel width, guard 

interval, spatial stream and maximum number of data rate 

index attributes. With the addition of these attributes, AARF-

HT provides the number of data rate options according to the 

combination of attribute values used. Each choice of data rate 

we give the index rate number. These rate index number will 

be increased or decreased by AARF-HT. We implemented 

and tested the performance of the AARF-HT algorithm using 

the NS-3 network simulator [13]. The simulation results 

show that AARF-HT can adapt the WLAN IEEE 802.11n 

rate based on channel condition and produce optimal 

throughput.   

The next section of this paper is organized as follows. 

Section II describes related works related to the proposed 

rate adaptation algorithm for the IEEE 802.11n standard and 

the AARF algorithm on the NS-3 Simulator. Section III 

describes the AARF-HT algorithm development and testing 

methodology. The development and performance results of 

the AARF-HT algorithm are shown in Section IV. Finally, 

Part V presents the conclusion. 
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2. Related Works 

Based on literature studies, many papers have proposed rate 

adaptation algorithm. But most of the proposed algorithms 

are designed for older IEEE 802.11b/a/g WLAN standards. 

Several recent algorithms have been proposed for rate 

adaptation in the IEEE 802.11n High Throughput WLAN. In 

this section we briefly describe each of the proposed rate 

adaptation algorithms.  

2.1 Rate adaptation algorithm for legacy IEEE 802.11 

Most papers, such as [10]-[12], have proposed a rate 

adaptation algorithm for older WLAN standards, i.e. IEEE 

802.11b/a/g. Paper [11] has proposed Auto Rate Fallback 

(ARF) algorithm in which rate adaptation is performed on the 

transmitter side which increases or decreases the data rate in 

sequence based on the number of MPDU successfully or 

failed to be delivered constantly. The AARF and Adaptive 

Multi-Rate Retry (AMRR) algorithm is developed from the 

ARF algorithm in which the increment data rate is based on 

the successful delivery of MPDU with a dynamic value [10]. 

However the rate adaptation on the AARF and AMRR fails 

to adjust to the dynamic channel conditions. The Minstrel 

algorithm has been proposed by [12], where the probing data 

rate is done randomly. Minstrel however takes a long time 

when the probing data rate is done on many data rate options. 

All algorithms proposed by [10]-[12] and also [16]-[19] are 

based on the adaptation of modulation schemes and coding 

rates used in IEEE 802.11b/a/g. They do not consider new 

PHY/MAC developments on IEEE 802.11n High-

Throughput WLAN such as number of Spatial Streams, 

Guard Interval, Channel Width and MPDU aggregation. 

2.2 Rate adaptation Algorithm for WLAN IEEE 

802.11n 

Some papers have proposed rate adaptation algorithms for 

IEEE 802.11n High Throughput WLAN such as Minstrel-HT 

[2], RAMAS [3], L3S [4], MiRA [5] CRA [6] and HiWiLA 

[7]. Minstrel-HT is a enhancement of Minstrel for IEEE 

802.11n WLAN. Minstrel-HT creates a group rate of channel 

wide awareness, guard interval and number of streams. The 

three parameters also determine the maximum number of 

available group rates. In each group contains eight data rates 

differentiated by the type of modulation and coding rate used. 

Minstrel-HT performs probing data rate at two different 

periods i.e. sampling period and non-sampling period. In the 

sampling period, Minstrel-HT performs a probing data rate 

by selecting a random data rate from all available data rates 

in each group. If the data rate sampling yields a higher 

throughput than the previous data rate, then Minstrel-HT uses 

the data rate for subsequent MPDU transmissions, but if not 

then keep using the previous data rate. Throughput is 

calculated based on Frame Error Rate (FER) taking into 

account Exponential Weighted Moving Average (EWMA). 

In the non-sampling period, Minstrel-HT performs a probing 

data rate using the three best data rate options established in 

the sampling period, namely best throughput, second best 

throughput and best probability. During the non-sampling 

period, MPDUs are always delivered using the best 

throughput rate. If the MPDU loss occurs then retransmission 

still uses the best throughput rate until the maximum number 

of retransmissions is reached. If the MPDU continues to 

experience loss, then the next MPDU transmission using the 

second best throughput rate. Similarly, if the rate of second 

best throughput also experiences MPDU loss, then the data 

rate is reduced to the best probability rate. 

MiRA [5] is a practical rate adaptation used for MIMO 

Table 1. Data Rate of WLAN IEEE 802.11n 

   M 

  C 

  S 

Modulation R Nss 

Data rate (Mbps) 

20 MHz 40 MHz 

GI SGI GI SGI 

0 BPSK 1/2 1 6.5 7.2 13.5 15 

1 QPSK 1/2 1 13 14.4 27 30 

2 QPSK 3/4 1 19.5 21.7 40.5 45 

3 16-QAM 1/2 1 26 28.9 54 60 

4 16-QAM 3/4 1 39 43.3 81 90 

5 64-QAM 2/3 1 52 57.8 108 120 

6 64-QAM 3/4 1 58.5 65 121.5 135 

7 64-QAM 5/6 1 65 72.2 135 150 

8 BPSK 1/2 2 13 14.4 27 30 

9 QPSK 1/2 2 26 28.9 54 60 

10 QPSK 3/4 2 39 43.3 81 90 

11 16-QAM 1/2 2 52 57.8 108 120 

12 16-QAM 3/4 2 78 87.7 162 180 

13 64-QAM 2/3 2 104 115.6 216 240 

14 64-QAM 3/4 2 117 130 243 270 

15 64-QAM 5/6 2 130 114.4 270 300 

16 BPSK 1/2 3 19.5 21.7 40.5 45 

17 QPSK 1/2 3 39 43.3 81 90 

18 QPSK 3/4 3 58.5 65 121.5 135 

19 16-QAM 1/2 3 78 86.7 162 180 

20 16-QAM 3/4 3 117 130 243 270 

21 64-QAM 2/3 3 156 173.3 324 360 

22 64-QAM 3/4 3 175.5 195 364.5 405 

23 64-QAM 5/6 3 195 216.7 405 450 

24 BPSK 1/2 4 26 28.9 54 60 

25 QPSK 1/2 4 52 57.8 108 120 

26 QPSK 3/4 4 78 86.7 162 180 

27 16-QAM 1/2 4 104 115.6 216 240 

28 16-QAM 3/4 4 156 173.3 324 360 

29 64-QAM 2/3 4 208 231.1 432 480 

30 64-QAM 3/4 4 234 260 486 540 

31 64-QAM 5/6 4 260 288.9 540 600 

 

 

Figure 1. AMSDU frame format 

 

 

Figure 2. AMDPU frame format 
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channels with slow fading characteristics. The MiRA is 

designed compatible with 802.11n standards, so it can be 

implemented in 802.11n devices and without any changes to 

the receiver side. MiRA overcomes MPDU loss by applying 

a zigzag rate adaptation between intra-mode and inter-mode 

on MIMO. MiRA first performs probing rate in MIMO intra-

mode, but if throughput fails to be increased in intra-mode, 

then MiRA zigzag to inter-mode MIMO. The probing 

interval of MiRA is also adapted, which limits the probing 

number when throughput is low. MiRA also considers frame 

aggregation and Block Acknowledgement (ACK) schemes 

when performing the best data rate probing. Just like 

Minstrel-HT, MiRA calculates the estimated statistic 

throughput using EWMA. However, the use of zigzag 

method in MiRA can lead to resource wastage. 

Paper [6] has proposed a Cognitive Rate Adaptation (CRA) 

algorithm for IEEE 802.11n High Throughput WLAN. CRA 

performs cognitive data rate probing and increases or 

Start
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Figure 3. Flowchart of AARF algorithm  
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decreases MCS (Modulation and Coding Scheme) also 

cognitively so that the probing process can take place 

quickly. CRA distinguishes candidate data rate based on 

performance statistics displayed by each data rate. CRA can 

make transmission more resistant to sudden changes of 

channel conditions by probing data rate in same MCS group.     

Minstrel-HT, MiRA, CRA and also [20]-[21] used a random 

probing data rate method. This method has a drawback that 

the magnitude of the randomly selected sample rate results in 

a lower throughput than the previous data rate [15].  

Paper [3] has proposed a Level Adaptation for Multi-

Antenna System (RAMAS) algorithm that performs 

sequential data rate probing. The data rates available in IEEE 

802.11n are grouped into two groups, the modulation group 

and enhancement group. Enhancement group consists of 

spatial stream, guard interval and channel width. In each 

group are applied different rules to increase or decrease the 

data rate in sequence. Probing data rate is performed on both 

groups simultaneously, but in poor channel condition 

RAMAS fails to find optimal data rate. 

Paper [4] has proposed a Long-Term Stability and Short-

Term Responsiveness (L3S) algorithm for rate adaptation in 

IEEE 802.11n. L3S uses the statistical information 

throughput, ACK and FER for each data rate used. This 

statistical information is used to estimate channel conditions. 

The statistical information collected by the transmitter is 

divided into two categories, namely Long-term statistics and 

Short-term statistics. Both statistical information is always 

updated based on MPDU transmission results. Statistical 

information is always reset when data rate changes occur. 

The L3S algorithm also determines how long a data rate is 

used, when and how a new data rate probing is performed, 

and whether to switch to a new data rate or not. 

Paper [7] has proposed the High Throughput Wireless Link 

Adaptation (HiWiLA) algorithm in which metric links are 

calculated using the Received Signal Strength Indicator 

(RSSI) and MAC throughput. HiWiLA performs probing 

data rates in sequence based on predefined states. State on 

HiWiLA is a combination of the use of the number of 

streams, bandwidth, guard intervals and AMSDU. So probing 

data rate on RAMAS, L3S, HiWiLA algorithm is done based 

on order probing and generate optimal throughput. However, 

the design of these three algorithms is only used for 

adaptation rates up to 2 and 3 spatial streams.  

Other papers have proposed another approach to increase 

throughput in WLANs. Paper [8] improved spectral 

efficiency in Optimum Rate Adaptation (ORA) by employing 

Selection Combining (SC) for selection combining diversity 

schemes. Paper [9] proposes a new mechanism for 

calculating TXOP duration in IEEE 802.11e-based WLANs. 

The proposed algorithm considers the data rate, channel error 

rate and packet length to calculate the TXOP duration 

adaptively. Evaluation of algorithm performance has been 

done using simulation and shows higher throughput result 

and lower delay in network.   
 

3. Research Methodology 
 

 3.1  Method for Development of AARF-HT Algorithm 
 

The development of AARF-HT algorithm in this research is 

done according to the development and implementation of 

new algorithm in NS-3 simulator [14] as shown in figure 4 as 

follows: 

1. Identify the new functionality required for the 
implementation of the AARF-HT algorithm model and 
the attributes provided for the AARF-HT configuration. 

2. Identify the functionality and attributes currently 
available on the AARF algorithm model as in Fig. 3. 

3. Identify the reusable parts of the AARF model currently 
available. 

4. Identify the dependencies required for the AARF-HT 
coding to be made. 

5. Evaluate the NS-3 Simulator coding style for AARF-
HT implementation. 

6. Determination of source three on the NS-3 Simulator 
for placement of AARF-HT source code source in the 
NS-3 version 3.26 directory. 

7. Determination of the include guard for AARF-HT. 
8. Determination of AARF-HT Namespace for NS-3 

Simulator. 
9. Writing C++ coding for the implementation of functions 

required AARF-HT. 

 

 
 

Figure 4. New algorithm development method in NS-3 

 

Access Point (AP)

1 M 2 M 3 M

Station (STA)

100 M

 
Figure 5. Simulation topology 
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10. Writing C++ coding for attribute implementation 
required AARF-HT. 

11. Testing of AARF-HT algorithm implementation on NS-
3.26. To test the implementation of new algorithms on 
NS-3, tools have been provided by running the 
command ./test.py. The implementation of the new 
algorithm is said to be successful if testing with ./test.py 
does not generate an error. 

    3.2 Simulation Method for AARF-HT Performance 

Evaluation 

After the testing phase of AARF-HT algorithm 

implementation in NS-3 has succeeded and no more error 

message appeared, next is testing performance of AARF-HT 

algorithm in performing adaptation rate in WLAN IEEE 

802.11n according to channel condition. The purpose of the 

testing phase is to ascertain whether all functions contained 

in the AARF-HT algorithm are functioning properly or not. 

Some functions of the AARF-HT algorithm to be tested such 

as MPDU transmission function using and without using 

AMPDU, MPDU transmission function using various 

combination of spatial stream number, Guard Interval size 

and channel bandwidth size as well as testing controlling the 

use of 802.11n data rate according to channel condition for 

resulting in optimal throughput. 

To test all the functions and attributes of the AARF-HT 

algorithm, a simulation is made using scenarios as shown in 

Figure 5. In the test simulation there is one Access Point 

(AP) and one Station (STA) that support IEEE 802.11n 

WLAN standard. Each PHY from AP and STA support 

usage of channel bandwidth of 20 MHz and 40 MHz at 5 

GHz frequency, 800 ns and 400 ns Guard Interval support, 

and MIMO support up to four spatial streams. MAC AP and 

STA support AMPDU with a maximum size of 65535 bytes. 

In the AP there is a Constant Bit Rate (CBR) application that 

sends data packets of 1420 bytes continuously to the STA 1 

meter (m) away from the AP. Then STA moves away from 

the AP at a speed of 1 meter per second (m/s) to a distance of 

100 m from the AP. The data transmission throughput is 

measured at the STA per meter of movement in units of 

megabits per second (Mbps). The throughput of the AARF-

HT algorithm is then compared with the Constant Rate 

throughput of each HtMcs data rate for AARF-HT 

performance to be evaluated. Other parameters used in the 

test simulations are shown in Table 2. 

4. Result and Discussion 

In this section we describe the results of the development and 

performance evaluation of the AARF-HT algorithm. 

4.1 Development of AARF-HT Algorithm 

The 802.11n standard already has other parameters that can 

affect throughput of channel width, guard interval and 

number of spatial streams. Channel Width affects the 

magnitude of the throughput generated, whereby if the 

greater the channel width, the greater the throughput 

generated. In the 802.11n standard the channel width 

selection has two ranges of 20 and 40 MHz, Guard Interval 

will affect the waiting time for ACK reception, the smaller 

the ACK wait time will be the greater the throughput 

generated. This is because the shorter the time required for 

decision making in case of frame fails. 

In the 802.11n standard the guard interval selection is two 

times 400 ns and 800 ns. The number of spatial streams 

influences the throughput as the greater the number of spatial 

streams the greater the throughput will be generated. This is 

because more and more paths will be passed during the 

transmission process. In the 802.11n standard there are four 

choices of spatial stream usage that are 1, 2, 3 and 4. 

Based on these explanations and based on the AARF-HT 

algorithm development method described in Part III we have 

designed and implemented the AARF-HT algorithm in two 

new NS-3 files: aarf-ht-wifi-manager.h and aarf-ht-wifi-

manager.cc. Both files are placed in the directory 

/ns3.26/src/wifi/model/. The complete pseudo code 

implementation of the AARF-HT algorithm is shown in 

Pseudo code 1. 

The AARF-HT pseudo code algorithm consists of four parts, 

the initialization part (lines 2-20), the functioning part of the 

successful transmission of MPDU transmission, without or 

using AMPDU (lines 23-48), the MPDU/AMPDU delivery 

failure checking function section (lines 51-70) and parts of 

the DataTxVector checking function (lines 72-97). 

In the initialization section, we add new attributes that were 

not previously available on the AARF algorithm, which is 

chWidth (channel width), sgi (short guard interval), ss 

(number of spatial streams), and maxHtRateId (maximum 

number of ID of HT rate). These four attributes are used to 

identify the HT data rate list supported by STA and AP. 

Additionally we also added the nSuccessfulMpdus 

(number of successful transmission of MPDU) and 

maxAMPDU (maximum size of AMPDU) attributes used when 

a terminal enables AMPDU transmission mode. 

Table 2. Simulation Parameters 

Parameters Explanation 

Node  

  Number of AP and STA 1 AP and 1 STA 

  Minimum and maximum distance Min. 1 m and max. 100 m 

  Speed movement of STA 1 m/s 

Channel  

  Propagation loss model LogDistancePropagationLoss 

  Propagation delay model ConstantSpeed 

PHY  

  Frequency 5 GHz 

  Channel width 20 and 40 MHz 

  Guard interval 800 ns and 400 ns 

  TxGain / RxGain 1 dB / 1 dB 

  Maximum MIMO 4 x 4 

  TxPower 16.0206 dB 

MAC  

  Maximum size of AMPDU 65535 byte 

  RTS/CTS threshold 65535 byte (disable) 

  EDCA access category Best Effort 

Network  

  IPv4 subnet 10.1.1.0/24 

Transport  

  Type of protocol UDP 

Application  

  Application model OnOffApplication 

  Packet size 1420 byte 

  CBR 600 Mbps 

  Application start / stop 0.5 s / 100 s 
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In AARF-HT, for each received ACK then the value of the 

success attribute will be updated depending on whether the 

MPDU is sent using AMPDU or not. If not, then the attribute 

value success is incremented. But if using AMPDU, then the 

value of attribute success summed with nSuccessfulMpdus. 

So, MPDU transmission using AMPDU can accelerate the 

attribute's success value to its threshold value. If the success 

is greater than or equal to successThreshold and the current 

rate (index rate) is smaller than maxHtRateId then AARF-HT 

increments the rate index. 
 

For any MPDU/AMPDU transmission failure, AARF-HT 

increment failed attribute. Then checked, if state in recovery 

condition and retry equal to 1 then update the value of 

successThreshold and timerTimeout. Update 

successThreshold value is done by selecting a smaller 

value between successThreshold multiplication with 

successK or maxSuccessThreshold. Update 

timerTimeout value is done also by selecting bigger value 

between timerTimeout multiplication with TimerK or 

minSuccessThreshold. The decrement is then performed 

on the index rate if the current rate index is not equal to zero. 

But if the retry-1 modulus 2 equals 1 is fulfilled then updates 

to the successThreshold and timerTimeout values are 

performed as follows: timerTimeout is equal to 

minTimerThreshold and successThreshold is equal to 

minSuccessThreshold. The decrement is then performed 

on the index rate if the current rate index is not equal to zero. 

The GetDataTxVector() function is used to specify the 

transmission TxVector parameter of an MPDU/AMPDU. 

This function begins with a function calling GetChWidth(), 

GetShortGuardInterval()and GetNumberOfSupport-

Antenna() to obtain channel bandwidth, guard interval and 

Pseudocode 1. AARF-HT algorithm 

 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 
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32: 

33: 

34: 

35: 

36: 

37: 

38: 

39: 

40: 

41: 

42: 

43: 

44: 

45: 

46: 

47: 

48: 

49: 

50: 

51: 

52: 

53: 

54: 

55: 

56: 

57: 

58: 

59: 

60: 

61: 

62: 

63: 

64: 

65: 

66: 

67: 

68: 

69: 

70: 

 

Initialization: 

maxSuccessThreshold = 60 

minSuccessThreshold = 10 

minTimerThreshold = 15 

successK = 2; timerK = 2 

rate = 0 

success = 0 

failed = 0 

recovery = false 

retry = 0 

timer = 0 

successThreshold = minSuccessThreshold 

timerTimeout = minTimerThreshold 

chWidth = 0 

sgi = true 

ss = 0 

maxHtRateId = 0 

nSuccessfulMpdus = 0 

maxAMPDU = 0 

GetDataTxVector () 

 

For each ACK: 

begin 

  if maxAMPDU < 2 × MPDU then 

  timer++ 

  success++ 

  failed = 0 

  recovery = false 

  retry = 0 

  if ((success = successThreshold || timer = timerTimeout) 

      && (rate < maxHtRateId)) then       

      rate++ 

      timer = 0 

      success = 0 

      recovery = true 

else 

success += nSuccessfulMpdus     

failed = 0 

recovery = false 

retry = 0  

if ((success  >= successThreshold) 

      && (txrate < maxHtRateId)) then       

rate++ 

timer = 0 

success = 0 

nSuccessfulMpdus = 0 

recovery = true 

end 

 

For each packet loss: 

begin 

  timer++ 

  failed++ 

  retry++ 

  success = 0 

  if recovery=true then 

      if (retry = 1) then 

          successThreshold = (Min (successThreshold × successK,  

                                            maxSuccessThreshold)); 

          timerTimeout = (Max (timerTimeout × timerK,  

                                      minSuccessThreshold)) 

          if (m_rate != 0) then rate--                     

      timer = 0     

  else     

      if (((retry - 1) % 2) == 1) then 

          timerTimeout = minTimerThreshold 

          successThreshold = minSuccessThreshold 

          if (rate != 0) then rate-- 

      if (retry >= 2) then timer = 0 

end 

 

 

 

Pseudocode 1. AARF-HT algorithm (continued) 

71: 

72: 

73: 

74: 

75: 

76: 

77: 

78: 

79: 

80: 

81: 

82: 

83: 

84: 

85: 

86: 

87: 

88: 

89: 

90: 

91: 

92: 

93: 

94: 

95: 

96: 

97: 

GetDataTxVector () 

begin 

chWidth = GetChannelWidth () 

sgi = GetShortGuardInterval () 

maxAMPDU = GetAggregation () 

streams = GetNumberOfSupportedRxAntennas ()   

if (chWidth=40 && sgi=true && ss=4) then rate = {0 ~ 127) 

if (chWidth=40 && sgi = true && ss = 3) then rate = {0 ~ 95) 

if (chWidth=40 && sgi = true && ss = 2) then rate = {0 ~ 63) 

if (chWidth=40 && sgi = true && ss = 1) then rate = {0 ~ 31) 

if (chWidth=40 && sgi = false && ss=4) then rate = {0 ~ 63) 

if (chWidth=40 && sgi = false && ss=3) then rate = {0 ~ 47) 

if (chWidth=40 && sgi = false && ss=2) then rate = {0 ~ 31) 

if (chWidth=40 && sgi = false && ss=1) then rate = {0 ~ 15) 

if (chWidth=20 && sgi = true && ss=4) then rate = {0 ~ 63) 

if (chWidth=20 && sgi = true && ss=3) then rate = {0 ~ 47) 

if (chWidth=20 && sgi = true && ss = 2) then rate = {0 ~ 31) 

if (chWidth=20 && sgi = true && ss = 1) then rate = {0 ~ 15) 

if (chWidth=20 && sgi = false && ss=4) then rate = {0 ~ 31) 

if (chWidth=20 && sgi = false && ss=3) then rate = {0 ~ 23) 

if (chWidth=20 && sgi = false && ss=2) then rate = {0 ~ 15) 

if (chWidth=20 && sgi = false && ss=1) then rate = {0 ~ 7)   

maxHtRateId = (8 × (chWidth/20) × (sgi+1) × (streams)) - 1 

return WifiTxVector (rate, GetDefaultTxPowerLevel (),                

            GetLongRetryCount (), sgi, streams, 0, channelWidth,  

            GetAggregation (), false) 

End 
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the number of antennas used by the transmitter. From the 

information then made a list of tramsiter index rate. For 

example, if chWidth = 20, sgi = false and streams = 1 

then the available rate index is 0-7, that means the transmitter 

has a choice of data rate 6.5 to 65 Mbps. However if 

chWidth = 40, sgi = true and streams = 4 then the 

available rate index is 0-127 or available data rate options up 

to 600 Mbps. This function also calculates the maximum 

index of the data rate stored in the maxHtRateId variable. 

The final part of this function returns the value of the 

TxVector parameter used for MPDU/AMPDU transmission.  

After the testing phase of AARF-HT algorithm 

implementation in NS-3 has succeeded and no more error 

message appeared, next is testing performance of AARF-HT 

algorithm in performing rate adaptation in WLAN IEEE 

802.11n according to channel condition. When the 

./test.py command is executed then the NS-3 simulator 

compiles the entire build module file program found in the 

NS-3 simulator. We have tested the implementation of the 

AARF-HT algorithm using the ./test.py tool. The test 

results show the AARF-HT has been running well where 

"399" passed, "3" skipped, "0" failed, "0" crashed and "0" 

valgrind errors. 

4.2 AARF-HT Performance Evaluation  

Figure 6 shows the AARF-HT rate adaptation simulation 

results in the IEEE 802.11n WLAN where MPDU 

transmission is performed without using the AMPDU 

scheme. In the simulation, 40 MHz channel width has been 

used, SGI has enabled and the maximum number of streams 

used is 4. Based on the implementation of AARF-HT 

algorithm as shown in Pseudo code 1, AP and STA have 128 

data rate options such as shown in Table 1. The simulation 

results show, when the STA is at a distance of 1 m from the 

AP and MPDU begins to be transmitted using the data rate 

with index rate = 0, resulting in a throughput of 25 Mbps. 

Then when the STA is at a distance of 2 m from the AP, the 

throughput starts rising to 34 Mbps to match the throughput 

generated by the HtMcs-31 data rate up to a distance of 

approximately 20 m. This increase in throughput occurs 

because at that distance each MPDU transmission is 

successful so AARF-HT continues to increase the index rate 

until it reaches data rate equal to HtMcs-31. However, after 

passing the distance of 20 m, the throughput began to 

decrease as a result of channel quality decreased so that 

AARF-HT adjusted the data rate according to the channel 

condition. 

At a distance of 20 to 100 meters, AARF-HT managed to 

adapt the 802.11n rate according to the channel conditions. 

This success is evidenced by the resulting throughput 

matching the optimal throughput generated by HtMcs-24 to 

Ht-Mcs31 data rates. When channel quality changes, the 

throughput generated by AARF-HT decreases, but again 

achieves the throughput generated by the constant rate. 

Therefore it can be said that MPDU transmission function 

without AMPDU and adaptation of data rate based on 

channel condition successfully performed by AARF-HT 

algorithm. 

Figure 7 shows the simulation results of AARF-HT rate 

adaptation in the IEEE 802.11n WLAN where MPDU 

transmission is performed using the AMPDU scheme. The 

PHY parameters used are the same as those generated by 

Figure 6 which are 40 MHz channel widths, using SGI and 

using a maximum of 4 spatial streams resulting in 128 data 

rate options. The simulation results show, when STA is at a 

distance of 1 m from AP and AMPDU begin to be 

transmitted using data rate with index rate = 0 yielding 25 

Mbps throughput. However when STA is at a distance of 2-

10 m from the AP, the throughput rises to 425 Mbps to match 

the throughput generated by the HtMcs-31 data rate up to a 

distance of approximately 20 m. 

 

 

 

 
 

Figure 7. Throughput of AARF-HT vs. constant rate 

(AMPDU = enable; channel width = 40 MHz; SGI = 

true; streams = 4) 

 
 

Figure 6. Throughput of AARF-HT vs. constant rate 

(AMPDU = disable; channel width = 40 MHz; SGI = 

true; streams = 4) 
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This increase in throughput occurs because at that distance 

every success AMPDU delivery so that AARF-HT continues 

to increase the index rate to achieve the data rate HtMcs-31. 

However, after passing a distance of 20 m, the throughput 

began to decrease as a result of channel quality decreased so 

that AARF-HT re-adjusted the data rate used for AMPDU 

delivery in accordance with channel conditions. 

The throughput generated by the AARF-HT algorithm shown 

in Figure 7 is much higher than the throughput shown in 

Figure 6. This condition proves that the MPDU delivery 

function using AMPDU scheme in AARF-HT algorithm has 

functioned well and AMPDU scheme capable to increase 

throughput in 802.11n network. However the throughput 

generated at a distance of 1 m is still low due to AARF-HT 

always transmits AMPDU with index rate equal to 0. So it 

takes several seconds to achieve the optimal throughput 

generated by index rate = 127 using HtMcs-31 data rate. 

Figure 8, Figure 9 and Figure 10 show the throughput 

generated by the AARF-HT algorithm using a combination of 

channel width, guard interval and the number of different 

spatial streams. The throughput shown in Figure 8 is 

generated by the AARF-HT algorithm where MPDU 

transmission is performed using the AMPDU scheme, using 

20 MHz bandwidth, SGI and using four spatial streams. 

Based on the use of the combination of PHY parameters, 

AARF-HT has 64 data rate options that can be used to 

transmit AMPDU. When the STA is at a distance of 1 m 

from the AP, the resulting throughput is 25 Mbps. However 

at a distance of 5-20 m, the throughput is increase of up to 

248 Mbps equals the throughput generated by the HtMcs-31 

constant rate. As the STA continues to move away from the 

AP up to a distance of 100 m, the throughput generated by 

the AARF-HT algorithm can match the optimal throughput of 

the HtMcs constant rate. 

The throughput shown in Figure 9 and Figure 10 is generated 

by the AARF-HT algorithm where MPDU transmission is 

performed using the AMPDU scheme, using 20 MHz 

bandwidth and 800 ns GI. However Figure 9 uses 3 spatial 

      
Figure 8. Throughput of AARF-HT vs. constant rate      Figure 9. Throughput of AARF-HT vs. constant rate 

(AMPDU = enable; channel width = 20 MHz; SGI = true;    (AMPDU = enable; channel width = 20 MHz; SGI = false; 

streams = 4).                    streams = 3). 
 

           
 

Figure 10. Throughput of AARF-HT vs. constant rate     Figure 11. Throughput of AARF-HT vs. AARF algorithm 

(AMPDU = enable; channel width = 20 MHz; SGI = false;  

streams = 2). 
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streams and Figure 10 uses 2 spatial streams. Based on the 

use of the combination of PHY parameters, AARF-HT in 

Figure 9 has 24 data rate options and in Figure 10 has 16 data 

rate options that can be used to transmit AMPDU. When the 

STA is at a distance of 1 m from the AP, the resulting 

throughput is 25 Mbps. However, when using 3 spatial 

streams at a distance of 2-20 m throughput an increase of up 

to 175 Mbps matches the resulting throughput of HtMcs-23 

constant rate. As the STA continues to move away from the 

AP up to a distance of 100 m, the throughput generated by 

the AARF-HT algorithm can match the optimal throughput of 

the HtMcs-22, HtMcs-21 to HtMcs-16 constant rates. 

Similarly, when using 2 spatial streams at a distance of 2-

20m, the throughput is increase of up to 119 Mbps also 

matches the throughput generated by the HtMcs-15 constant 

rate. As the STA continues to move away from the AP up to 

a distance of 100 m, the throughput generated by the AARF-

HT algorithm can match the optimal throughput of the 

HtMcs-14 to HtMcs-8 constant rate. Thus Figure 8, Figure 9 

and Figure 10 prove that the MPDU delivery function uses 

various combinations of channel bandwidth size, SGI = true 

or false and the number of different spatial streams have the 

AARF-HT algorithm working properly. 

Figure 11 shows the comparison of AARF-HT algorithm 

throughput with various MAC and PHY configurations and 

the AARF algorithm. The AARF-HT algorithm generates a 

higher throughput than the AARF algorithm either without 

using AMPDU or using AMPDU. The throughput generated 

from the AARF-HT using AMPDU is higher than the AARF-

HT without using AMPDU. Figure 11 also shows that 

throughput is strongly influenced by channel width, guard 

interval and number of spatial streams used. Based on figure 

11 it can be seen that the 40 MHz channel width produces a 

higher throughput than at 20 Mhz. Use of 400 ns Guard 

intervals (activated using Boolean sgi = true) results in lower 

throughput of guard interval = 800 ns (activated using 

Boolean sgi = false). Furthermore, four spatial streams result 

in higher throughput than three spatial streams, three spatial 

streams resulting in higher throughput than two spatial 

streams and two spatial streams resulting in higher 

throughput than a single spatial stream. 
 

5. Conclusions 
 

We have improved the AARF algorithm to be used in the 

IEEE 802.11n WLAN and call it the AARF-HT algorithm. In 

the AARF-HT algorithm we have added the chWidth, sgi, 

streams and maxHtrateId attributes. The attributes are 

used by the GetDataTxVector() function in order for 

AARF-HT to know the channel width, guard interval, 

number of spatial streams and the maximum number of 

indexes supported by HT-PHY. The AARF-HT algorithm 

has also added the maxAMPDU and nSuccessfulMpdus 

attributes. The maxAMPDU attribute is used by the 

GetDataTxVector() function in order for AARF-HT to 

know the maximum size of AMPDU. The 

nSuccessfulMpdus attribute is used by the function of 

checking the success of MPDU transmission using AMPDU 

so that AARF-HT can know the number of MPDU received 

without error. The results of the AARF-HT rate adaptation 

simulation on the IEEE 802.11n WLAN, where MPDU 

transmission is performed without and using the AMPDU 

scheme, has worked well. This is evidenced by the 

throughput generated AARF-HT has been able to adapt to 

changes in channel quality and generate maximum 

throughput in accordance with the constant rate. MPDU 

transmission function test results using various combinations 

of channel width, guard intervals and different spatial stream 

numbers show the AARF-HT algorithm is working properly. 

AARF-HT has also generated maximum throughput constant 

rate. The simulation results also show that the throughput of 

AARF-HT algorithm is higher than AARF. 
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