
201
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 5, No. 3, December 2013

Decoding of Block Codes by using Genetic
Algorithms and Permutations Set

Saïd Nouh1, Idriss Chana1 and Mostafa Belkasmi1

 1 Department of Communication Networks, National School of Computer Science
and Systems Analysis (ENSIAS), Mohammed V-Souissi University, Rabat, Morocco

nouh_ensias@yahoo.fr, idrisschana@gmail.com, m.belkasmi@um5s.net.ma

Abstract: Recently Genetic algorithms are successfully used for
decoding some classes of error correcting codes. For decoding a
linear block code C, these genetic algorithms computes a
permutation π of the code generator matrix depending of the
received word. Our main contribution in this paper is to choose the
permutation π from the automorphism group of C. This choice
allows reducing the complexity of re-encoding in the decoding
steps when C is cyclic and also to generalize the proposed genetic
decoding algorithm for binary nonlinear block codes like the
Kerdock codes. In this paper, an efficient stop criterion is proposed
and it reduces considerably the decoding complexity of our
algorithm. The simulation results of the proposed decoder, over the
AWGN channel, show that it reaches the error correcting
performances of its competitors. The study of the complexity shows
that the proposed decoder is less complex than its competitors that
are based also on genetic algorithms.

Keywords: Genetic algorithms, Error correcting block codes,
Cyclic codes, Automorphism group, Soft decision decoding
algorithms.

1. Introduction

The telecommunication and storage systems are used, more
and more, to guarantee transmission and memorization of
several types of data such as texts, pictures, videos and voice.
The reliability of these data, notably on channels that are
subject to noise, represents a big worry for users. An efficient
solution of this problem is based on the detection and the
correction of errors, by the channel coding technique. In
effect this technique consists in adding redundancy in data to
protect, by using error correcting codes which enable
reconstruction of the original data.
The decoding of error correcting codes is in general a NP-
Hard problem; the quality of a decoder depends on the
industrial requests. In certain cases, the main criterion is the
realization of good performances in terms of the BER (bit
error rate), independently on the temporal complexity. In
other cases, some errors are tolerated, but the reduction of the
temporal complexity is imposed.
There are two classes of error correcting codes:
convolutional codes and block codes. The class of block
codes contains two subclasses: nonlinear codes and linear
codes. The principle of encoding by using a block code
C(n,k) is as follows: the initial message is cut out into blocks
of length k. The length of the redundancy is n-k, thus the
length of transmitted blocks is n.
There are two categories of decoding algorithms: Hard
decision and Soft decision algorithms. Hard decision
algorithms work on the binary form of the received
information. In contrast, soft decision algorithms work

directly on the received symbols [1]. The decoding category
depends on the industrial requests and the communication
channel. When the channel allows measuring the reliabilities
(float symbols) of the sequence r to decode, the soft decision
decoders working on these reliabilities allow to win generally
about 2 dB more than the hard decision decoders working on
the binary form of r can do.
Many decoding algorithms benefit from the proportionality
between the symbols reliabilities and the probability that
these later are correct [2-7]. For the binary channels, the new
majority voting procedure introduced by Nouh et al [8]
allows to compute these measures and to enhance the
decoder performane. The decoder of Chase [4] tries to find
some errors in the least reliable symbols in a first step. Then
it uses an auxiliary hard decision decoder like the BMA
algorithm of Berlekamp-Massey [9] or the permutation
decoding algorithm of MacWilliams [10] for finding the
complementary error.
Recently Genetic algorithms are successfully used for
decoding linear block codes [2,5,11,12]. For decoding a
linear code C1 of generator matrix G1, for non binary
channels, the decoder of Maini et al [2] starts by finding a
generator matrix G2 of another linear code C2 equivalent to
C1 and the permutation π which binds these two codes. G2 is
obtained by applying the Gauss operations on G1 after sorting
the received sequence r by reliabilities. This treatment allows
reducing the number of errors in the information part of the
permuted sequence π(r). In a second step, these decoding
algorithms try to find the closest codeword to π(r) by re-
encoding a certain number of information vectors. The
second step requires encoding by a generator matrix, which is
more complex when comparing with encoding by the
polynomial generator, when the code C1 is cyclic, and isn’t
available when this code is nonlinear. The SDGA algorithm
of Azouaoui et al [5] applies the Chasing technique over
information set decoder based on genetic algorithms. Unlike
Maini decoder [2], which works on the generator matrix, the
decoder DDGA of Azouaoui et al [11] works on the parity
check matrix; this allows reducing the complexity of their
genetic algorithm for codes of high rate. However, the
complexities of both decoders are the same for the codes of
rate about 0.5, like the Quadratic Residue codes (QR). The
PGAD algorithm [12], uses many genetic algorithms working
in parallel for decoding linear block codes.
Unlike the genetic decoding algorithms of Maini et al and the
DDGA algorithm, we propose in this paper, a new genetic
algorithm which uses the available encoding procedure and
without necessity to pass to any equivalent code. The
proposed decoder uses a small part of the automorphism

202
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 5, No. 3, December 2013

group, called a permutation set, for moving, at most, the least
reliable symbols in the redundancy part. This choice allows
to reduce the complexity of re-encoding when the code is
cyclic, and to also generalize the proposed genetic decoding
algorithm for binary nonlinear block codes like the Kerdock
codes [13]. In this algorithm, a new metric is used and it
reduces considerably the decoding complexity.
The automorphism group of the quadratic residue codes
contains the PSL2 group given in [14]. The one of the BCH
codes is discussed in the work of Berger and Charpin [15].
One of the most important works that use the part of the
automorphism group to decode cyclic codes is the algorithm
of Chana et al [6-7]. These algorithms use some cyclic
permutations and the Chasing technique on the least reliable
symbols remained in the information part of some sequences.
Another work that uses this group is the famous permutation
decoding algorithm of MacWilliams [10], for binary
channels.
The remainder of this paper is structured as follows. In the
section 2, we present the proposed genetic algorithm for
decoding systematic block codes (AutDAG). In the section 3
we give some simulation results of AutDAG, and we make a
comparison with other decoders. In the section 4, we present
a simplification of the Maini algorithm. In the section 5, we
study the complexities of some decoders. Finally, a
conclusion and a possible future direction of this research are
outlined in Section 6.

2. The Proposed Decoder

 A genetic algorithm (GA) is a heuristic search algorithm
premised on the natural selection and genetic [16-18].These
algorithms are successfully used for decoding linear codes [2,
5, 11, 12, 19]. They are also used for finding the weight
enumerator of linear block codes [20]. The genetic
algorithms have the possibility of working in parallel; thus,
they are implemented in parallel for decoding linear block
codes in the work of Ahmadi et al [12]. Genetic algorithms
are used in Search of good Tailbiting Codes [21], they are
from the family of evolutionary algorithms which are recently
applied to the synthesis of unequally spaced antenna arrays
[22].
Before giving the AutDAG steps we give the following
definitions:

Definition 1: We call the information reliability length of a
sequence r∈IRn relating to a threshold S and we note
IRL(r,S), the number of the symbols ri having reliabilities
more than S and which are in the information part of r :
IRL(r,S) = cardinal (i∈{1,2,…,k: |ri|≥ S}).
In practice IRL(r,S) is computed as follows:

∑
=

k

i
iV

1

=S)IRL(r,
 ,







<=

≥=

SrifV

SrifV

ii

ii

0

1

Definition 2: Let be (1) (2) (3) ()L { , , ,..., }zσ σ σ σ= a list

of z automorphisms of a block code C (a permutation set).
We call a maximum reliable automorphism related to a
sequence r∈IRn and a threshold S, over L and we note[],r S

Lσ ,

the permutation σ
(i) such that

() (): ((,)) ((,))i jj z IRL r S IRL r Sσ σ∀ ≤ ≥

The AutDAG algorithm works as follows:

Inputs:

- A permutation set L of z automorphisms
- The sequence r to decode.
- The systematic encoding procedure Encod()
- The population size Ni
- The maximum number of generations Ng
- The crossover probability pc

- The mutation probability pm
- The threshold of reliability S
- The threshold of decoding T

Outputs: the decoded word c.

Begin

Step 1. Find a maximum reliable automorphism σ related to

r and S over L
Step 2. Compute h, the hard version of the sequence r

Step 3. h←σ(h) ; r←σ(r);
Step 4. Generate an initial population, of Ni individuals; the

first individual is the information part of h and the
others are a binary vectors of length k uniformly
generated.

Step 5. N← 1; continue ← true; c←the codeword
corresponding to the information part of h.

Step 6. While(N≤ Ng and continue=true) do:
Sub Step 1. Compute the fitness of each individual which

is equal to the Euclidean distance between the
encoded individual, obtained by applying the function
Encod(), and the sequence r.

Sub Step 2. Copy the best individual (of small fitness) in
the intermediate population.

Sub Step 3. For i from 2 to Ni do:
- Randomly select two individuals: p1 and p2.
- Cross p1 and p2 to obtain children ch according to
the crossover probability pc.

- If (fitness(c)≤fitness(ch)) then mute the individual
ch according to the mutation probability pm

- Insert the individual ch in the intermediate
population.

Sub Step 4. c←the best individual in the current
population

Sub Step 5. if the Hamming distance Hd(c,r) between c

and h is less than or equal to T then continue←false.

Step 7. c←σ-1(c)

End.

203
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 5, No. 3, December 2013

Figure1. AutDAG diagram

The figure 1 presents a diagram of AutDAG. In this genetic
algorithm we propose to use the same crossover given by
Maini et al [2].
All error correcting codes have an automorphism group,
therefore the permutation set L exists for linear and nonlinear
codes. Contrary to the Maini and DDGA algorithms, the
AutDAG algorithm doesn't contains any instruction requiring
the property of code linearity. Thus it can be generalized for
non linear block codes like the Kerdock codes [13].

3. Simulation results

In order to show the error correcting performances of
AutDAG, we do intensive simulations. With the exception of
the cases where the simulation parameters are explicitly
mentioned, the simulations where made with default
parameters outlined in Table 1. The performances are given

in terms of BER (bit error rate) as a function of the signal to
noise ratio SNR =Eb/N0(the energy per bit to noise power
spectral density ratio). The simulation will be presented for
Quadratic-Residue codes (QR), Bose, Ray-Chaudhuri and
Hocquenghem codes (BCH) and the Nordstrom-Robinson
code (NR).

Table 1. Default simulation parameters of AutDAG

Ni 300 T 0

Ng 50 Default code QR(47,24)

pc 0.97 Channel AWGN

pm 0.08 Modulation BPSK

z 500 Minimum residual errors 100

S 0.7 Minimum transmitted blocks 1000

Table 2. Simulation parameters for NR and some QR codes
with T=0

Code Ni Ng z T

QR(31,16) 500 100 200 0

QR(41,21) 600 100 400 0

QR(47,24) 500 100 500 0

QR(71,36) 1300 100 1000 0

NORDSTROM-
ROBINSON

40 3 100 0

The figure 2 shows the AutDAG performances, without
threshold of decoding, for the QR codes of length 31, 41, 47
and 71 obtained by using the simulation parameters
illustrated in the table 2.

1 2 3 4 5 6
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

Eb/N0

B
E

R

QR(31,16)
QR(41,21)
QR(47,24)
QR(71,36)

Figure 2. Impact of the code length on the AutDAG

performances for T=0

The figure 3 shows the AutDAG performances, with a
threshold of decoding, for the QR codes of length 31, 41, 47
and 71 obtained by using the simulation parameters
illustrated in the table 3.
The figures 2 and 3 show an improvement of performances,
when the code length is increased from 31 to 71.

Selection

Crossover

Generation of the initial
population, N=1

Hd(c,r) >T
and N ≤Ng
 Yes No

Mutation

σ-1(c)

r, L, S, T, Ng,
Ni, pc , pm

h, σ

Computation
of fitness

Store c, the lowest
codeword to σ(h) in terms

of Euclidean distance
N=N+1

204
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 5, No. 3, December 2013

Table 3. Simulation parameters for some QR codes with T≠0

Code Ni Ng z T

QR(41,21) 500 100 600 4

QR(47,24) 300 80 400 5

QR(71,36) 1000 100 1000 5

1 1.5 2 2.5 3 3.5 4 4.5 5
10

-5

10
-4

10
-3

10
-2

10
-1

Eb/N0

B
E

R

QR(41,21)
QR(47,24)
QR(71,36)

Figure 3. Impact of the code length on the AutDAG

performances for T=error correcting capability

The main difference between the simulation parameters given
in tables 2 and 3 is the value of the threshold of decoding T
which is equal to 0 for the simulation results plotted in the
figure 2 and it is equal to the error correcting capability for
those given in the figure 3. As we will show in the next
section, the use of a big value of T reduces considerably the
time complexity of AutDAG. The comparison between the
simulation results plotted in the figures 2 and 3 proves that
the stop criterion given by T is efficient in the terms of
performances, thus the complexity of AutDAG is reduced
without touching a lot the performances.
To show the effect of the permutations number z on the error
correcting performances of AutDAG applied to the
QR(47,24) code, we give in the figure 4 the results obtained
by varying z from 1 to 5000 . The use of 100 permutations
allows to win about 1 dB at BER=3.10-5. The gain becomes
negligible when z passes 100.
To show the impact of the population size Ni on the error
correcting performances of AutDAG applied to the
QR(47,24) code, we elucidate in the figure 5 the results
obtained by varying Ni from 1 to 500 . The use of 200
individuals allows to win about 4 dB at BER=3.10-5
comparing to populations with only ten individuals. The gain
becomes negligible when Ni passes 200.

1 2 3 4 5 6
10

-5

10
-4

10
-3

10
-2

10
-1

Eb/N0

B
E

R

z=5000
z=1000
z=500
z=100
z=1

Figure 4. Impact of the permutations number on the

AutDAG performances

1 2 3 4 5 6 7 8 9 10
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/N0

B
E

R

Ni=500
Ni=350
Ni=200
Ni=100
Ni=10

Figure 5. Impact of the population size on the AutDAG

performances

1 2 3 4 5 6 7
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/N0

B
E

R

Ng=100
Ng=20
Ng=10
Ng=3

Figure 6. Impact of the number of generations on the

AutDAG performances

205
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 5, No. 3, December 2013

To show the impact of the generations number Ng on the
error correcting performances of AutDAG, applied to the
QR(47,24) code, we illustrate in the figure 6 the results
obtained by varying Ng from 1 to 500 . The use of 20
generation allows to win about 2 dB at BER=3.10-5

comparing to AutDAG with only 3 generations. The gain
becomes negligible when Ng passes 20.
To show the impact of the crossover probability pc on the
error correcting performances of AutDAG, we illustrate in
the figure 7 the simulation results obtained by varying pc
from 0.05 to 0.97. This figure demonstrates that small values
of pc damage the performances and their big values improve
them. At BER=2.10-5 the good choice of pc allows to win
about 1dB.
To show the impact of the crossover type on the error
correcting performances of AutDAG we illustrate in the
figure 8 the simulation results obtained by the classical
crossover in one and two point, the uniform crossover and
the proposed crossover. The proposed crossover based on the
channel reliabilities improves considerably the performances
of the proposed decoder.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
10

-5

10
-4

10
-3

10
-2

10
-1

Eb/N0

B
E

R

pc=0.97
pc=0.8
pc=0.5
pc=0.3
pc=0.05

Figure 7. Impact of the crossover probability on the

AutDAG performances

2 3 4 5 6 7 8 9 10
10

-5

10
-4

10
-3

10
-2

10
-1

Eb/N0

B
E
R

Proposed crossover
1 point crossover
2 points crossover
Uniform crossover

Figure 8. Impact of the crossover type on the AutDAG

performances
To illustrate the impact of the mutation probability pm on the
error correcting performances of AutDAG we give in the
figure 9 the simulation results corresponding to some values
of pm. By analyzing this figure, the null and the big values of
pm damage the performances; however the values 0.08 and

0.2 improve them. At BER=2.10-5 the good choice of pc
allows to win about 2 dB.
To illustrate the impact of the threshold of reliability S on the
error correcting performances of AutDAG we give in the
figure 10 the simulation results corresponding to some values
of S. By analyzing this figure, the increase of s from 0 to 0.7
improves the performances; however the big value 1.1
damages them. At BER=3.10-5 the good choice of S allows to
win about 1.3 dB.

1 2 3 4 5 6 7
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

Eb/N0

B
E

R

pm=0.08
pm=0.0
pm=0.2
pm=0.5

Figure 9. Impact of the crossover probability on the

AutDAG performances

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
10

-5

10
-4

10
-3

10
-2

10
-1

Eb/N0

B
E

R

s=0
s=0.1
s=0.3
s=0.5
s=0.7
s=1.1

Figure 10. Impact of the threshold of reliability on the

AutDAG performances

The threshold of decoding T allows to stops AutDAG when
this later converges to a codeword c at Hamming distance
from the received word h less than or equal to T. The
minimum distance of the QR(47,24) code is equal to 11 and
its error correcting capability is then equal to 5. The figure 11
shows the impact of T on the error correcting performances
of AutDAG for this code. It shows that the values of T which
are less than or equal to the error correcting capability of this
code give the same performances. However, the values 6 and
7 damage them. At BER=10-5 the good choice of T between 0
and 7 allows to win about 2.5 dB.
The figure 12 presents a comparison between the error
correcting performances of AutDAG and those of the Chase-
2 algorithm [4] applied to the BCH (63, 39) and QR(47,24)
codes. For the first code we have applied the Chasing
technique on the hard decision permutation decoding
algorithm [10] with 1000 permutations. For the second code

206
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 5, No. 3, December 2013

we used the hard decision Berlekamp-Massey decoder in the
chasing technique and only the 63 cyclic permutation in
AutDAG with 100 generations (z=63, Ng=100). The figure
12 shows that AutDAG passes the Chase algorithm in terms
of error correcting performances. At BER=10-5 the difference
between these decoders is about 0.8 dB.

1 2 3 4 5 6 7
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

Eb/N0

B
E

R

T=0
T=1
T=2
T=3
T=4
T=5
T=6
T=7

Figure 11. Impact of the threshold of decoding on the

AutDAG performances

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/N0

B
E

R

BCH(63,45)-AutDAG
BCH(63,45)-Chase 2
BCH(63,45)-SDGA
QR(47,24)-AutDAG
QR(47,24)-Chase 2

Figure 12. Comparison between the error correcting

performances of AutDAG and Chase-2 algorithms

1 2 3 4 5 6
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

Eb/N0

B
E
R

BCH(31,16)-AutDAG
BCH(31,16)-Maini
BCH(31,16)-DDGA
QR(71,36)-AutDAG
QR(71,36)-Maini
QR(71,36)-DDGA

Figure 13. Comparison between the error correcting

performances of AutDAG and those of the Maini and DDGA
Algorithms.

The figure 13 presents a comparison between the error
correcting performances of AutDAG and those of the Maini
and DDGA Algorithms applied to the QR (71, 36) and
QR(31,16) codes by using the simulation parameters given in
the table 2. This figure shows that the difference between
these three decoders in terms of the error correcting
performances is negligible. Conversely the AutDAG
algorithm is less complex.
The figure 14 shows that AutDAG performs the same as the
OSD3 algorithm [3] for code QR (71,36,11) by using the
simulation parameters given in the table 2. The complexity of
AutDAG is less than that of the OSD3. At BER=10-5 the
difference between AutDAG and OSD1 decoders is more
than 1 dB.

1 2 3 4 5 6
10

-5

10
-4

10
-3

10
-2

10
-1

Eb/N0

B
E

R

QR(71,36) code

AutDAG
OSD 1
OSD 3

Figure 14. Comparison between the error correcting

performances of AutDAG and the OSD algorithms for the
QR(71,36) code.

The figure 15 shows that AutDAG reaches the error
correcting performances of the Maximum Likelihood
Decoding algorithm (MLD) for the Nordstrom-Robinson
code (NR) which is a binary nonlinear code [13] by using the
simulation parameters given in the table 2.

1 2 3 4 5 6 7
10

-5

10
-4

10
-3

10
-2

10
-1

SNR (dB)

B
E

R

NORDSTROM-ROBINSON code

MLD
AutDAG

Figure 15. Comparison between the error correcting

performances of AutDAG and the MLD algorithms for the
Nordstrom-Robinson code.

For the simulation plotted in the figure 15, AutDAG uses
very little number of generations and a small population size,
so its complexity is less than that of the MLD. At BER=4.10-
5 the difference between AutDAG and MLD decoders is
about 0.25 dB.

207
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 5, No. 3, December 2013

The figure 16 shows that AutDAG performs better than the
algorithm of Chana et al [7-8] for the QR (71,36,11) code by
using the simulation parameters given in the table 3.
The figure 17 presents a comparison between the error
correcting performances of AutDAG and those of the PGAD
algorithm[12] for the BCH (63, 30) code with 500
generations (z=376, Ng=500, Ni=600). The figure 17 shows
that AutDAG and PGAD have the same performances for
this code. However, AutDAG is less complex than PGAD as
we are going to see in next section.

1 1.5 2 2.5 3 3.5 4 4.5 5
10

-5

10
-4

10
-3

10
-2

10
-1

SNR=Eb/N0

B
E

R

AutDAG
Chana algorithm

Figure 16. Comparison between the error correcting

performances of AutDAG and the Chana algorithms for the
QR(71,36) code.

2 2.5 3 3.5 4
10

-5

10
-4

10
-3

10
-2

Eb/N0

B
E

R

BCH(63,30,13)

AutDAG
PGAD

Figure 17. Comparison between the error correcting

performances of AutDAG and PGAD for the BCH(63,30)
code.

4. A Simplified Maini Algorithm

The stop criterion of AutDAG, introduced in the sixth step by
finding a codeword at Hamming distance less than or equal
to the threshold of decoding T, from the received word h,
allows reducing considerably the run time of this algorithm.

In order to simplify the Maini decoder, the same stop
criterion is used, the simulation results are plotted in the
figure 18 and they are obtained by using the default
parameters at exception of those given in the table 4.

Table 4. Simulation parameters

Decoder Ni Ng pc pm T z S

AutDAG 100 100
0.9
7

0.0
8

5 300 0.6

Maini
Simplified
 Version

100 300
0.9
7

0.0
3

5 - -

Maini
 Origial
Version

100 300
0.9
7

0.0
3

- - -

The figure 18 shows that the difference between the error
correcting performances of the simplified version of the
Maini algorithm (T=5) and those of the AutDAG algorithm is
negligible. However, the original version of the Maini
algorithm performs better.
The efficiency of a decoder is measured in general by the
rate: performances to the time complexity. Thus, we have
computed the run time of these three decoding algorithms
(AutDAG, Maini simplified and original versions) for 1000
sequences. The simulation results are plotted in the figure 19
and they are obtained by using the default parameters at
exception of those given in the table 4. All these simulations
are obtained by using a simple configuration machine: Intel
(R) Core ™ 2 Duo CPU T7300 @ 2.00 GHz, RAM: 2.00
Go.

1 1.5 2 2.5 3 3.5 4 4.5 5
10

-5

10
-4

10
-3

10
-2

10
-1

SNR (dB)

B
E

R

QR(47,24,11)

Maini Original Version
Maini Simplified Version
AutDAG

Figure 18. Comparison between the error correcting
performances of AutDAG, Maini original version and

simplified version for the QR(47,24) code.

The figure 19 proves that the run time of AutDAG is less
than the one of the simplified version of the Maini algorithm
which is less than the one of the original version. When the
SNR value increases, the run time deceases at exception of
the original version of the Maini algorithm which it remains
constant.

208
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 5, No. 3, December 2013

1 1.5 2 2.5 3 3.5 4 4.5 5
0

100

200

300

400

500

600

700

800

900

SNR=Eb/N0

R
u

n
 T

im
e

(s
ec

o
n

d
s)

AutDAG
Maini Simplified Version
Maini Original Version

Figure 19. Comparison between the run time of AutDAG,

Maini original version and simplified version for the
QR(47,24) code.

5. Study of the complexities

At any given stage, we maintain a few sets of Ni * k arrays,
therefore the memory complexity of this algorithm is O(Ni.k).
The AutDAG algorithm has the same memory complexity
comparing to the Maini and DDGA algorithms.
In order to get the temporal complexity of our algorithm, we
will compute the complexity of each step:
Step 1 has temporal complexity of O(z). This complexity is
independent on the length and the dimension of the code and
it is negligible comparing to the other steps.
Step 4 has temporal complexity of O(k2n) [2]. This
complexity depends on the random number generator in use,
but the cost is negligible compared to that of other steps. In
addition, the AutDAG algorithm can always use the same
initial population which can be generated uniformly and
stored in memory before the starting of AutDAG.
Step 6 has temporal complexity equal to the one of encoding
multiplied by the product NiNg [2,11] which is the worst case
complexity.
The polynomial encoding has complexity of order
O(log(n).log(n-k)) [6-7] which is very reduced comparing to
the matrix encoding which is of complexity of O(k.n). The
AutDAG algorithm benefit from the simplicity of polynomial
encoding, contrary to the DDGA, Maini and OSD decoders
which require using the generator matrix for encoding even if
the code is cyclic.
The other steps contain some assignments and one operation
of coding as consequence their complexity is negligible.
The table 5 gives an upper bound of the AutDAG complexity
for cyclic, linear and random systematic block codes. It gives
also the complexities of Maini algorithm, OSD, Chase-2,
SDGA, Chana algorithm, DDGA, PGAD. These
complexities measurement are more detailed respectively in
[2-4, 5-6, 11-12]. In the table 5, C(HD), C(Encoding), Nc
and Ns denote respectively the complexity of the hard
decision decoder HD, the one of encoding, the offspring
number and the processor number. The table 5 shows that
AutDAG is less complex than their presented competitors.

Table 5. Complexity of some decoding algorithms

Decoding
algorithm

Type of
binary

block code
Temporal complexity

PGAD Linear
O(n.ln(n)+k2.n+k.n.(Ni+Ng.Nc)+

 Ng.Ni.ln(Ni)+Ns.ln(Ns)))

AutDAG

Cyclic
Less than or equal to

O(Ni.Ng(log(n).log(n − k)))
Linear and
not cyclic

Less than or equal to
O(Ni.Ng.k.n))

Systematic
Less than or equal to

O(Ni.Ng.C(Encoding)))

Maini
algorithm

Cyclic or
linear

O(Ni.Ng(k.n +log(Ni)))

DDGA
Cyclic or

linear
O(Ni.Ng(k.(n − k) + log(Ni)))

SDGA
Cyclic or

linear
O(2t.(Ni.Ng(k.n2 +k.n+

log(Ni))))

Chase2-
HD

Binary

block code

O(2t.C(HD))

Chana
 algorithm

Cyclic O(2p+1.k.log(n).(n+log(n-k)))

OSD of
order m

Cyclic or
linear

O(n m+1)

The stop of AutDAG when the best codeword in the current
population has Hamming distance, from the received word,
less than or equal to the threshold of decoding T, allows
reducing considerably the temporal complexity of AutDAG
by minimizing the number of the effectively generated
populations. In order to test the impact of this stop criterion
on the time complexity of AutDAG we have computed the
average number of the populations generated by this decoder
as function of SNR (Eb/N0) and the threshold of decoding T.
This statistical study is made on 10000 received sequences at
each SNR for the QR(47,24) code with the default
parameters and only 50 generations (Ng=50). The figure 20
gives the obtained results; it shows that when T and/or the
SNR increase, the complexity of AutDAG decreases. For the
code under study, the convenient value of T is equal to 5
because this value reduces considerably the complexity and
its impacts on the error correcting performances are
negligible as it was viewed previously in the figure 11. It is
important to note that the value 5 is equal to the error
correcting capability of this code.

1 2 3 4 5 6
0

10

20

30

40

50

60

70

SNR=Eb/N0

A
ve

ra
g
e

n
u
m

b
er

 o
f
g
en

er
at

io
n
s

T=0
T=2
T=5
T=7

Figure 20. Average number of generations used in AutDAG
as function of SNR and the threshold of decoding T for the

QR(47,24) code.

209
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 5, No. 3, December 2013

Comparing to the Maini decoder, the DDGA algorithm
reduces the complexity of decoding the codes of high rates.
For the codes of rate about 0.5 like the QR codes the DDGA
and Maini decoders have the same complexity, however the
AutDAG algorithm is less complex than these two
competitors in all cases.

6. Conclusion and perspectives

In this paper we have used genetic algorithms for decoding
systematic block codes. The simulations applied on some
BCH and QR codes show that the proposed algorithm is an
efficient soft-decision decoding algorithm. In summary the
proposed decoder has two main advantages comparing to
their competitors OSD, Maini and DDGA algorithms. The
fist characteristic of AutDAG is its possibility to decode
some binary non linear code like the Nordstrom-Robinson
code. The second characteristic is its low complexity
obtained by the threshold of decoding and also by the
polynomial encoding in the case of cyclic codes. The
obtained results will open new horizons for the artificial
intelligence algorithms in the coding theory field.

References

[1] G. C. Clarck, J.B Cain, “Error-Correction Coding for
Digital Communication”, New York Plenum. 1981.

[2] H. Maini, K. Mehrotra, C. Mohan and S. Ranka, “Soft
decision decoding of linear block codes using genetic
algorithms,” IEEE International Symposium on
Information Theory, p. 397, Trondheim , Norway. 1994.

[3] M.P.C Fossorier and S. Lin, "Soft decision decoding of
linear block codes based on ordered statistics", IEEE
Trans. information theory Vol. 41, pp. 1379-1396.
1995.

[4] D. Chase, “A class of algorithms for decoding block
codes with channel measurement information,” IEEE
Transaction on Information Theory, vol IT-18, pp 170-
182. 1972.

[5] A. Azouaoui, I. Chana and M. Belkasmi “Efficient
Information Set Decoding Based on Genetic
Algorithms,” International Journal of Communications,
Network and System Sciences, Vol. 5, No. 7, pp. 423-
429, 2012.

[6] I. Chana, H. Allouch and M. Belkasmi, “An efficient
new soft-decision decoding algorithm for binary cyclic
codes”, IEEE International Conference On Multimedia
Computing and Systems (ICMCS’11) proceedings , pp
823-828, Ouarzazate, Morocco, April 2011.

[7] I. Chana, H. Allouch and M. Belkasmi, “New Turbo
Decoding of Product Codes Based on Cyclic Codes”,
Journal of Telecommunications, volume 11, issue 2, pp
39-48, December 2011.

[8] S. Nouh, A. El khatabi and M. Belkasmi, “Majority
voting procedure allowing soft decision decoding of
linear block codes on binary channels”. International
Journal of Communications, Network and System
Sciences, N° 9, Vol 5. 2012.

[9] J. L. Massey “Shift-register synthesis and BCH
decoding” IEEE Transaction on Information Theory,
IT-15 Vol.1, pp. 122–127. 1969.

[10] F. J. MacWilliams “Permutation decoding of systematic

codes”. Bell System Tech. J., 43:485–505. 1964.
[11] A. Azouaoui, M. Belkasmi and A. Farchane, “Efficient

Dual Domain Decoding of Linear Block Codes Using
Genetic Algorithms,” Journal of Electrical and
Computer Engineering, Vol. 2012, 2012, Article ID:
503834. doi:10.1155/2012/503834

[12] A. Ahmadi, F. El Bouanani, H. Ben-Azza, Y.
Benghabrit, “A Novel Decoder Based on Parallel
Genetic Algorithms for Linear Block Codes,”
International Journal of communications, Network and
System Sciences, N° 1, Vol 6, 2012.
doi:10.4236/ijcns.2013.61008

[13] R. Hammons, P.V. Kumar, A.R. Calderbank, N.J.A
Sloane, and P. Solé, “Kerdock, Preparata, Goethals and
Other Codes are linear over Z4”. IEEE Transactions on
information theory, 40/301-319. 1994.

[14] F.J. MacWilliams and N.J.A Sloane, “The theory of
Error-Correcting Codes,” Publishing Company, North-
Holland. 1977.

[15] T. P. Berger and P. Charpin, “The automorphism groups
of BCH codes and of some affine-invariant codes over
extension fields”, Design, Codes and Cryptography.
Vol. 18, Issue 1-3, pp 29-53, 1999.

[16] J. McCall, “Genetic Algorithms for Modelling and
Optimization”, J of Computational and Applied Math,
Vol. 184, No 1, pp. 205 – 222. 2005.

[17] D. E. Goldberg, “Genetic Algorithms in Search,
Optimization and Machine Learning Reading”, MA
Addison Wesley. 1989.

[18] A. M. S Zalzala, and P. J. Fleming, "Genetic Algorithms
in Engineering Systems," Control engineering Series 55,
Institution of Electrical Engineers. London. 1999.

[19] A. G. Scandura, A.L. Daipra, L. Arnone, L. Passoni, J.C.
Moreira, "A Genetic Algorithm Based Decoder for Low
Density Parity Check Codes" Latin American Applied
Research, N° 3, Vol. 36, pp. 169-172. 2006.

[20] S. Nouh and M. Belkasmi, “Genetic algorithms for
finding the weight enumerator of binary linear block
codes”, International Journal of Applied Research on
Information Technology and Computing IJARITAC
N°3, Vol 2, 2011.

[21] P. Remlein, D. Szłapka, “Genetic Algorithm used in
Search of good Tailbiting Codes”, International Journal
of Communication Networks and Information Security
IJCNIS, Vol. 1, No. 3, December 2009.

[22] C. Lin, A. Qing and Q. Feng1, “Synthesis of unequally
Spaced Antenna Arrays by a new Differential
Evolutionary Algorithm”, International Journal of
Communication Networks and Information Security
(IJCNIS). Vol. 1, No. 1, 2009.

