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Abstract: Recently Genetic algorithms are successfully used for 
decoding some classes of error correcting codes. For decoding a 
linear block code C, these genetic algorithms computes a 
permutation π of the code generator matrix depending of the 
received word. Our main contribution in this paper is to choose the 
permutation π from the automorphism group of C. This choice 
allows reducing the complexity of re-encoding in the decoding 
steps when C is cyclic and also to generalize the proposed genetic 
decoding algorithm for binary nonlinear block codes like the 
Kerdock codes. In this paper, an efficient stop criterion is proposed 
and it reduces considerably the decoding complexity of our 
algorithm. The simulation results of the proposed decoder, over the 
AWGN channel, show that it reaches the error correcting 
performances of its competitors. The study of the complexity shows 
that the proposed decoder is less complex than its competitors that 
are based also on genetic algorithms.  
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1. Introduction 

The telecommunication and storage systems are used, more 
and more, to guarantee transmission and memorization of 
several types of data such as texts, pictures, videos and voice. 
The reliability of these data, notably on channels that are 
subject to noise, represents a big worry for users. An efficient 
solution of this problem is based on the detection and the 
correction of errors, by the channel coding technique. In 
effect this technique consists in adding redundancy in data to 
protect, by using error correcting codes which enable 
reconstruction of the original data.  
The decoding of error correcting codes is in general a NP-
Hard problem; the quality of a decoder depends on the 
industrial requests. In certain cases, the main criterion is the 
realization of good performances in terms of the BER (bit 
error rate), independently on the temporal complexity. In 
other cases, some errors are tolerated, but the reduction of the 
temporal complexity is imposed. 
There are two classes of error correcting codes: 
convolutional codes and block codes. The class of block 
codes contains two subclasses: nonlinear codes and linear 
codes. The principle of encoding by using a block code 
C(n,k) is as follows: the initial message is cut out into blocks 
of length k. The length of the redundancy is n-k, thus the 
length of transmitted blocks is n.   
There are two categories of decoding algorithms: Hard 
decision and Soft decision algorithms. Hard decision 
algorithms work on the binary form of the received 
information. In contrast, soft decision algorithms work 

directly on the received symbols [1]. The decoding category 
depends on the industrial requests and the communication 
channel. When the channel allows measuring the reliabilities 
(float symbols) of the sequence r to decode, the soft decision 
decoders working on these reliabilities allow to win generally 
about 2 dB more than the hard decision decoders working on 
the binary form of r can do.  
Many decoding algorithms benefit from the proportionality 
between the symbols reliabilities and the probability that 
these later are correct [2-7]. For the binary channels, the new 
majority voting procedure introduced by Nouh et al [8] 
allows to compute these measures and to enhance the 
decoder performane. The decoder of Chase [4] tries to find 
some errors in the least reliable symbols in a first step. Then 
it uses an auxiliary hard decision decoder like the BMA 
algorithm of Berlekamp-Massey [9] or the permutation 
decoding algorithm of MacWilliams [10] for finding the 
complementary error.   
Recently Genetic algorithms are successfully used for 
decoding linear block codes [2,5,11,12]. For decoding a 
linear code C1 of generator matrix G1, for non binary 
channels, the decoder of Maini et al [2] starts by finding a 
generator matrix G2 of another linear code C2 equivalent to 
C1 and the permutation π which binds these two codes. G2 is 
obtained by applying the Gauss operations on G1 after sorting 
the received sequence r by reliabilities. This treatment allows 
reducing the number of errors in the information part of the 
permuted sequence π(r). In a second step, these decoding 
algorithms try to find the closest codeword to π(r) by re-
encoding a certain number of information vectors. The 
second step requires encoding by a generator matrix, which is 
more complex when comparing with encoding by the 
polynomial generator, when the code C1 is cyclic, and isn’t 
available when this code is nonlinear. The SDGA algorithm 
of Azouaoui et al [5] applies the Chasing technique over 
information set decoder based on genetic algorithms. Unlike 
Maini decoder [2], which works on the generator matrix, the 
decoder DDGA of Azouaoui et al [11] works on the parity 
check matrix; this allows reducing the complexity of their 
genetic algorithm for codes of high rate. However, the 
complexities of both decoders are the same for the codes of 
rate about 0.5, like the Quadratic Residue codes (QR). The 
PGAD algorithm [12], uses many genetic algorithms working 
in parallel for decoding linear block codes.   
Unlike the genetic decoding algorithms of Maini et al and the 
DDGA algorithm, we propose in this paper, a new genetic 
algorithm which uses the available encoding procedure and 
without necessity to pass to any equivalent code. The 
proposed decoder uses a small part of the automorphism 
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group, called a permutation set, for moving, at most, the least 
reliable symbols in the redundancy part.  This choice allows 
to reduce the complexity of re-encoding when the code is 
cyclic, and to also generalize the proposed genetic decoding 
algorithm for binary nonlinear block codes like the Kerdock 
codes [13]. In this algorithm, a new metric is used and it 
reduces considerably the decoding complexity. 
The automorphism group of the quadratic residue codes 
contains the PSL2 group given in [14]. The one of the BCH 
codes is discussed in the work of Berger and Charpin [15]. 
One of the most important works that use the part of the 
automorphism group to decode cyclic codes is the algorithm 
of Chana et al [6-7]. These algorithms use some cyclic 
permutations and the Chasing technique on the least reliable 
symbols remained in the information part of some sequences. 
Another work that uses this group is the famous permutation 
decoding algorithm of MacWilliams [10], for binary 
channels.  
The remainder of this paper is structured as follows. In the 
section 2, we present the proposed genetic algorithm for 
decoding systematic block codes (AutDAG). In the section 3 
we give some simulation results of AutDAG, and we make a 
comparison with other decoders. In the section 4, we present 
a simplification of the Maini algorithm. In the section 5, we 
study the complexities of some decoders. Finally, a 
conclusion and a possible future direction of this research are 
outlined in Section 6.  

2. The Proposed Decoder 

 A genetic algorithm (GA) is a heuristic search algorithm 
premised on the natural selection and genetic [16-18].These 
algorithms are successfully used for decoding linear codes [2, 
5, 11, 12, 19]. They are also used for finding the weight 
enumerator of linear block codes [20]. The genetic 
algorithms have the possibility of working in parallel; thus, 
they are implemented in parallel for decoding linear block 
codes in the work of Ahmadi et al [12]. Genetic algorithms 
are used in Search of good Tailbiting Codes [21], they are 
from the family of evolutionary algorithms which are recently 
applied to the synthesis of unequally spaced antenna arrays 
[22].   
Before giving the AutDAG steps we give the following 
definitions: 
 

Definition 1: We call the information reliability length of a 
sequence r∈IRn relating to a threshold S and we note 
IRL(r,S), the number  of the symbols ri having reliabilities 
more than S and which are in the  information part of r :  
IRL(r,S) = cardinal (i∈{1,2,…,k: |ri|≥ S}). 
In practice IRL(r,S) is computed as follows:  
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Definition 2:  Let be (1) (2) (3) ( )L { , , ,..., }zσ σ σ σ= a list 

of z automorphisms of a block code C (a permutation set). 
We call a maximum reliable automorphism related to a 
sequence r∈IRn and a threshold S, over L and we note[ ],r S

Lσ , 

the permutation σ
(i) such that  

( ) ( ): ( ( , )) ( ( , ))i jj z IRL r S IRL r Sσ σ∀ ≤ ≥  
 
The AutDAG algorithm works as follows: 
 

Inputs: 
  
- A permutation set L of z automorphisms 
- The sequence r to decode. 
- The systematic encoding procedure Encod() 
- The population size Ni 
- The maximum number of generations Ng 
- The crossover probability pc 

- The mutation probability pm 
- The threshold of reliability S 
- The threshold of decoding T 
 
Outputs: the decoded word c.   
 
Begin 
 
Step 1. Find a maximum reliable automorphism σ related to 

r and S over L 
Step 2. Compute h, the hard version of the sequence r 

Step 3. h←σ(h) ; r←σ(r);  
Step 4. Generate an initial population, of Ni individuals; the 

first individual is the information part of  h and the 
others are a binary vectors of length k uniformly 
generated. 

Step 5. N← 1; continue ← true; c←the codeword 
corresponding to the information part of h. 

Step 6. While(N≤ Ng and continue=true) do:    
Sub Step 1. Compute the fitness of each individual which 

is equal to the Euclidean distance between the 
encoded individual, obtained by applying the function 
Encod(), and the sequence r.  

Sub Step 2. Copy the best individual (of small fitness) in 
the intermediate population. 

Sub Step 3. For i from 2 to Ni do: 
- Randomly select two individuals: p1 and p2.  
- Cross p1 and p2 to obtain children ch according to 
the crossover probability pc. 

- If (fitness(c)≤fitness(ch)) then mute the individual 
ch according to the mutation  probability pm 

- Insert the individual ch in the intermediate 
population. 

Sub Step 4. c←the best individual in the current 
population 

Sub Step 5. if the Hamming distance Hd(c,r) between c 

and h is less than or equal to T then continue←false. 

Step 7. c←σ-1(c) 
 
End. 
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Figure1. AutDAG diagram 

The figure 1 presents a diagram of AutDAG. In this genetic 
algorithm we propose to use the same crossover given by 
Maini et al [2]. 
All error correcting codes have an automorphism group, 
therefore the permutation set L exists for linear and nonlinear 
codes. Contrary to the Maini and DDGA algorithms, the 
AutDAG algorithm doesn't contains any instruction requiring 
the property of code linearity. Thus it can be generalized for 
non linear block codes like the Kerdock codes [13].  
 

3. Simulation results 
 

In order to show the error correcting performances of 
AutDAG, we do intensive simulations. With the exception of 
the cases where the simulation parameters are explicitly 
mentioned, the simulations where made with default 
parameters outlined in Table 1. The performances are given 

in terms of BER (bit error rate) as a function of the signal to 
noise ratio SNR =Eb/N0( the energy per bit to noise power 
spectral density ratio). The simulation will be presented for 
Quadratic-Residue codes (QR),  Bose, Ray-Chaudhuri and 
Hocquenghem codes (BCH) and the Nordstrom-Robinson 
code (NR). 
 

Table 1. Default simulation parameters of AutDAG 
 

Ni 300 T 0 

Ng 50 Default code QR(47,24) 

pc 0.97 Channel AWGN 

pm 0.08 Modulation BPSK 

z 500 Minimum residual errors 100 

S 0.7 Minimum transmitted blocks 1000 
 

Table 2. Simulation parameters for NR and some QR codes 
with T=0 

 

Code Ni Ng z T 

QR(31,16) 500 100 200 0 

QR(41,21) 600 100 400 0 

QR(47,24) 500 100 500 0 

QR(71,36) 1300 100 1000 0 

NORDSTROM- 
ROBINSON  

40 3 100 0 

 

The figure 2 shows the AutDAG performances, without 
threshold of decoding, for the QR codes of length 31, 41, 47 
and 71 obtained by using the simulation parameters 
illustrated in the table 2. 
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Figure 2.  Impact of the code length on the AutDAG 

performances for T=0     
 

The figure 3 shows the AutDAG performances, with a 
threshold of decoding, for the QR codes of length 31, 41, 47 
and 71 obtained by using the simulation parameters 
illustrated in the table 3. 
The figures 2 and 3 show an improvement of performances, 
when the code length is increased from 31 to 71. 
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Crossover 

Generation of the initial 
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and N ≤Ng 
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of Euclidean distance 
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Table 3. Simulation parameters for some QR codes with T≠0 

 

Code Ni Ng z T 

QR(41,21) 500 100 600 4 

QR(47,24) 300 80 400 5 

QR(71,36) 1000 100 1000 5 
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Figure 3.  Impact of the code length on the AutDAG 

performances for T=error correcting capability 
 

The main difference between the simulation parameters given 
in tables 2 and 3 is the value of the threshold of decoding T 
which is equal to 0 for the simulation results plotted in the 
figure 2 and it is equal to the error correcting capability for 
those given in the figure 3. As we will show in the next 
section, the use of a big value of T reduces considerably the 
time complexity of AutDAG. The comparison between the 
simulation results plotted in the figures 2 and 3 proves that 
the stop criterion given by T is efficient in the terms of 
performances, thus the complexity of AutDAG is reduced 
without touching a lot the performances.  
To show the effect of the permutations number z on the error 
correcting performances of AutDAG applied to the 
QR(47,24) code,  we give in the figure 4 the results obtained 
by varying z from 1 to 5000  . The use of 100 permutations 
allows to win about 1 dB at BER=3.10-5. The gain becomes 
negligible when z passes 100. 
To show the impact of the population size Ni on the error 
correcting performances of AutDAG applied to the 
QR(47,24) code,  we elucidate in the figure 5 the results 
obtained by varying Ni from 1 to 500  . The use of 200 
individuals allows to win about 4 dB at BER=3.10-5 
comparing to populations with only ten individuals. The gain 
becomes negligible when Ni passes 200.    
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Figure 4.  Impact of the permutations number on the 

AutDAG performances 
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Figure 5.  Impact of the population size on the AutDAG 

performances 
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Figure 6.  Impact of the number of generations on the 

AutDAG performances 
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To show the impact of the generations number Ng on the 
error correcting performances of AutDAG, applied to the 
QR(47,24) code,  we illustrate in the figure 6 the results 
obtained by varying Ng from 1 to 500  . The use of 20 
generation allows to win about 2 dB at BER=3.10-5 

comparing to AutDAG with only 3 generations. The gain 
becomes negligible when Ng passes 20.   
To show the impact of the crossover probability pc on the 
error correcting performances of AutDAG, we illustrate in 
the figure 7 the simulation results obtained by varying pc 
from 0.05 to 0.97. This figure demonstrates that small values 
of pc damage the performances and their big values improve 
them. At BER=2.10-5 the good choice of pc allows to win 
about 1dB.  
To show the impact of the crossover type on the error 
correcting performances of AutDAG we illustrate in the 
figure 8 the simulation results obtained by the classical 
crossover in one and two point, the uniform crossover and 
the proposed crossover. The proposed crossover based on the 
channel reliabilities improves considerably the performances 
of the proposed decoder.  
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Figure 7.  Impact of the crossover probability on the 

AutDAG performances 
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Figure 8.  Impact of the crossover type on the AutDAG 

performances  
To illustrate the impact of the mutation probability pm on the 
error correcting performances of AutDAG we give in the 
figure 9 the simulation results corresponding to some values 
of pm. By analyzing this figure, the null and the big values of 
pm damage the performances; however the values 0.08 and 

0.2 improve them. At BER=2.10-5 the good choice of pc 
allows to win about 2 dB. 
To illustrate the impact of the threshold of reliability S on the 
error correcting performances of AutDAG we give in the 
figure 10 the simulation results corresponding to some values 
of S. By analyzing this figure, the increase of s from 0 to 0.7 
improves the performances; however the big value 1.1 
damages them. At BER=3.10-5 the good choice of S allows to 
win about 1.3 dB. 
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Figure 9.  Impact of the crossover probability on the 

AutDAG performances 
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Figure 10.  Impact of the threshold of reliability on the 

AutDAG performances  
 

The threshold of decoding T allows to stops AutDAG when 
this later converges to a codeword c at Hamming distance 
from the received word h less than or equal to T. The 
minimum distance of the QR(47,24) code is equal to 11 and 
its error correcting capability is then equal to 5. The figure 11 
shows the impact of T on the error correcting performances 
of AutDAG for this code. It shows that the values of T which 
are less than or equal to the error correcting capability of this 
code give the same performances. However, the values 6 and 
7 damage them. At BER=10-5 the good choice of T between 0 
and 7 allows to win about 2.5 dB. 
The figure 12 presents a comparison between the error 
correcting performances of AutDAG and those of the Chase-
2 algorithm [4] applied to the BCH (63, 39) and QR(47,24) 
codes.  For the first code we have applied the Chasing 
technique on the hard decision permutation decoding 
algorithm [10] with 1000 permutations. For the second code 
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we used the hard decision Berlekamp-Massey decoder in the 
chasing technique and only the 63 cyclic permutation in 
AutDAG with 100 generations (z=63, Ng=100). The figure 
12 shows that AutDAG passes the Chase algorithm in terms 
of error correcting performances. At BER=10-5 the difference 
between these decoders is about 0.8 dB. 
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Figure 11. Impact of the threshold of decoding on the 

AutDAG performances 
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Figure 12.  Comparison between the error correcting 

performances of AutDAG and Chase-2 algorithms 
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Figure 13.  Comparison between the error correcting 

performances of AutDAG and those of the Maini and DDGA 
Algorithms.  

The figure 13 presents a comparison between the error 
correcting performances of AutDAG and those of the Maini 
and DDGA Algorithms applied to the QR (71, 36) and 
QR(31,16) codes by using the simulation parameters given in 
the table 2.  This figure shows that the difference between 
these three decoders in terms of the error correcting 
performances is negligible. Conversely the AutDAG 
algorithm is less complex. 
The figure 14 shows that AutDAG performs the same as the 
OSD3 algorithm [3] for code QR (71,36,11) by using the 
simulation parameters given in the table 2. The complexity of 
AutDAG is less than that of the OSD3. At BER=10-5 the 
difference between AutDAG and OSD1 decoders is more 
than 1 dB.  
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Figure 14.  Comparison between the error correcting 

performances of AutDAG and the OSD algorithms for the 
QR(71,36) code.  

The figure 15 shows that AutDAG reaches the error 
correcting performances of the Maximum Likelihood 
Decoding algorithm (MLD) for the Nordstrom-Robinson 
code (NR) which is a binary nonlinear code [13] by using the 
simulation parameters given in the table 2.  
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Figure 15.  Comparison between the error correcting 

performances of AutDAG and the MLD algorithms for the 
Nordstrom-Robinson code.  

 

For the simulation plotted in the figure 15, AutDAG uses 
very little number of generations and a small population size, 
so its complexity is less than that of the MLD. At BER=4.10-
5 the difference between AutDAG and MLD decoders is 
about 0.25 dB. 
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The figure 16 shows that AutDAG performs better than the 
algorithm of Chana et al [7-8] for the QR (71,36,11) code by 
using the simulation parameters given in the table 3.  
The figure 17 presents a comparison between the error 
correcting performances of AutDAG and those of the PGAD 
algorithm[12] for the BCH (63, 30) code with 500 
generations (z=376, Ng=500, Ni=600). The figure 17  shows 
that AutDAG and PGAD have the same performances for 
this code. However, AutDAG is less complex than PGAD as 
we are going to see in next section.  
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Figure 16.  Comparison between the error correcting 

performances of AutDAG and the Chana algorithms for the 
QR(71,36) code. 
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Figure 17.  Comparison between the error correcting 

performances of AutDAG and PGAD for the BCH(63,30) 
code. 

 

4. A Simplified Maini Algorithm 
 

The stop criterion of AutDAG, introduced in the sixth step by 
finding a codeword at Hamming distance less than or equal 
to the threshold of decoding T, from the received word h, 
allows reducing considerably the run time of this algorithm.  
 
 
 
 
 
 

In order to simplify the Maini decoder, the same stop 
criterion is used, the simulation results are plotted in the 
figure 18 and they are obtained by using the default 
parameters at exception of those given in the table 4.  

 

Table 4. Simulation parameters 

Decoder Ni Ng pc pm T z S 

AutDAG 100 100 
0.9
7 

0.0
8 

5 300 0.6 

Maini  
Simplified 
 Version 

100 300 
0.9
7 

0.0
3 

5 - - 

Maini 
 Origial 
Version 

100 300 
0.9
7 

0.0
3 

- - - 

 

The figure 18 shows that the difference between the error 
correcting performances of the simplified version of the 
Maini algorithm (T=5) and those of the AutDAG algorithm is 
negligible. However, the original version of the Maini 
algorithm performs better.  
The efficiency of a decoder is measured in general by the 
rate: performances to the time complexity. Thus, we have 
computed the run time of these three decoding algorithms 
(AutDAG, Maini simplified and original versions) for 1000 
sequences. The simulation results are plotted in the figure 19 
and they are obtained by using the default parameters at 
exception of those given in the table 4. All these simulations 
are obtained by using a simple configuration  machine: Intel 
(R) Core ™ 2 Duo CPU T7300 @ 2.00 GHz, RAM: 2.00 
Go. 
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Figure 18.  Comparison between the error correcting 
performances of AutDAG, Maini original version and 

simplified version for the QR(47,24) code. 
 

The figure 19 proves that the run time of AutDAG is less 
than the one of the simplified version of the Maini algorithm 
which is less than the one of the original version. When the 
SNR value increases, the run time deceases at exception of 
the original version of the Maini algorithm which it remains 
constant. 
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Figure 19.  Comparison between the run time of AutDAG, 

Maini original version and simplified version for the 
QR(47,24) code. 

 

5. Study of the complexities 
 

At any given stage, we maintain a few sets of Ni * k arrays, 
therefore the memory complexity of this algorithm is O(Ni.k). 
The AutDAG algorithm has the same memory complexity 
comparing to the Maini and DDGA algorithms. 
In order to get the temporal complexity of our algorithm, we 
will compute the complexity of each step: 
Step 1 has temporal complexity of O(z). This complexity is 
independent on the length and the dimension of the code and 
it is negligible comparing to the other steps. 
Step 4 has temporal complexity of O(k2n) [2]. This 
complexity depends on the random number generator in use, 
but the cost is negligible compared to that of other steps. In 
addition, the AutDAG algorithm can always use the same 
initial population which can be generated uniformly and 
stored in memory before the starting of AutDAG.  
Step 6 has temporal complexity equal to the one of encoding 
multiplied by the product NiNg [2,11] which is the worst case 
complexity.  
The polynomial encoding has complexity of order 
O(log(n).log(n-k))  [6-7] which is very reduced comparing to 
the matrix encoding which is of complexity of O(k.n). The 
AutDAG algorithm benefit from the simplicity of polynomial 
encoding, contrary to the DDGA, Maini and OSD decoders 
which require using the generator matrix for encoding even if 
the code is cyclic.  
The other steps contain some assignments and one operation 
of coding as consequence their complexity is negligible. 
The table 5 gives an upper bound of the AutDAG complexity 
for cyclic, linear and random systematic block codes. It gives 
also the complexities of Maini algorithm, OSD, Chase-2, 
SDGA, Chana algorithm, DDGA, PGAD. These 
complexities measurement are more detailed respectively in 
[2-4, 5-6, 11-12]. In the table 5, C(HD), C(Encoding),  Nc 
and Ns denote respectively the complexity of the hard 
decision decoder HD, the one of encoding, the offspring 
number and the processor number. The table 5 shows that 
AutDAG is less complex than their presented competitors. 
 
 
 
  

Table 5. Complexity of some decoding algorithms 
 

Decoding 
algorithm 

Type of 
binary 

block code 
Temporal complexity 

PGAD Linear 
O(n.ln(n)+k2.n+k.n.(Ni+Ng.Nc)+ 

    Ng.Ni.ln(Ni)+Ns.ln(Ns))) 

AutDAG 

Cyclic 
Less than or equal to 

O(Ni.Ng(log(n).log(n − k))) 
Linear and 
not cyclic 

Less than or equal to 
O(Ni.Ng.k.n)) 

Systematic 
Less than or equal to 

O(Ni.Ng.C(Encoding))) 

Maini  
algorithm 

Cyclic or 
linear 

O(Ni.Ng(k.n +log(Ni))) 

DDGA 
Cyclic or 

linear 
O(Ni.Ng(k.(n − k) + log(Ni))) 

SDGA 
Cyclic or 

linear 
O(2t.(Ni.Ng(k.n2 +k.n+ 

log(Ni)))) 
 

Chase2-
HD 

 
Binary 

block code 

 
O(2t.C(HD)) 

Chana 
 algorithm 

Cyclic O(2p+1.k.log(n).(n+log(n-k))) 

OSD of  
order m 

Cyclic or 
linear 

O(n m+1) 

The stop of AutDAG when the best codeword in the current 
population has Hamming distance, from the received word, 
less than or equal to the threshold of decoding T, allows 
reducing considerably the temporal complexity of AutDAG 
by minimizing the number of the effectively generated 
populations.   In order to test the impact of this stop criterion 
on the time complexity of AutDAG we have computed the 
average number of the populations generated by this decoder 
as function of SNR (Eb/N0) and the threshold of decoding T. 
This statistical study is made on 10000 received sequences at 
each SNR for the QR(47,24) code with the default 
parameters and only 50 generations (Ng=50). The figure 20 
gives the obtained results; it shows that when T and/or the 
SNR increase, the complexity of AutDAG decreases. For the 
code under study, the convenient value of T is equal to 5 
because this value reduces considerably the complexity and 
its impacts on the error correcting performances are 
negligible as it was viewed previously in the figure 11. It is 
important to note that the value 5 is equal to the error 
correcting capability of this code.    
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Figure 20.  Average number of generations used in AutDAG 
as function of SNR and the threshold of decoding T for the 

QR(47,24) code. 
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Comparing to the Maini decoder, the DDGA algorithm 
reduces the complexity of decoding the codes of high rates. 
For the codes of rate about 0.5 like the QR codes the DDGA 
and Maini decoders have the same complexity, however the 
AutDAG algorithm is less complex than these two 
competitors in all cases.  
 

6. Conclusion and perspectives 
 

In this paper we have used genetic algorithms for decoding 
systematic block codes. The simulations applied on some 
BCH and QR codes show that the proposed algorithm is an 
efficient soft-decision decoding algorithm. In summary the 
proposed decoder has two main advantages comparing to 
their competitors OSD, Maini and DDGA algorithms. The 
fist characteristic of AutDAG is its possibility to decode 
some binary non linear code like the Nordstrom-Robinson 
code. The second characteristic is its low complexity 
obtained by the threshold of decoding and also by the 
polynomial encoding in the case of cyclic codes. The 
obtained results will open new horizons for the artificial 
intelligence algorithms in the coding theory field.  
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