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Abstract: Burst error modeling has seen extensive research and 
progress over several decades evolving into ever more complex 
modeling techniques used today. This paper analyzed usefulness of 
some prominent generative and descriptive (analytical) methods. 
Data containing error bits and packets from real wireless 
transmission was captured on a physical interface and used to 
obtain statistical information about error burst and gap behavior in 
the channel. Generative and descriptive modeling techniques were 
then applied to model the error process with the goal of establishing 
advantages and disadvantages of each technique. Generative 
methods were represented by the commonly implemented Elliot’s 
model with parameters calculated using a generalized algebraic 
form. Descriptive methods were represented by 2 models; one of 
the most flexible exponentially shaped distributions with regard to 
parameterization and heavy-tailed function modeling - gamma 
distribution model, and a model utilizing a novel parameterization 
approach for the Markov modulated Poisson process (MMPP-2), 
producing second-order hyper-exponentially distributed 
characteristics. Results of the experiments were highly in favor of 
MMPP-2 model using a novel parameterization approach, 
demonstrating capability of MMPP-2 to model heavily interfered 
wireless channels exhibiting exponentially-shaped error.  
 

Keywords: generator, Elliot’s model, MMPP-2, gamma 
distribution, bit error, wireless channel.  

1. Introduction 

The popularity and availability of wireless technology 
inspired extensive research in areas associated with wireless 
systems. Especially in its initial stages of research and 
development it is preferable to test the concepts and their 
realizations in a controlled and simulated environment using 
mathematical models, rather than build an entire wireless 
system itself. Mathematical models have to be precise 
enough to disqualify inefficient or unrealizable concepts, but 
mathematically tractable over a reasonable simulation time 
period. 
There are 2 conceptual approaches to wireless channel 
modeling: modeling of the propagation channel’s physical 
characteristics and modeling of statistical characteristics of 
the underlying channel error process. An example of the 
physical propagation channel model application is 
demonstrated on a mix shadowed Rician and Nakagami 
channels in [1]. Knowledge of error process and its statistical 
characteristics is beneficial for optimization of wireless 
transmission systems on protocol and error control level, as 
demonstrated e.g. in [2]. In order to observe the nature of 
errors in the channel, a trace must be captured first by 
mathematically relating the output data sequence at the 
transmitter with the data sequence received by the receiver. 
The resulting trace consists of zeros and ones representing 

correctly received bits and error bits respectively. 
Consecutive error bits are referred to as error burst, whilst 
consecutive correctly received bits are referred to as error 
gaps or gaps.  

2. Related work 

The first widely accepted error model survey was published 
by Kanal and Sastry [3] in 1978 and it classifies error models 
as either generative or descriptive. Generative techniques are 
those that use underlying mechanism to describe the channel 
(e.g. Markov chains) and descriptive techniques aim to fit 
specific stochastic properties of the observed trace with 
stochastic distributions (e.g. Pareto and Gamma distribution 
model). 
Because of their wide-scale application and easy realization 
generative models based on Markov chains are extremely 
popular in error modeling even nowadays. The most widely 
applied generative models are Gilbert’s [4], Elliot’s [5] and 
Fritchmann’s along with their many modifications. 
Descriptive models typically use stochastic distributions and 
model several moments of the communication link error 
process. Estimation of distribution parameters precedes 
modeling and the most commonly used probability density 
functions can be moved, stretched, shaped, altered, or any 
combination of these features, using up to 3 parameters. 
Phase-type distributions hold special position regarding the 
total number of parameters; they are defined by a 
multiplication of mixture’s base stochastic distribution’s 
number of parameters and the total number mixture 
components. Both generative and descriptive modeling 
approaches offer different advantages and disadvantages and 
are with varying success used for different purposes.. 
Later progress in error modeling introduced new 
mathematical concepts and model classes, often referred to as 
pure models: semi-Markov models, Hidden Markov Models 
(HMMs), empirical approaches including algorithmic 
models, chaos models, Deterministic Process Based 
Generative Models (DPBGM) and Stochastic Context-Free 
Grammar models (SCFG). 
More recent trend is to combine individual pure models into 
new configurations known as extended models, which exploit 
advantages of component pure models to create an error 
model with either fewer issues or more beneficial properties 
(e.g. [6] and [7]). 
The most current approaches aim to design models that could 
be parameterized adaptively in a bit-by-bit fashion and be 
able to capture faster rate of change [8].  
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Error process observations of real data confirm that an 
independent channel is not a feasible solution for many 
applications [3]. A generalized Markov model construction 
for partially dependent events in a form of cascade Gilbert 
model is presented in [6] and later extended to a cascaded 
combination of Gilbert and Elliot models in [7]. 
Based on the real data, the goal of this study was to build on 
results and knowledge obtained from [6] and [7] and to use 
the Elliot’s model as a reference to compare with empirical 
(descriptive) models, one of which is parameterized using a 
novel adaptive parameterization method. In case one of the 
proposed descriptive models wes sufficiently precise, it 
would be possible to modify one stage of cascade model 
from [7] and improve the model’s overall efficiency. 
Wireless transmission is most sensitive to small-scale error 
process typically in a bit scale, therefore the error sequences 
and error gap process was modeled in this work, omitting the 
packet model presented in both [6] and [7]. The effects of 
large bursts causing packet damage and subsequent loss 
usually dissipate much faster and subsequent multiple packet 
loss caused by a single burst is comparatively lower than in 
case of short bursts occurring on the bit level of a single 
packet. Moreover the observations of processes on real data 
confirm that large-scale and small-scale bursts occur 
relatively independently and therefore it is possible to model 
them separately. The channel is assumed to be stationary 
over the observed period. 

3. Theoretical basis and model 

Simulation of wireless networks requires a statistically or 
deterministically precise channel model describing the 
wireless link characteristics. Knowledge of particular 
channel’s error process is imperative for adjusting the error 
control schemes to a particular network or a specific situation 
within the network. Stochastic error process description 
requires ex ante knowledge of the channel’s statistical 
properties, especially the statistical properties of error 
sequences and error gaps produced by the process during an 
error burst. 
An error process on a digital communication link can be 
considered a binary discrete-time stochastic process. If 1 is a 

countable set of integers t I∈ , ta  the digital input 

sequence, tb  the corresponding output sequence and tn  the 

noise sequence representing the effect of the channel on the 
data, also referred to as trace, then: 
 

t t tb a n= +  (1) 

A correctly received bit is represented by “0”, incorrectly 
received bit is represented by “1’. Extraction of error source 
features can be performed bitwise and error modeling then 
becomes equivalent to statistically correct modeling of the 
trace. Consecutive sequence of “1” is called an error burst. A 
gap may be defined as a sequence of consecutive “0” 
between two “1” and represents the distance in bits of two 
neighboring bursts. Empirically the shortest error gap 
(expressed by (2) taken from [7]) or error burst has length 1 
[3]. The error overflow assumption that the last “1” of the 

previous packet and the first “1” in the following error packet 
are not part of the same burst error and containing the error 
burst within the packet limits in [7] were applied as well. 

 ( ) ( ) ( )gaps in  1  long n-bit packet

0 all gaps in n-bit packet
1   

j

j

G n j
∞

+

=

= +∑  (2) 

The trace used in this study is identical with the data 
collected and used in [7] where a thorough description of 
data set capturing procedure is documented. Following 
statistics about the channel behavior were extracted during 
the analysis phase: 
� Small-scale (intra-packet) error burst length distribution 
� Small-scale (intra-packet) error gap length distribution 
� Total bit error probability of clusters with defined size 

 3.1  Applied models 

Models proposed for analysis are further described along 
with the methods for obtaining the parameters of these 
models. The following section then contains estimated 
parameters used in simulations to obtain the results. 

3.1.1 Generalized Elliot’s model 

Generalized Elliot’s model [9] is based on Elliot’s original 
work [5] on Markov chain bit error generator (fig.1) and 
extends it by using an algebraic form with transitional and 
generating matrix to an arbitrary number of states, contrary to 
Elliot’s original model proposal of 2 states. 
 

E1 E2

p12

p21

1 - p12 1 - p21

P[1/E1] = 1 - h1 P[1/E2] = 1 - h2  
Figure 1. (Generalized) Elliot’s bit error model 

 

Common notation with the work of Siran and Maly [9] is 
used throughout this article to define key variables of the 
Elliot’s model. 
Final probability state vector of the model is: 

 ( )1 2,π π=π  (3) 

Generator matrix for the process modeled by Elliot’s model: 
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Transition probability matrix with transitional probability in 
fig. 1: 
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Then according to [3] the final probability state vector can be 
rewritten as: 

 21 12

12 21 12 21

,
p p

p p p p

 
=  + + 

π  (6) 

Central to generalized model’s parameter calculation is the 
nonlinear equation (7): probability that n  units long cluster 
of correctly received bits is generated from the generalized 
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Elliot’s model is: 

 ( ) ( ) 1

1
n

p n
 

=  
 

π PH  (7) 

Parameters necessary for proper modeling of a wireless 
channel are for a 2 state Elliot’s model limited to knowledge 
of  p12, p21, h1 and h2 that can be established by solving a 
series of nonlinear equations (7). 

3.1.2 Gamma distribution model 

Generalized Gamma distribution is typically used to describe 
variables bound on one side. A stochastic process with a 
mean and a variance can be approximated by the gamma 
distribution function using it’s 3 parameters – location (a ), 

scale (b ) and shape (c ). 
Gamma distribution can be favorably used to model 
stochastic processes with precision up to and including the 
second moment. 
Its probability density function is: 

 ( ) ( )
( ) 11
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Where: 

 ( ) 1

0

Γ
z tz t e dt

∞
− −= ∫  

 
(9) 

The generalized gamma distribution’s moments are easily 
expressed using its parameters by linear (1st moment) and 
quadratic (2nd moment) function, which is not the case with 
other distributions that can be derived from gamma 
distribution – e.g. Weibull, Rayleigh and other. Mean and 
variance of the gamma distribution: 
 

 a bcµ = +  (10) 

 2 2var b cσ= =  (11) 
 

Having observed the mean and variance from the trace it is 
easy to express (11) using (10) by omitting a  as an 
unnecessary parameter for our purposes (since it can be 
included as shifting the entire generated set by adding the 
value a) to find parameter b  and then go back to (10) to 
calculate the parameter c  using an already known value of 
b . Modeling the error burst and error gap process then 
becomes a matter of observing the first and second moments 
of both processes in the trace and applying them equations 
(10) and (11). 

3.1.3 Hyper-exponential distribution model 

Hyper-exponential distribution describes a stochastic process 
that can be decomposed to a finite sum of exponential 
processes and used to emulate atypical exponentially shaped 
heavy-tailed distributions. 
Probability density function of a hyper-exponential 
distribution for k  components is: 

 ( )
1

i

k
x

i i
i

f x p e λλ −

=

=∑  (12) 

The process of parameter estimation for hyper-exponential 
distributions however is quite complex. Therefore many 
approaches to parameter calculation have been devised. 
Hyper-exponential parameter estimation [10] implemented in 
the initial stages of experimenting with this distribution 
produced an excellent cumulative density function for both 
error and gap processes, but the found parameters were 
unsuitable for a generating process, which failed to 
approximate moments of the stochastic processes. 
An approach using Markov modulated Poisson process 
(MMPP-2) was therefore chosen instead. It also produces a 
hyper-exponentially distributed variable, however the 
parameter estimation process is different from the one 
applied in [10] and allows moment fitting of the observed 
random variable. 

 

1 2

r1

r2

 λ1   λ2

 
Figure 2. MMPP-2 model with parameters 

 

The simplest form of a MMPP is the MMPP-2 model (fig. 2), 
where two independent Poisson processes with different 

arrival rate parameters 1λ  and 2λ  transition from one to the 

other at rate 1r  and 2r . The results of MMPP-2 traffic model 

versatility analysis for applications in ATM cell loss rate 
modeling [11] demonstrate the feasibility of MMPP-2 model 
for burst process modeling. 
Assuming interval-stationary MMPP-2 processes, the inter-

arrival time iX  between consecutive occurrences is a second 

order hyper-exponential distribution (H2) defined by the 
probability density function (13): 

 ( ) ( )1 2
1 21u x u xf x qu q u− −= + −  (13) 

As demonstrated and derived in [12], the parameters of the 
hyper-exponential distribution function can be obtained from 
the MMPP-2 (fig. 2) using following substitutions: 

 1 2 1 2
1

 

2

r r
u

λ λ δ+ + + −=  (14) 
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Where: 

 ( )2

1 2 1 2 1 24r r r rδ λ λ= − + − +  (17) 

Many approaches to estimating MMPP parameters 1λ , 2λ , 
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1r  and 2r  have been proposed, but cell counting algorithm 

and moment fitting coupled with fitting of the auto-
covariance algorithm presented in [13] belong to the most 
commonly referenced. Other algorithms for parameter 
extraction include nonlinear optimization [11] or histogram 
method [12]. Generally, all methods can be divided into 
either cell counting statistical methods or methods based on 
inter-arrival statistics. 
Because the trace was available for statistical analysis, a 
novel approach eliminating posterior calculations necessary 
for parameter extraction was proposed for purposes of this 
research; all 4 MMPP-2 parameters were obtained directly 
from the trace using an adaptive approach. 

Novel Parameterization algorithm 

Consider a trace (fig. 3) that can be decomposed into 
consecutive error bursts and error gaps in the order as they 
appear in the trace. Because the gaps and bursts have 
different stochastic distributions, they are also modeled using 
2 separate MMPP-2 submodels. 
 

 
 
 
 

Figure 3. Example sequence extracted from the trace 
 

The first step of the proposed algorithm is to choose a 
threshold value. Each MMPP-2 transitions between two 
Poisson processes generating either shorter or longer 
sequence and the threshold determines which one should be 
assigned generation of the currently processed burst or gap 
length. For typical applications the mean value will suffice as 
a viable threshold, for specialized applications the threshold 
can be estimated as a mode of the observed set or even be 
arbitrarily chosen. For the example trace the threshold for 
both gaps and bursts was set to 4 dividing the burst and gap 
lengths into 2 groups: smaller than or equal to (italic) and 

longer (bold) than the threshold. Parameters 
1

λ  and 
2

λ  

representing the exponential distribution parameter can be 
obtained as an inverse value of the mean of all burst/gap 
lengths smaller than or equal to the threshold in the first case 
and longer than the threshold in the second case (the inverse 
value is in fact the effect of exponential distribution 
contribution to the Poisson process, the mean value of an 
exponential distribution is inverse to its only parameter, so 
must be the mean calculated from the example set). 
Transitions between these Poisson processes are then given 

by cumulative lengths iτ , where iτ  represents the average 

distance (in bits) of 2 neighboring elements generated by the 
i -th Poisson process for the burst/gap above or below the 

threshold. Transition rates 1r  and 2r  can be obtained as an 

inverse value of the mean of corresponding iτ . Having an 

example sequence (fig. 3), the parameters for the MMPP-2 
model of the gap distribution are: 

• 1 1/ (1/ 2*(1 4)) 2 / 5λ = + =  - shorter gaps 

• 2 1/ (1/ 2*(5 9)) 1/ 7λ = + = - longer gaps 

• 1 1/ (1/1*(23)) 1/ 23r = =  - shorter gaps 

• 2 1/ (1/1*(4)) 1/ 4r = = - longer gaps 
 

4. Results 
 

Packets have been generated using all 3 models described in 
the previous section using Matlab (based on the concepts 
presented in section 3). PRNG is used to generate sequences 
of pseudorandom values from interval 0,1< >  that are 
further transformed into the desired output values. 
The first model is a pure generative Elliot’s model whose 
output is a unique observable channel error process and its 
algorithmic representation is a simple if-else block scheme 
with parameters as threshold values; the first generated 
random value is used for state selection, the second is used 
for bit generation. 
The second model is a combination of 2 descriptive gamma 
distributions modeling the small-scale channel error process, 
one the error bursts and the other error gaps, using the 
inverse transformation method.   
The third constructed model descriptively models the small-
scale intra-packet error burst and gaps, using a hyper-
exponential distribution for each, utilizing a MMPP-2 model 
to estimate the parameters of the 2H  distribution. 
Composite generation principle is used to obtain the 
burst/gap lengths using the obtained parameters. 
There are several approaches to comparing these 3 models. 
One approach is to compare the models by bit error 
probability at different cluster lengths. Another approach 
would compare the generators from the histogram 
perspective of the method’s ability to describe the error 
bursts and error gaps most realistically. Both types of bit 
error analysis of intra-packet small-scale error processes are 
necessary for establishing the quality of wireless channel 
error and gap process models for purposes of FEC design. 
Following analysis of the results will be as thorough as it is 
necessary to qualitatively evaluate the models and found 
parameters will be presented to enable result verification. 

4.1 Model parameters 

Parameter expression methods for each technique used in this 
study were presented in section 3. Based on the results and 
conclusion located in [6] and [7], Elliot’s model proved to be 
sufficiently precise in modeling the absolute and relative bit 
error probability, but could be improved in modeling gap and 
burst process. Descriptive approach was analyzed to answer 
the question whether error burst and gap process would not 
be more efficiently modeled using empirical modeling 
techniques. 
Parameters for Elliot’s model (tab. 1) are obtained by solving 
the system of nonlinear equations (7). The probability of at 
least one error bit in a sequence of length n  is found by 
analyzing the trace for different values of n . Then 
MathCAD equation solver is used to find the solution of 
sought parameter values. The found solution does not have to 
be optimal, but causes the cluster probability to approximate 
the overall probability of at least one error bit in the entire 
cluster over the observed range (length of packet, set as 8480 
bits). 
 
 
 

0100000 1111 000000000 1111 000011111 

        
            gap   burst        gap       burst  gap 
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Table 1. Elliot’s model parameters 
Parameter Value 

 12p  5.000000090198e-4 

 21p  5.769910104226e-5 

 1h  0.35102171697854
1 

 2h  0.99988517734807
3 

 

Gamma distribution parameters (tab. 2) are extracted using 
the observed mean and variance values of the error burst and 
error gap process in a received error packet from (10) and 
(11). The mean value of error gap and burst length along with 
the variance is computed from the available trace. 
 

Table 2. Gamma model parameters 
Parameter Value 

 gapb  

 gapc  

5138.375364 
 
0.008202 

 burstb  1556.487058 

 burstc  0.001961 
 

Hyper-exponential distribution parameters (tab. 3) and 
mixture components are estimated using the novel algorithm 
and equations outlined in section 3.1.3. 

 

Table 3. Hyper-exponential model parameters 
Parameter Value 

 
1gapp  0.9744 

 
1gapλ  0.3983 

 
2gapp  0.0256 

 
2gapλ  0.0006 

 
1burstp  0.7710 

 
1burstλ  0.7323 

 
3burstp  0.2290 

 
3burstλ  0.1145 

4.2 Cluster Error Analysis (1, )P n   

Cluster is a grouping of several consequent bits from the 
observed sequence. If any of the bits in the cluster is equal to 
“1”, meaning an error bit is present in the cluster, the entire 
cluster is considered as error cluster. Cluster analysis reflects 
the set’s ability to hold multiple moments and internal set 
statistics. The relation to former definitions is 

( )1, 1 ( )P n p n= − , where n  is the cluster length. Cluster of 

length 1 in all cases represents the true bit probability, as 
only 1 bit is considered a cluster. 
Results of the cluster analysis for all 3 models and the real 
data are depicted in fig. 4. The original data is represented by 
a filled black line. 
Elliot’s model generated data represented by the red (darker) 
dashed line have very similar cluster error probability as the 
real channel over the entire observed interval showing the 
reason for its wide application.  

Green (or lighter) dashed line produced by the gamma 
distribution model competes with the MMPP-2 model, yet 
being visibly different from the real data, hence less optimal 
than the Elliot’s model. 
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Figure 4. Probability of an errorless cluster in packets 

received with errors for real data, Elliot’s model, gamma and 
hyper-exponentially generated data 

4.3 Model parameters 

Histograms presenting the results of the generating process 
for all models are depicted in two figures, both were showing 
the probability of occurrence of various burst/gap lengths. 
Figure 5 depicts the histogram of error bursts, while fig. 6 
demonstrates the histogram of error gaps found in the error 
packets of the real and generated data sets. 
Real channel data is depicted with the thick, black line to 
give reference. It is difficult to visually find a clearly superior 
approximation and therefore a mathematical approach using 
Jeffrey’s divergence is used later on. 
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Figure 5. Burst error histogram for all models and the real 

channel data 

The gamma distribution creates an anomaly (fig. 5) – a sharp 
peak – in case of error burst generation. This is an 
unexpected, yet explainable result. Considering that 
generating methods for gamma distribution mainly focus on 
generating random variable with shape parameter 1c ≥ . 
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Generating a distribution with shape parameter 1c � , such 
as the case of this modeling problem, is the domain of very 
specialized algorithms. One such recent algorithm [14] was 
used for experiments documented by this paper. The 
algorithm however wasn’t able to generate error burst lengths 
and holding the desired gamma distribution shape. 
Surprisingly enough only 4x greater shape parameter, yet still 
too small for most generators (including the Matlab’s 
implementation), was enough to model (fig. 6) the error gaps 
comparatively well as Elliot’s model (visually). 

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Error gap length

P
ro

ba
bi

lit
y

 

 

Channel trace
Elliot model
Gamma model
MMPP−2 model

Figure 6. Error gap histogram for all models and the real 
channel data 

Hyper-exponential distribution (MMPP-2 model) arguably 
has a visually more similar shape to the histogram obtained 
from the trace than both gamma and Elliot’s models. 
Especially for error gaps the Elliot’s model and gamma 
distribution are for gaps longer than 2 units visually less 
precise. 

4.4 Jeffrey’s divergence 
 

Histograms obtained by analyzing error burst and gap 
process of the generated data were compared with the 
original histogram using the Jeffrey’s divergence (18) taken 
from [15]. If H and K are two histograms, then Jeffrey’s 
divergence is defined as: 

( ), log logi i
J i i

i i i

h k
d H K h k

m m

 
= + 

 
∑   

(18) 

Where ( ) / 2
i i i

m h k= + . The smaller the distance, the more 

similarity exists between the two compared histograms on a 
bin-to-bin basis. Only the bins with identical value i are 
analyzed.  
Results of the comparison of all models with the histogram 
produced by real trace using Jeffrey’s divergence (tab. 4) are 
for both – burst and gap error modeling - in favor of the 
MMPP-2 model using a second-order hyper-exponential 
distribution, both visually from the histogram and 
numerically from the Jeffrey’s divergence. Gamma 
distribution places third in the comparison both visually and 
numerically. The results confirm what can be empirically 
seen in fig. 5 and fig. 6. 

Table 4. Jeffrey’s divergence for generated histograms 
 Burst Error 

histogram 
Gap Error 
Histogram 

Elliot 0.0690 0.0270 
Gamma 0.1222 0.3566 
MMPP-2 0.0472 0.0202 

5. Conclusions  

Data set extraction from physical layer of IEEE 802.11b and 
further modeling was performed at the Institute of 
Telecommunications, Slovak Technical University in 
Bratislava. Error burst and gap features of the captured traffic 
exhibited exponentially shaped heavy-tailed behavior in both 
processes’ distributions, which is relatively common for 
wireless channels with heavy interference. Demonstrated 
modeling techniques verified applicability of gamma function 
and MMPP-2 modeling when compared to Elliot’s model, 
used for instance in [7] to model the insta-packet small scale 
error process. 
Gamma distribution seems to fail in modeling the basic 
properties of the channel due to lacking proper techniques for 
random variable generation of distributions with shape 
parameter 1c � . Unless a more effective algorithm than 
[14] for generating the gamma random variable with 
extremely small shape parameters is proposed, modeling 
error burst and error gap process becomes a difficult and 
relatively ineffective, imprecise task.  
On the other hand, the MMPP-2 could be further considered 
for bit-error burst and gap process modeling and could even 
be applied instead of the Elliot’s model in a cascade model 
presented in [7]. A significant improvement to parameter 
extraction of MMPP-2 model in a form of novel proposed 
parameterization technique in section 3 makes it possible to 
estimate the hyper-exponential parameters dynamically and 
adaptively. The experimental results prove that it is a viable 
method for error process modeling and deserves more 
attention in the future. Also, threshold estimation remains a 
focal point of further research – proper threshold 
identification could improve the accuracy of the MMPP-2 
model, albeit already more useful for error gap and burst 
modeling, than Elliot’s model, regarding the probability 
histograms. In order to capture the cluster probability (fig.4) 
more efficiently, several new parameters could be added to 

produce a better ( )1,P n  fit. 

Generative and descriptive methods could be used together to 
improve the model characteristics, as demonstrated in this 
paper, modeling using MMPP-2 model can theoretically be 
even more precise than Elliot’s model with the greatest 
advantage lying in the possibility to efficiently and easily 
obtaining the MMPP-2 parameters directly from the observed 
trace, whereas the Elliot’s model requires significantly more 
calculations and solving of a set of nonlinear equations for 
parameter estimation. 
Where the empirical methods fail to achieve the Elliot’s 

model accuracy is cluster probability ( )1 1,P n−  solely 

because the generalized Elliot’s model is optimized to fit this 
statistic precisely. 
 
 
 



7 
International Journal of Communication Networks and Information Security (IJCNIS)                                             Vol. 7, No. 1, April 2015 
 

References 
 

[1] A. Iqbal, A.M. Kazi, "Integrated Satellite-Terrestrial 
System Capacity Over Mix Shadowed Rician and 
Nakagami Channels," International Journal of 
Communication Networks and Information Security 
(IJCNIS), Vol. 5, No. 2, pp. 104-109, 2013. 

[2] J. Poctavek, K. Kotuliaková, J. Polec, M. Osadský, S. 
Ondrušová, "Throughput Parameter Optimization of 
Adaptive ARQ/HARQ Scheme," International Journal 
of Communication Networks and Information Security 
(IJCNIS), Vol. 3, No. 1, pp. 89-95, 2011. 

[3] L. N. Kanal, A. R. K. Sastry, "Models for Channels with 
Memory and Their Applications to Error Control," 
Proceedings of the IEEE, vol. 66, no. 7, pp. 724-744, 
1978. 

[4] E. N. Gilbert, "Capacity of a Burst-Noise Channel," 
Bell System Technical Journal, vol. 39, no. 5, pp. 1253-
1265, 1960. 

[5] E. O. Elliot, "Estimates of error rates for codes on burst-
noise channels," Bell System Technical Journal, vol. 
42, no. 5, pp. 1977-1997, 1963. 

[6] J. Pavlovič, J. Polec, J. Poctavek, K. Kotuliaková, 
"Markov Chain Error Generator for Wireless Channel," 
Proceedings of SPIE: Photonics Applications in 
Astronomy, Communications, Industry, and High-
Energy Physics Experiments, Wilga, Poland, pp. 
800814-1 - 800814-11, 2011. 

[7] J. Polec, V. Hirner, M. Martinovič and K. Kotuliaková, 
"A generator from cascade Markov model for Packet 
loss and subsequent bit error description," World 
Academy of Science, Engineering and Technology, 
Vol. 7, No. 4, pp. 182-187, 2013. 

[8] O. Salih, C. Wang, B. Ai, R. Mesleh, "Adaptive 
Generative Models for Digital Wireless Channels," 
IEEE Transactions on Wireless Communications, Vol. 
13, No. 9, pp. 5173-5182, 2014. 

[9] O. Malý, J. Širáň, "Markov chain models of error 
sources in digital channels," Computer Networks, pp. 
88-94, 1984. 

[10] L. N. Singh, G. R. Dattatreya, "Estimation of the 
Hyperexponential Density with Applications in Sensor 
Networks," International Journal of Distributed Sensor 
Networks, Vol. 3, No. 3, pp. 311-330, 2007. 

[11] A. Nogueira, R. Valadas, "Analysing the versatility of 
the 2-MMPP traffic model," Proceedings of the Second 
International Symposium on Communication Systems 
Networks and Digital Signal Processing, pp. 261-266, 
2000. 

[12] S. H. Kang, Y. H. Lim, D. K. Sung, B. D. Choi, "An 
Application of Markovian Arrival Process (MAP) to 
Modeling Superposed ATM Cell Streams," IEEE 
Transactions on Communications, vol. 50, no. 4, pp. 
633-642, 2002. 

[13] A. Nogueira, P. Salvador, R. Valadas, "Fitting 
algorithms for MMPP ATM traffic models," 
Proceedings of the Broadband Access Conference, pp. 
167-174, 1999. 

[14] R. Martin, C. Liu, "Simulating from a gamma 
distribution with small shape parameter," ARXIV, pp. 
1-6, 2013. 

[15] Y. Rubner, C. Tomasi, L. J. Guibas, "The Earth Mover's 
distance as a Metric for Image Retrieval," International 
Journal of Computer Vision, vol. 40, no. 2, pp. 99-121, 
2000. 

  


