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Abstract: Recently Genetic algorithms are successfully used falirectly on the received symbols [1]. The decodiategory
decoding some classes of error correcting codes.decoding a depends on the industrial requests and the comuioric
linear block code C, these genetic algorithms coegul channel. When the channel allows measuring thebiities
permutationTt of the code generator matrix depending of thgfioat symbols) of the sequence r to decode, tliiedemision
received word. Our main contribution in this pafgeto choose the decoders working on these reliabilities allow togenerally

permutationtt from the automorphism group of C. This choice

allows reducing the complexity of re-encoding ire tdecoding
steps when C is cyclic and also to generalize tbpgsed genetic
decoding algorithm for binary nonlinear block codiéee the
Kerdock codes. In this paper, an efficient stogpedon is proposed
and it reduces considerably the decoding complexity our
algorithm. The simulation results of the proposeddadier, over the
AWGN channel, show that it reaches the error ctimgc
performances of its competitors. The study of theplexity shows
that the proposed decoder is less complex tharoitgpetitors that
are based also on genetic algorithms.
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1. Introduction

The telecommunication and storage systems are nsac
and more, to guarantee transmission and memonizatio
several types of data such as texts, picturespsided voice.
The reliability of these data, notably on chanrtblat are
subject to noise, represents a big worry for ugemsefficient
solution of this problem is based on the detectod the
correction of errors, by the channel coding techeigin
effect this technique consists in adding redundandata to

about 2 dB more than the hard decision decoderkimgpon
the binary form of r can do.

Many decoding algorithms benefit from the proparétity
between the symbols reliabilities and the probgbithat
these later are correct [2-7]. For the binary clets)rthe new
majority voting procedure introduced by Nouh et[8]
allows to compute these measures and to enhance the
decoder performane. The decoder of Chase [4] toidind
some errors in the least reliable symbols in & fitsp. Then
it uses an auxiliary hard decision decoder like BMA
algorithm of Berlekamp-Massey [9] or the permutatio
decoding algorithm of MacWilliams [10] for findinthe
complementary error.

Recently Genetic algorithms are successfully used f
decoding linear block codes [2,5,11,12]. For decgda
linear code & of generator matrix & for non binary
channels, the decoder of Maini et al [2] startsfibging a
generator matrix &of another linear code@quivalent to
C! and the permutatiort which binds these two codes? i3
obtained by applying the Gauss operations baf@r sorting
the received sequence r by reliabilities. Thisttresmt allows
reducing the number of errors in the informatiomt jd the
permuted sequencr(r). In a second step, these decoding
algorithms try to find the closest codewowd 1(r) by re-

protect, by using error correcting codes which @abencoding a certain number of information vectorsie T

reconstruction of the original data.
The decoding of error correcting codes is in gdnarblP-

second step requires encoding by a generator mafnigh is
more complex when comparing with encoding by the

Hard problem; the quality of a decoder depends lwn tpolynomial generator, when the codé i€ cyclic, and isn't

industrial requests. In certain cases, the materah is the
realization of good performances in terms of theRBbit
error rate), independently on the temporal compjexin
other cases, some errors are tolerated, but thetied of the
temporal complexity is imposed.

There are two classes of error correcting
convolutional codes and block codes. The class lotkb
codes contains two subclasses: nonlinear codesliaear
codes. The principle of encoding by using a blockle
C(n,k) is as follows: the initial message is cut imtio blocks
of length k. The length of the redundancy is nHyst the
length of transmitted blocks is n.

available when this code is nonlinear. The SDG/aigm
of Azouaoui et al [5] applies the Chasing technigquer
information set decoder based on genetic algorittuniike
Maini decoder [2], which works on the generator nmathe
decoder DDGA of Azouaoui et al [11] works on theitya

codesheck matrix; this allows reducing the complexity toeir

genetic algorithm for codes of high rate. Howevtre
complexities of both decoders are the same forctiues of
rate about 0.5, like the Quadratic Residue codd®).(Qhe
PGAD algorithm [12], uses many genetic algorithnasking
in parallel for decoding linear block codes.

Unlike the genetic decoding algorithms of Mainaétind the

There are two categories of decoding algorithmsrdHapDGA algorithm, we propose in this paper, a newetien
decision and Soft decision algorithms. Hard deaisioalgorithm which uses the available encoding procedwund
algorithms work on the binary form of the receivedyithout necessity to pass to any equivalent codee T
information. In contrast, soft decision algorithmgork proposed decoder uses a small part of the autorsonph



International Journal of Communication Networks &mfdrmation Security (IJCNIS)

group, called a permutation set, for moving, attnthe least
reliable symbols in the redundancy part. This cadallows
to reduce the complexity of re-encoding when thdects
cyclic, and to also generalize the proposed genletimding
algorithm for binary nonlinear block codes like tkerdock
codes [13]. In this algorithm, a new metric is used it
reduces considerably the decoding complexity.
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the permutation o such that

0 <z:IRL(a™(r,S)=IRL(c(r,S))
The AutDAG algorithm works as follows:

I nputs:

- A permutation set L of zautomorphisms

The automorphism group of the quadratic residueesod._ The sequence r to decode.

contains the PSL2 group given in [14]. The onehef BCH
codes is discussed in the work of Berger and Chdh].
One of the most important works that use the pérthe
automorphism group to decode cyclic codes is tgerghm

- The systematic encoding procedure Encod()
- The population size Ni

- The maximum number of generations Ng

- The crossover probability p.

of Chana et al [6-7]. These algorithms use somédiccyc . The mutation probability p,

permutations and the Chasing technique on the telable
symbols remained in the information part of songusaces.
Another work that uses this group is the famousnpéation

- The threshold of reliability S
- The threshold of decoding T

decoding algorithm of MacWilliams [10], for binary Outputs: the decoded word c.

channels.

The remainder of this paper is structured as fallo the
section 2, we present the proposed genetic algoritbr
decoding systematic block codes (AutDAG). In thetisa 3
we give some simulation results of AutDAG, and wakma
comparison with other decoders. In the sectionelpresent
a simplification of the Maini algorithm. In the dem 5, we
study the complexities of some decoders. Finally,
conclusion and a possible future direction of teisearch are
outlined in Section 6.

2. TheProposed Decoder

A genetic algorithm (GA) is a heuristic searchoalthm
premised on the natural selection and genetic Bl6Fhese
algorithms are successfully used for decoding liceaes [2,
5, 11, 12, 19]. They are also used for finding teight
enumerator of linear block codes [20].
algorithms have the possibility of working in paegl thus,
they are implemented in parallel for decoding lmbick
codes in the work of Ahmadi et al [12]. Geneticaaithms
are used in Search of good Tailbiting Codes [2iytare
from the family of evolutionary algorithms whichearecently
applied to the synthesis of unequally spaced aatemrays
[22].

Before giving the AutDAG steps we give the follogin
definitions:

Definition 1: We call the information reliability length of a
sequencellIR" relating to a threshold S and we note
IRL(r,S), the number of the symbo|having reliabilities
more than S and which are in the information pért:
IRL(r,S) = cardinal ({1,2,...,k: |}> S}).

In practice IRL(r,S) is computed as follows:

V, =1 if

IRL(r, S) iv { = ©
r,S)= i P
o , VvV, =0 if

|<s

Definition 2: Let be L ={d® g® g®,...,0@} a list
of z automorphisms of a block code C (a permutasiet).

We call a maximum reliable automorphism related ato

sequencelfIR" and a threshold S, over L and we nofe®! ,

The genetic

Begin

Sep 1. Find a maximum reliable automorphism o related to
r and Sover L

Sep 2. Compute h, the hard version of the sequencer

aep 3. h—a(h); r—a(r);

Sep 4. Generate an initial population, of Ni individuals; the
first individual is the information part of h and the
others are a binary vectors of length k uniformly
generated.

Sep5. N~ 1; continue «~ true; c-the codeword
corresponding to the information part of h.

Sep 6. While(N< Ng and continue=true) do:

Sub Step 1. Compute the fitness of each individual which
is equal to the Euclidean distance between the
encoded individual, obtained by applying the function
Encod(), and the sequencer.

Sub Step 2. Copy the best individual (of small fithess) in
the intermediate population.

Sub Sep 3. For i from2to Ni do:

-Randomly select two individuals: p1 and p2.

-Cross pl and p2 to obtain children ch according to
the crossover probability pe.

-If (fitness(c)<fitness(ch)) then mute the individual
ch according to the mutation probability py,

-Insert the individual ch in the intermediate

population.
Sub Sep 4. c~the best individual in the current
population
Sub Sep 5. if the Hamming distance Hd(c,r) between ¢

and hislessthan or equal to T then continue —false.
Sep 7. c—o(c)

End.
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Table 1. Default simulation parameters of AutDAG
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Figurel. AutDAG diagram

The figure 1 presents a diagram of AutDAG. In thénetic
algorithm we propose to use the same crossovemn dgiye
Maini et al [2].

All error correcting codes have an automorphismugro
therefore the permutation set L exists for linegat aonlinear
codes. Contrary to the Maini and DDGA algorithmise t
AutDAG algorithm doesn't contains any instructi@quiring
the property of code linearity. Thus it can be gelieed for
non linear block codes like the Kerdock codes [13].

3. Simulation results

In order to show the error correcting performanads
AutDAG, we do intensive simulations. With the extep of
the cases where the simulation parameters are cekpli

Ni [300 | T 0

Ng | 50 Default code QR(47,24)
p. | 0.97 | Channel AWGN

Pm | 0.08 | Modulation BPSK

z 500 Minimum residual errors 100

S 0.7 Minimum transmitted blocks| 1000

Table 2. Simulation parameters for NR and some QR codes

with T=0
Code Ni Ng z T
QR(31,16) 500 100 | 200 | o
QR(41,21) 600 100 400 0
QR(47,24) 500 100 | 500 | ©
QR(71,36) 1300 100 1000 0
iediradinead 40 3 100 | 0

The figure 2 shows the AutDAG performances, without
threshold of decoding, for the QR codes of lendth4L, 47
and 71 obtained by using the simulation parameters
illustrated in the table 2.

—e— QR(31,16) [
- | =8—QR(41,21)
- _ | == QR(47,24)
=#= QR(71,36) ||

H

Tt = + i

Yy

>

—+ H I

[
N
Wk —
N -
4]
[

10° !

Eb/NO

Figure2. Impact of the code length on the AutDAG
performances for T=0

The figure 3 shows the AutDAG performances, with a
threshold of decoding, for the QR codes of lendth4L, 47
and 71 obtained by using the simulation parameters
illustrated in the table 3.

The figures 2 and 3 show an improvement of perfoes,
when the code length is increased from 31 to 71.

mentioned, the simulations where made with default

parameters outlined in Table 1. The performancesgaren
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Table 3. Simulation parameters for some QR codes with T

Code Ni Ng z T
QR(41,21) 500 100 600
QR(47,24) 300 80 400 5
QR(71,36) 1000| 100 1000

T —

1 =A—QR(41,21)
————— =B QR(47,24)
””” =%— QR(71,36)

H-—

+

ot

P

Figure 3. Impact of the code length on the AutDAG
performances for T=error correcting capability

The main difference between the simulation pararagfiven
in tables 2 and 3 is the value of the thresholdexfoding T
which is equal to O for the simulation results f@dtin the
figure 2 and it is equal to the error correctingaaility for
those given in the figure 3. As we will show in thext
section, the use of a big value of T reduces cenaldy the
time complexity of AutDAG. The comparison betweéde t
simulation results plotted in the figures 2 andr8ves that
the stop criterion given by T is efficient in therms of
performances, thus the complexity of AutDAG is reshl
without touching a lot the performances.

To show the effect of the permutations humber thenerror
correcting performances of AutDAG applied to the
QR(47,24) code, we give in the figure 4 the resalitained
by varying z from 1 to 5000 . The use of 100 pdations
allows to win about 1 dB at BER=3.10The gain becomes
negligible when z passes 100.

To show the impact of the population size Ni on émsor
correcting performances of AutDAG applied to the
QR(47,24) code, we elucidate in the figure 5 thsults
obtained by varying Ni from 1 to 500 . The use280
individuals allows to win about 4 dB at BER=3710
comparing to populations with only ten individual$ie gain
becomes negligible when Ni passes 200.

Eb/NO

Figure 4. Impact of the permutations number on the
AutDAG performances

BER

Figure5. Impact of the population size on the AutDAG
performances

10

T = T T =TT

10"

10°

Figure 6. Impact of the number of generations on the
AutDAG performances
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To show the impact of the generations number Nghen
error correcting performances of AutDAG, applied the
QR(47,24) code, we illustrate in the figure 6 tlesults
obtained by varying Ng from 1 to 500 . The use26f
generation allows to win about 2 dB at BER=310
comparing to AutDAG with only 3 generations. Theinga
becomes negligible when Ng passes 20.

To show the impact of the crossover probabilityop the
error correcting performances of AutDAG, we illade in
the figure 7 the simulation results obtained byyiay pc
from 0.05 to 0.97. This figure demonstrates thadlbrralues
of pc damage the performances and their big valopsove
them. At BER=2.10 the good choice of pc allows to win
about 1dB.

To show the impact of the crossover type on thererr
correcting performances of AutDAG we illustrate tine
figure 8 the simulation results obtained by thessieal
crossover in one and two point, the uniform crossand
the proposed crossover. The proposed crossovet basthe
channel reliabilities improves considerably thef@enances
of the proposed decoder.

BER

Figure7. Impact of the crossover probability on the
AutDAG performances

- =sk=— Proposed crossover
| =M= 1 point crossover
| =—@= 2 points crossover
{ =% Uniform crossover

Figure 8. Impact of the crossover type on the AutDAG
performances
To illustrate the impact of the mutation probabilit, on the
error correcting performances of AutDAG we give the
figure 9 the simulation results corresponding tmeovalues
of pm. By analyzing this figure, the null and thg alues of
pm damage the performances; however the valuesah@8
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0.2 improve them. At BER=2.10the good choice of pc
allows to win about 2 dB.

To illustrate the impact of the threshold of relidp S on the
error correcting performances of AutDAG we give tire
figure 10 the simulation results correspondingams values
of S. By analyzing this figure, the increase ofarf 0 to 0.7
improves the performances; however the big value 1.
damages them. At BER=3.%the good choice of S allows to
win about 1.3 dB.

,,,,,,,,
—¥—pm=0.08
== pm=0.0

——pm=0.2

Figure9. Impact of the crossover probability on the
AutDAG performances

Figure 10. Impact of the threshold of reliability on the
AutDAG performances

The threshold of decoding T allows to stops AutDABen
this later converges to a codeword ¢ at Hammingaaée
from the received word h less than or equal to fie T
minimum distance of the QR(47,24) code is equdXand

its error correcting capability is then equal tar'ee figure 11
shows the impact of T on the error correcting penemnces
of AutDAG for this code. It shows that the valuésSTavhich
are less than or equal to the error correcting lmitipaof this
code give the same performances. However, the y&uwand

7 damage them. At BER=Fthe good choice of T between 0
and 7 allows to win about 2.5 dB.

The figure 12 presents a comparison between ther err
correcting performances of AutDAG and those of@lnase-

2 algorithm [4] applied to the BCH (63, 39) and @RR4)
codes. For the first code we have applied the i@has
technique on the hard decision permutation decoding
algorithm [10] with 1000 permutations. For the set@ode
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we used the hard decision Berlekamp-Massey dedndbe
chasing technique and only the 63 cyclic permutatio
AutDAG with 100 generations (z=63, Ng=100). Theufig
12 shows that AutDAG passes the Chase algorithtarins

The figure 13 presents a comparison between ther err
correcting performances of AutDAG and those of thegni
and DDGA Algorithms applied to the QR (71, 36) and
QR(31,16) codes by using the simulation paramefieen in

of error correcting performances. At BER=libe difference the table 2. This figure shows that the differebetween

between these decoders is about 0.8 dB.

-1

10

10°

Figure 11. Impact of the threshold of decoding on the
AutDAG performances

=%~ BCH(63,45)-AutDAG
—— BCH(63,45)-Chase 2
—O— BCH(63,45)-SDGA
=sk— QR(47,24)-AutDAG
+TQR(47,%4)-Chaie 2

e e e

Figure12. Comparison between the error correcting
performances of AutDAG and Chase-2 algorithms

- | =—@=— BCH(31,16)-AutDAG
] == BCH(31,16)-Maini

10 'zzz=z=zzzpszz==zcg=z==z==zz=< m====== Ezz====

> | == BCH(31,16)-DDGA
10 E E
10°L
o [ S . N \ ..
10"E g
10°L ]
E = SESE=S S S S sE S e S EE s aE =
T I | T
-~~~ ~"~"~"~“"™"a°~" "~~~ 7° [ [
10° | | I |
1 2 3 4 5
Eb/NO

Figure 13. Comparison between the error correcting
performances of AutDAG and those of the Maini aia@A
Algorithms.

these three decoders in terms of the error congcti
performances is negligible. Conversely the AutDAG
algorithm is less complex.

The figure 14 shows that AutDAG performs the sam¢ha
OSD® algorithm [3] for code QR (71,36,11) by using the
simulation parameters given in the table 2. Theplerity of
AUtDAG is less than that of the O8DAt BER=10° the
difference between AutDAG and O$Rlecoders is more
than 1 dB.

QR(71,36) code

BER

Eb/NO

Figure 14. Comparison between the error correcting
performances of AutDAG and the OSD algorithms Far t
QR(71,36) code.
The figure 15 shows that AutDAG reaches the error
correcting performances of the Maximum Likelihood
Decoding algorithm (MLD) for the Nordstrom-Robinson
code (NR) which is a binary nonlinear code [13]using the
simulation parameters given in the table 2.
NORDSTROM-ROBINSON code

e

= | == MLD
== AutDAG

10"

10°

BER

-4
10

SNR (dB)

Figure 15. Comparison between the error correcting
performances of AutDAG and the MLD algorithms fhet
Nordstrom-Robinson code.

For the simulation plotted in the figure 15, AutDA@Ges
very little number of generations and a small papah size,

so its complexity is less than that of the MLD.B¥R=4.10

® the difference between AutDAG and MLD decoders is
about 0.25 dB.
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The figure 16 shows that AutDAG performs bettemthiae
algorithm of Chana et al [7-8] for the QR (71,36, t&de by
using the simulation parameters given in the t&ble

In order to simplify the Maini decoder, the samepst
criterion is used, the simulation results are plbtin the
figure 18 and they are obtained by using the defaul

The figure 17 presents a comparison between ther erparameters at exception of those given in the thble

correcting performances of AutDAG and those of Bi&AD

algorithm[12] for the BCH (63, 30) code with 500

generations (z=376, Ng=500, Ni=600). The figure d¥ows

that AutDAG and PGAD have the same performances fi

this code. However, AutDAG is less complex than BGas
we are going to see in next section.

1
I e e e e e e e

10° I I I I I
SNR=Eb/NO

[
i
ol
N
N
o
w
w
ol
IN
IN
[
p
(&)

Figure 16. Comparison between the error correcting
performances of AutDAG and the Chana algorithmgHer
QR(71,36) code.

BCH(63,30,13)

107 —————

=3~ AutDAG
—&=pPGAD

N
1

10'3 ,,,,,,,,,,,,,,,,,,

]_0'4 ,,,,,,,,,,,,,,,,,,,,,,,,,

[N

10°

Figure17. Comparison between the error correcting
performances of AutDAG and PGAD for the BCH(63,30)
code.

4. A Simplified Maini Algorithm

The stop criterion of AutDAG, introduced in thetsixtep by
finding a codeword at Hamming distance less tharqual
to the threshold of decoding T, from the receiveatdvh,
allows reducing considerably the run time of thgoathm.

Table 4. Simulation parameters

Decoder Ni Ng | p Prm T| z S

ot

AUtDAG | 100 | 100 3'9 g.o 5300 0.6

Maini

simplified | 100 | 300 | %2 |90 |5/ | .
. 7 3

Version

Maini

Origial 100 | 300 09 100 | -
g 7 3

Version

The figure 18 shows that the difference betweenettier
correcting performances of the simplified versioh tbe
Maini algorithm (T=5) and those of the AutDAG algbm is
negligible. However, the original version of the ikia
algorithm performs better.

The efficiency of a decoder is measured in genkyathe
rate: performances to the time complexity. Thus, hage
computed the run time of these three decoding ilfgos
(AutDAG, Maini simplified and original versions) fd. 000
sequences. The simulation results are plottedarfigure 19
and they are obtained by using the default paraseie
exception of those given in the table 4. All thesaulations
are obtained by using a simple configuration maehintel
(R) Core ™ 2 Duo CPU T7300 @ 2.00 GHz, RAM: 2.00
Go.

QR(47,24,11)

,,,,,,,,,,,,,,,,,,

== Maini Original Version
== Maini Simplified Version

AutDAG
T T T
10° N e
S - - J--—=—F-=—=—F=-=-=-F===
~ 1 - -~ -~ +t-—-— -t - -

BER

10° » OO\, NI Lo--

10" S W ' NS ———

10°

1 15 2 25 3 35 a0 a5 5
SNR (dB)

Figure 18. Comparison between the error correcting

performances of AutDAG, Maini original version and

simplified version for the QR(47,24) code.

The figure 19 proves that the run time of AutDAGIléss
than the one of the simplified version of the Maitgorithm
which is less than the one of the original versidthen the
SNR value increases, the run time deceases at texcey
the original version of the Maini algorithm whichremains
constant.
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: : . : : : .

—k— AUtDAG
=% Maini Simplified Version
= Maini Original Version

Run Time (seconds)

2‘.5 é 3‘.5 4
SNR=Eb/NO
Figure 19. Comparison between the run time of AutDAG,
Maini original version and simplified version fdret

QR(47,24) code.

1 15 2 45 5

5. Study of the complexities

At any given stage, we maintain a few setd\of k arrays,
therefore the memory complexity of this algoritts®O(Ni.k).

The AutDAG algorithm has the same memory complexity

comparing to the Maini and DDGA algorithms.

In order to get the temporal complexity of our aitfon, we
will compute the complexity of each step:

Step 1 has temporal complexity ©fz). This complexity is
independent on the length and the dimension ottlie and
it is negligible comparing to the other steps.

Step 4 has temporal complexity d®(k’n) [2]. This
complexity depends on the random number generatoseé,
but the cost is negligible compared to that of p#teps. In
addition, the AutDAG algorithm can always use tlane
initial population which can be generated unifornapnd
stored in memory before the starting of AutDAG.

Step 6 has temporal complexity equal to the onenabding
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Table 5. Complexity of some decoding algorithms

. Type of
Decopllng binary Temporal complexity
algorithm
block code
. O(n.In(n)+K.n+k.n.(Ni+Ng.Nc)+
PGAD Linear Ng.Ni.In(Ni)+Ns.In(Ns)))
Cvelic Less than or equal to
Y O(Ni.Ng(log(n).log(n - K)))
Linear and Less than or equal to
AUtDAG | not cyclic O(Ni.Ng.k.n))
Svstematic Less than or equal to
y O(Ni.Ng.C(Encoding)))
Maini Cyclic or . .
algorithm linear O(Ni-Ng(k.n +log(Ni))
DDGA Ch’ﬁg;ror O(Ni.Ng(k.(n — k) + log(Ni)))
Cyclic or O(Z.(Ni.Ng(k.r* +k.n+
SDGA linear log(Ni))))
Chase2- Binary
HD block code O(2.C(HD))
Chana . 1
algorithm Cyclic O(?*k.log(n).(n+log(n-k)))
OSD of Cyclic or M1
order m linear o(n™)

The stop of AutDAG when the best codeword in theent
population has Hamming distance, from the receiwedd,
less than or equal to the threshold of decodinglibws
reducing considerably the temporal complexity oftPAG
by minimizing the number of the effectively genecdht
populations. In order to test the impact of 8t criterion
on the time complexity of AutDAG we have computee t
average number of the populations generated bydddsder
as function of SNR (f#Ng) and the threshold of decoding T.
This statistical study is made on 10000 receivegierces at
each SNR for the QR(47,24) code with the default
parameters and only 50 generations (Ng=50). Thadi@0
gives the obtained results; it shows that when @/@nthe

multiplied by the produdiiNg [2,11] which is the worst case SNR increase, the complexity of AutDAG decreases.tke

complexity.

code under study, the convenient value of T is ketu®

The polynomial encoding has complexity of ordepece}use this value reduces conside_rably the complend
O(|Og(n)|og(n_k)) [6_7] which is very reduced Comparing tolts Impacts on the error correcting performances ar

the matrix encoding which is of complexity @fk.n). The

AutDAG algorithm benefit from the simplicity of pgiomial

encoding, contrary to the DDGA, Maini and OSD desrsd
which require using the generator matrix for enngddven if
the code is cyclic.

The other steps contain some assignments and @ratiom

of coding as consequence their complexity is nédgég

The table 5 gives an upper bound of the AutDAG dewity

for cyclic, linear and random systematic block codegives
also the complexities of Maini algorithm, OSD, Chas

SDGA, Chana algorithm, DDGA, PGAD.
complexities measurement are more detailed resgéctin
[2-4, 5-6, 11-12]. In the table 5, C(HD), C(Encaghin Nc

and Ns denote respectively the complexity of thedha

decision decoder HD, the one of encoding, the dafigp
number and the processor number. The table 5 shuats
AutDAG is less complex than their presented conesti

These

negligible as it was viewed previously in the figutl. It is
important to note that the value 5 is equal to éneor
correcting capability of this code.

70

—@— T=0

Average number of generations
)

: ; 3 5 t
SNR=Eb/NO
Figure 20. Average number of generations used in AutDAG
as function of SNR and the threshold of decodirfgrithe
QR(47,24) code.
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reduces the complexity of decoding the codes dfi higes. [11]A. Azouaoui, M. Belkasmi and A. Farchane, “Efficien
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competitors in all cases. 503834. doi:10.1155/2012/503834

) ) [12]A. Ahmadi, F. El Bouanani, H. Ben-Azza, Y.
6. Conclusion and per spectives Benghabrit, “A Novel Decoder Based on Parallel

Genetic Algorithms for Linear Block Codes,”
International Journal of communications, Networkd an
System  Sciences, N° 1, Vol 6, 2012.

In this paper we have used genetic algorithms @moding
systematic block codes. The simulations appliedsome
BCH and QR codes show that the proposed algorighami - -
efficient soft-decision decoding algorithm. In suemy the doi:10.4236/ijcns.2013.61008
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