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Abstract 

Corridor implied volatility introduced in Carr and Madan (1998) and recently implemented in Andersen and 

Bondarenko (2007) is obtained from model-free implied volatility by truncating the integration domain between two 

barriers. Corridor implied volatility is implicitly linked with the concept that the tails of the risk-neutral distribution are 

estimated with less precision than central values, due to the lack of liquid options for very high and very low strikes. 

However, there is no golden choice for the barriers levels’, which will probably change depending on the underlying  

asset risk neutral distribution. The latter feature renders its forecasting performance mainly an empirical question. 

The aim of the paper is twofold. First we investigate the forecasting performance of corridor implied volatility by 

choosing different corridors with symmetric and asymmetric cuts, and compare the results with the preliminary findings 

in Muzzioli (2010b). Second, we examine the nature of the variance risk premium and shed light on the information 

content of different parts of the risk neutral distribution of the stock price, by using a model-independent approach 

based on corridor measures. To this end we compute both realised and model-free variance measures which accounts 

for drops versus increases in the underlying asset price. The comparison is pursued by using intra-daily synchronous 

prices between the options and the underlying asset. 
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1. Introduction 

Volatility modelling and forecasting is essential for asset pricing models, option pricing and 

hedging and risk management. In  order to measure and forecast volatility we can resort either on 

the past history of the underlying asset (historical volatility) or on the information embedded in 

option prices which reflect the investors’ opinion about the future underlying asset evolution 

(implied volatility). Focusing on implied volatility, how to extract the relevant information from the 

cross-section of option prices is still an open debate.  

Black-Scholes implied volatility is a model dependent forecast, which relies on the strict 

assumptions of the Black-Scholes option pricing model about the asset price evolution (Brownian 

motion) and the constancy of the volatility parameter. Several papers have empirically shown the 

discrepancy between the assumptions of the model and the reality of financial markets (volatility 

varies with the strike price of the option, the time to maturity and the option type). Model free 

implied volatility, introduced by Britten-Jones and Neuberger (2000), represents a valid alternative 

to Black-Scholes implied volatility, since it does not rely on a particular option pricing model, being 

consistent with several underlying asset price dynamics. A drawback of model free implied 

volatility is that it requires a continuum of option prices in strikes, ranging from zero to infinity, 

assumption which is not fulfilled in the reality of financial markets.  Corridor implied volatility 

introduced in Carr and Madan (1998), and recently implemented in Andersen and Bondarenko 

(2007), is obtained from model-free implied volatility by truncating the integration domain between 

two barriers. Corridor implied volatility is implicitly linked with the concept that the tails of the 

risk-neutral distribution are estimated with less precision than central values, due to the lack of 

liquid options for very high and very low strikes. For example, the computation of market volatility 

indexes (see e.g. the VIX index for the Chicago Board Options Exchange, or the V-DAX New for 

the German stock market), which are closely followed by market participants, is done by operating 

a truncation of the domain of strike prices once two consecutive strikes with zero bid prices are 

observed. 



The empirical literature about the forecasting performance of corridor implied volatility is 

very little and mixed: most studies are based on closing prices and investigate only symmetric 

corridor measures. Andersen and Bondarenko (2007), by using options on the S&P500 futures 

market, find that narrow corridor measures, closely related to Black Scholes implied volatility are 

more useful for volatility forecasting than broad corridor measures, which tend to model-free 

implied volatility as the corridor widens. A similar finding is obtained in Muzzioli (2010b) who 

finds that the best forecast for the Italian index options market is the one which operates a 50% cut 

of the risk neutral distribution. On the other hand, Tsiaras (2009), by using options on the 30 

components of the DJIA index, concludes that CIV forecasts are increasingly better as long as the 

corridor width enlarges. To sum up, the empirical evidence suggests that there is no golden choice 

for the barriers levels’, which will probably change depending on the underlying asset risk neutral 

distribution. The latter feature renders the forecasting performance of corridor implied volatility 

mainly an empirical question. 

The investigation of corridor implied volatility has also important implications for the 

analysis of the variance risk premium. It is widely recognized that exposure to variance carries a 

negative risk premium: investors are willing to pay high prices in order to be insured against spikes 

in market variance. As noted by Carr and Wu (2006) investors are not only averse to increases in 

the variance level, but also to increases in variance of the return variance. Carr and Wu (2009) 

report evidence about five stock indexes and 35 stocks in the US market and find it to be strongly 

negative and highly significant. Andersen and Bondarenko (2009) are the first to exploit the concept 

of corridor implied variance in order to slice the risk neutral distribution of the stock price into 

different intervals and use the latter in order to investigate the pricing of market variance for 

different asset classes. In particular, for the SPX, they find a large negative risk premium which is 

very asymmetric since it is much larger in the downside part of the distribution than in the upside. 

The aim of the paper is twofold. First we thoroughly investigate the forecasting performance 

of corridor implied volatility by pursuing a sensitivity analysis of corridor implied volatility with 



respect to the choice of the barrier. The analysis is motivated by the need to find an optimal cut for 

the Italian index options market, which can be found by analysing a grid of different corridors. To 

this end we investigate different corridors with both symmetric and asymmetric cuts and compare 

the results with the preliminary findings in Muzzioli (2010b), where only four cuts of the risk 

neutral distributions are explored (which correspond to a 5%, 10%, 20% and 50% overall cut). 

Second, we examine the nature of the variance risk premium and shed light on the information 

content of different parts of the risk neutral distribution of the stock price, by using a model-

independent approach based on corridor measures. To this end we compute both realised and 

model-free variance measures which accounts for drops versus increases in the underlying asset 

price. The comparison is pursued by using intra-daily synchronous prices between the options and 

the underlying asset. 

As for the sensitivity analysis to the choice of the barriers, the results substantially 

complement and corroborate the preliminary findings in Muzzioli (2010b), by finding an optimal 

cut around 50%-60% of the risk neutral distribution. Moreover, the use of asymmetric cuts 

highlights a weak evidence of superiority of the corridor measure which rely more on put prices on 

the one which relies more on call prices. 

As for the analysis of the variance risk premium, we find it to be large and negative: 

investors are willing to pay sizable premiums and experience a loss on average in order to be 

hedged against peaks of variance. The results are consistent with previous empirical literature (Carr 

and Wu (2006 and 2009), Andersen and Bondarenko (2009)). Upside and Downside risk premia are 

negative and sizeable and both statistically significant. Downside risk premia are overwhelmingly 

higher than upside risk premia (more than two times higher).  This means that investors heavily 

price downside risk: downside risk premium is the main component of the overall risk premium. 

The results are consistent with different computation methodologies of realised semi-variance.   

The paper proceeds as follows. Sections 2 and 3 recall the basic features of variance swaps 

and corridor variance swaps. Section 4 presents the data set used. Section 5 provides the details for 



the computation of the volatility and variance measures. Section 6 illustrates the computation of the 

variance risk premium and corridor variance risk premium. Sections 7 presents the results for the 

forecasting performance of corridor implied volatility and Section 8 the analysis of the variance risk 

premium. The last section concludes. 

 

2. Variance swaps.  

Variance swaps provide investors with a simple way in order to have a pure exposure to the 

future level of variance. Variance swaps are traded over the counter. As they require a single 

payment at maturity, they are forward contracts on future realised variance. At maturity the long 

side pays a fixed rate (the variance swap rate) and receives a floating rate (the realised variance). A 

notional dollar amount is multiplied by the difference between the two rates. The payoff at maturity 

is: 

2( )RN VSR           (1) 

where N is a notional dollar amount, 
2

R  is the realised variance, and VSR is the fix variance swap 

rate. 

Assume that the stock price evolves as a diffusive process (no jumps allowed), as follows: 
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Realized variance (also called integrated variance) in the period 0-T is given by: 
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In practice, realised variance is monitored discretely (for example, the asset price could be observed 

each business day) and computed as: 
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where n is the number of observations during the period 0-T and the day-count convention could be 

different depending on the term sheet conditions: business days/252 or actual/365.  

At the time of entry the contract has zero value. If we assume absence of arbitrage 

opportunities and the existence of a unique risk-neutral measure we can write: 

2( ) 0rT

q RE e VSR           (5) 

where r is the risk-free discount rate corresponding to maturity T, and interest rates are assumed to 

be uncorrelated with realised variance. By no-arbitrage the variance swap rate should be equal to 

the risk-neutral expected value of realised variance over the life of the swap: 

2

q RVSR E     .        (6) 

Demeterfi et al. (1999) and Britten-Jones and Neuberger (2000) show how to replicate the 

risk-neutral expectation of variance with a portfolio of options with strike price ranging from zero 

to infinity, as follows: 

2 2

2

0 0

1 2 ( , )
( ,...)

T rT

q R q

e M K T
E E t dt dK

T T K
 

 
     

 
     (7) 

where M(K,T) is the minimum between a call or put option price, with strike price K and maturity T, 

i.e. only out-of-the-money options are used.  

Equation (7) is also known as model-free implied variance, and its square root as model-free 

implied volatility, since, differently from Black-Scholes implied volatility it does not rely on any 

particular option pricing model. In fact, the definition is consistent with several underlying asset 

price dynamics: from diffusive to jump-diffusion process (Jiang and Tian (2005)). Relation (7) is 

exact if the underlying asset price evolves as a diffusive process and holds up to an approximation 

error when the underlying asset process displays jumps (Carr and Wu (2009)). Since in the reality 

of financial markets only a limited and discrete set of strike prices are quoted, both truncation and 

discretization errors arise in the computation of model free implied variance. Therefore, 

interpolation and extrapolation are needed in order to compute model-free implied variance (see 



Jiang and Tian (2005) and (2007)). The CBOE volatility index (VIX) and the plethora of volatility 

indexes which have been introduced in various financial markets worldwide, are all based on the 

model free implied variance definition (which can be considered more precisely as a corridor 

implied variance because of the truncation of the domain of strike prices once two consecutive 

strikes with zero bid prices are observed). Therefore the volatility index squared represents a 

discretization of the 30-days variance swap rate, up to a discretization error and a jump induced 

error term. 

 

3. Corridor variance swaps. 

A corridor variance swap is a variant of variance swap which takes into account daily stock 

variations only when the underlying asset is in a specific corridor. At maturity the long side pays a 

fixed rate (the corridor variance swap rate) and receives a floating rate (the realised return variance 

which is accumulated only if the underlying lies in a pre-specified range). A notional dollar amount 

is multiplied by the difference between the two rates. The payoff at maturity is: 

2( )RCN CVSR          (8) 

where N is a notional dollar amount, 
2

RC is the realised variance in the corridor, and CVSR is the 

corridor variance swap rate.  

Corridor realised variance in the period 0-T, can be defined as follows: 
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where 
1 2[ , ]1

tS B B  is the indicator function that is equal to 1 if the underlying is inside the two barriers 

and determines if variance is accumulated or not. In practice, realised corridor variance is monitored 

discretely and computed as: 
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where 
1 2[ , ]1

tS B B  is the indicator function, which takes value 1 only if the underlying asset lies 

between the two barriers, n is the number of observations during the period 0-T and the day-count 

convention could be different depending on the term sheet conditions: business days/252 or 

actual/365.  

Carr and Madan (1998) and Andersen and Bondarenko (2007) show that it is possible to 

compute the expected value of corridor variance under the risk-neutral probability measure (the 

corridor variance swap rate), by using a portfolio of options with strikes ranging from B1 to B2, as 

follows: 
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   (11) 

Equation (11) is known as corridor implied variance and its square root as corridor implied 

volatility. If B1=0 and B2=∞, then corridor variance degenerates into model-free implied variance. It 

follows that a corridor variance swap is cheaper than a variance swap, since it enables investors to 

bet on possible patterns of the stock price.  

Upside and downside variance swaps are a variant of corridor variance swaps which have 

the following payoffs: 

2( )RUCN VSRU          (12) 

2( )RDCN VSRD          (13) 

where N is a notional dollar amount, VSRU and VSRD are the strike prices obtained by using 

formula (11) with barriers (B1=0 , B2=B) and (B1=B, B2=∞), respectively;  upside (downside) 

corridor realised volatility is defined as:  
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and accumulated only if the underlying lies above (below) the barrier B. 

Note that equations (14) and (15) recognize the full square of the return that ends in the corridor, 

other alternative contract specifications may treat the movements across the barrier recognizing 

only a fraction of the total move (see e.g. Carr and Lewis (2004). 

The sum of a downside corridor variance swap and an upside corridor variance swap yields a 

standard variance swap. An investor can be interested in an upside (downside) variance swap if she 

is bullish (bearish) on the underlying asset, or if the volatility skew is too steep making down-

variance too expensive relative to up-variance. 

 

4. The Data Set 

The data set consists of intra-daily data on FTSE MIB-index options (MIBO), recorded from 1 

June 2009 to 30 November 2009. Each record reports the strike price, expiration month, transaction 

price, contract size, hour, minute, second and centisecond. MIBO are European options on the 

FTSE MIB index, which is a capital weighted index composed of 40 major stocks quoted on the 

Italian market. FTSE MIB options quote in index points, representing a value of 2.5 €, with 10 

different expirations (the 4 three-monthly expiries in March, June, September and December, the 2 

nearest monthly expiry dates, the 4 six-month maturities (June and December) of the two years 

subsequent the current year, the 2 annual maturities (December) of the third and fourth years 

subsequent the current year). The contract expires on the third Friday of the expiration month at 

9.05 am. If the Exchange is closed that day, the contract expires on the first trading day preceding 

that day. For each maturity up to twelve months (monthly and three-month maturities), exercise 

prices are generated at intervals of 500 index points. At least 15 exercise prices are quoted for each 

expiry: one at-the-money, seven in-the-money and seven out-of-the-money strikes. The daily 

closing price is established by the clearing and settlement organisation Cassa di Compensazione e 

Garanzia. 



As for the underlying asset, intra-daily prices of the FTSE MIB-index recorded from 1 June 

2009 to 31 December 2009 are used. The FTSE MIB is the primary benchmark Index for the Italian 

equity market and seeks to replicate the broad sector weights of the Italian stock market. It is 

adjusted for stocks splits, changes in capital and for extraordinary dividends, but not for ordinary 

dividends. Therefore, the daily dividend yield is used in order to compute the appropriate value for 

the index, as follows: 

t t
t tS S e

 


        (16)
 

where St is the FTSE MIB value at time t, t is the dividend yield at time t and t is the time to 

maturity of the option.  

As a proxy for the risk-free rate, Euribor rates with maturities one week, one, two and three 

months are used. Appropriate yields to maturity are computed by linear interpolation. The data-set 

for the FTSE MIB index and the MIBO is kindly provided by Borsa Italiana S.p.A, Euribor rates 

and dividend yields are obtained from Datastream.  

Several filters are applied to the option data set. First, in order not to use stale quotes, we 

eliminate options with trading volumes of less than one contract.  Second, we eliminate options near 

to expiry which may suffer from pricing anomalies that might occur close to expiration (in order to 

be consistent with the computation methodology of quoted volatility indexes, we choose to use the 

most conservative filter that eliminates options with time to maturity of less than 8 days). Third, 

following Ait-Sahalia and Lo (1998) only at-the-money and out-of-the-money options are retained 

(call options with moneyness K/S > 0.97 and put options with moneyness K/S < 1.03). Fourth, 

option prices violating the standard no-arbitrage constraints are eliminated: 

( ) ( )max( ,0)r T t T tP Ke Se     , 
( ) ( )max( ,0)T t r T tC Se Ke     .     

  (17) 

Finally, in order to reduce computational burden, we only retain options that are traded in the last 

hour of trade, from 16:40 to 17:40 (the choice is motivated by the high level of trading activity in 



this interval). Option prices and the underlying index prices are then matched in a one minute 

window in order to obtain implied volatilities from synchronous prices.  

 

5. The Computation of the Volatility and Variance Measures 

In the following volatility measures are taken as the square root of variance measures 

defined in Sections 2 and 3. We compute two volatility measures: corridor implied volatility (CIV) 

and realised volatility (R). As for corridor implied volatility, each day of the sample, we divide 

quoted option prices in two sets: near term and next term options and we follow the procedure 

described below, which consists of three steps (repeated for both near and next term options): fitting 

the smile function; obtaining the risk neutral distribution of the underlying asset; computing 

corridor implied volatility. Last we interpolate between near and next term measures in order to 

have a 30-day measure. 

As for the first step, we recover the Black-Scholes implied volatilities by using synchronous 

prices for the option and the underlying asset that are matched in one minute interval. These implied 

volatilities are averaged for each strike in the hour of trades resulting in a matrix of quoted strike 

prices and corresponding implied volatilities. Second, as only a discrete number of strikes are 

available, we need to interpolate and extrapolate option prices in order to generate the missing 

prices. As for the interpolation, following Campa et al. (1998), we use cubic splines to interpolate 

implied volatilities between strike prices. We extrapolate volatilities outside the listed strike price 

range by using a linear function that matches the slope of the smile function at Kmin and Kmax. This 

methodology has the advantage that the smile function remains smooth at Kmin and Kmax. As this 

latter methodology may generate implied volatilities that are artificially too high (in case the slope 

is positive) or too low (in case the slope is negative), we have imposed both a lower and an upper 

bound to implied volatilities equal to 0.001 and 0.999 respectively. Finally, we use the Black and 

Scholes formula in order to convert implied volatilities into call prices.  



As for the second step, in order to obtain the risk neutral distribution of the underlying asset 

we resort to a non parametric method already tested in Muzzioli (2010b). In particular, we use the 

Derman and Kani (1994) algorithm with the modifications proposed in Moriggia et al. (2009), (the 

so called Enhanced Derman and Kani implied tree (EDK)) which are fundamental both to avoid 

arbitrage opportunities and to correctly model the tails of the distribution. The advantages of the 

proposed methodology are at least three. First, it is a methodology that fits the data well without 

imposing a rigid parametric structure. Second, it does not require any costly estimation of the risk-

neutral probability by minimization of a loss function which may lead to different results given the 

subjective choice of the loss function used. Last, it ensures positivity of the risk-neutral 

probabilities.   

As for the third step, corridor implied volatility (CIVi) is computed both for near term (i=1) 

and for next term maturities (i=2), as a discrete version of the square root of equation (11): 
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where:  

max min( ) /K K K m   ,        (19) 

m is the number of strikes used,  

min ,iK K i K   0 i m  ,        (20) 

2( , ) [min( ( , ), ( , )]/i i i ig T K C T K P T K K ,      (21) 

1

1 0 1( )B H p  and 
1

2 0 2(1 )B H p         (22) 

The barriers B1 and B2 are computed by looking at the risk-neutral distribution obtained by fitting an 

implied binomial tree with 100 levels to quoted option prices. As the implied tree yields a discrete 

cumulative distribution,  

( ) ( ) ( )
t x

H x P X x p t


   ,        (23) 



the barrier level x has been chosen to be the average between x1 and x2, where x1  and x2 are the 

barrier levels such that 
1( )P X x  and (

2( )P X x ) are the closest to the desired p.  

We compute a total of eight corridor measures: four with symmetric cuts and four with asymmetric 

cuts. The four symmetric corridor measures are CIV0.2, CIV0.25, CIV0.3, CIV0.4, which 

correspond to p = 0.2, 0.25, 0.3, 0.4 respectively. From CIV0.2 to CIV0.4 we explore narrower 

corridor implied volatility measures. In order to assess if the lower part of the risk neutral 

distribution is more informative about future realised volatility than the upper part, we also compute 

corridor measures with asymmetric cuts of the risk neutral distribution: CIV(0.1-0.3) cuts 0.1 in the 

upper part and 0.3 in the lower part (
1

1 0 (0.3)B H   and 
1

2 0 (0.9)B H  ) while CIV(0.3-0.1) cuts 0.3 

in the upper part and 0.1 in the lower part (
1

1 0 (0.1)B H   and 
1

2 0 (0.7)B H  ), therefore CIV(0.1-

0.3) relies more on call prices than on put prices, while CIV(0.3-0.1) relies more on put prices than 

on call prices. Moreover, in order to separate the effect of out of the money call and put prices, 

which are sensitive to increases or decreases in the underlying asset, we compute upside and 

downside corridor measures CIVUP (CIVDW) with barriers B1=F and B2= Kmax (B1=Kmin and 

B2=F) respectively, where F is the forward price. 

Last, in order to have a constant 30-day measure, each corridor implied volatility measure is 

computed by linear interpolation of the two corridor volatility measures computed with option 

prices which are the nearest to the remaining time of expiry of 30 days (1 is corridor implied 

volatility for the near-term maturity and 2 for the next-term), as follows: 
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   (24) 

where: 

Ti= number of days to expiry of the i-th maturity index option, i=1,2.  

In order to investigate the variance swap rate and the variance risk premium, variance 

measures are taken as the square of volatility measures. In particular we compute three implied 



variance measures: upside corridor variance swap rate ( 2

CIVUPVSRU  ), downside corridor 

variance swap rate ( 2

CIVDWVSRD  ), variance swap rate (VRS = VRSD +VSRU).  

Let us turn to the computation of realised variance measures. We compute a total of five 

realised variance measures: realised variance ( 2

R ), upside realised variance ( 2

RU ),  downside 

realised variance ( 2

RD ) , upside corridor realised variance ( 2

RUC ), downside corridor realised 

variance ( 2

RDC ), which are defined in the following. 

Realised variance ( 2

R ) is computed, in annual terms, as the sum of five-minute frequency 

squared index returns over the next 30 days: 
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        (25) 

where n is the number of index prices spaced by five minutes in the 30 days period. The choice of 

using five-minute frequency is made following Andersen and Bollerslev (1998) and Andersen et al. 

(2001) who showed the importance of using high frequency returns in order to measure realised 

volatility and point out that returns at a frequency higher than five minutes could be affected by 

serial correlation. Realised volatility ( R ) is taken as the square root of realised variance. 

Realised variance squares the returns, thus overlooking the information content of positive 

versus negative returns. Downside risk, i.e. the risk of experiencing a downward move of the 

underlying asset, has been measured by semi-variance (see e.g. Ang, Chen and Xing (2006)) or 

value at risk or expected shortfall by using daily data. A high frequency measure of downside risk, 

called Realised Semi-variance, has been proposed by Bandorff-Nielsen, Kinnebrock and Shephard 

(2010). Bandorrf-Nielsen and Shephard (2004) show that it is possible to separate two components 

in the quadratic variation process: the continuous evolution and the jump components. In this 

setting, realised semi-variance measures the variation of asset prices falls.  

Downside realised variance is defined as: 
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Symmetrically, upside realised variance is defined as: 
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such that: 

2 2 2

R RU RD    .        (28) 

Only negative (positive) returns are used in order to compute downside (upside) realised variance.  

           As upside and downside corridor measures are the risk neutral expectation of realised 

variance conditional on the underlying asset price being higher or lower than the barrier, we also 

compute the corresponding realised semi-variance corridor measures, as defined in equations (14) 

and (15). Corridor downside realised variance is defined as: 
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and symmetrically, corridor upside realised variance is defined as: 
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where F is the forward price. 

The asymmetric treatment of the case S=F in the corridor upside and downside realised variance is 

necessary in order to have: 

 
2 2 2

R RUC RDC    .       (31) 

Consistently with realised variance, semi-variance measures are annualised by means of the factor 

365/30. 

 



6. Variance risk premium and corridor variance risk premia. 

The variance risk premium is the difference between the ex-post realised variance (over the 

lifetime of the swap) and the variance swap rate. Following Carr and Wu (2009) the variance risk 

premium is measured both in Euro terms as the Euro payoff of a long position in a variance swap 

with notional amount N=100 Euro, held up to expiry: 

EVRP = 
2( )RN VSR         (32) 

and in log returns terms as the continuously compounded excess return given by:  

LVRP = 2log( / )R VSR .       (33) 

The average variance risk premium in Euro term and in log returns term is the sample average of 

(32) and (33) respectively. 

The upside and downside variance risk premium is the difference between the ex-post 

upside and downside realised variance (over the lifetime of the swap) and the upside and downside 

corridor variance swap rate. As upside and downside realised variance is measured in two different 

ways (by separating either positive and negative returns or realisations higher or lower than a 

threshold), and the risk premiums are computed either in Euro terms or in log-return terms, we have 

a total of eight different cases, as follows. The upside variance risk premium in Euro terms is the 

Euro payoff of a long position in an upside variance swap with notional amount N=100 Euro, held 

up to expiry: 

EVRPU = 
2( )RUN VSRU         (34) 

and in log returns terms it is measured as the continuously compounded excess return given by:  

LVRPU = 
2log( / )RU VSRU .       (35) 

Similarly are defined the downside variance risk premium in Euro terms: 

EVRPD = 
2( )RDN VSRD         (36) 

and in log returns terms:  



LVRPD = 2log( / )RD VSRD .       (37) 

Upside and downside corridor variance risk premium (VRPUC and VRPDC) are obtained by using 

upside and downside corridor realised variance ( 2

RUC , 2

RDC ), instead of upside and downside 

realised variance in equations (34 - 37). 

 

7. The Results for the volatility measures. 

Descriptive statistics for the volatility series are reported in Table 1. The volatility series in 

our sample period are plotted in Figures 1 and 2. Wide corridor CIV measures are higher than 

realised volatility; CIV measures become lower on average as the corridor width shrinks. 

Asymmetric cut CIV measures are higher on average than realised volatility; CIVUP is lower than 

CIVDW, reflecting the higher implied volatility of out of the money put options with respect to out 

of the money call options. Wide corridor CIV measures (CIV0.2 and CIV0.25) display positive 

skewness (the opposite holds for narrower corridor measures). Excess kurtosis affects most of the 

corridor measures. Given the presence of extreme movements in volatility, the hypothesis of a 

normal distribution is rejected for most volatility measures. 

In order to compare the results with Muzzioli (2010b) we gauge the forecasting performance 

of the different volatility measures, by resorting to the same metrics
1
 widely used in the literature 

(see e.g. Poon and Granger (2003)). In particular, we use the MSE, the RMSE, the MAE, the MAPE 

and the QLIKE, defined as follows: 

MSE = 2

1

1
( )

m

i R

im
 



        (38) 

                                                 
1
 Mincer-Zarnowitz regressions are also used in the literature in order to assess the unbiasedness and efficiency (with 

respect some historical measure of volatility) of the volatility forecasts. In order to avoid the telescoping overlap 
problem described in Hansen et al. (2001) forecasts are usually sampled at a monthly frequency (see e.g. Jiang and 
Tian, 2005). Given the limited sample at our disposal, we leave the investigation of the unbiasedness and efficiency of 
the volatility forecasts for future research. 
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MAE = 
1
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MAPE = 
1

1 m
i R
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QLIKE = 
1

1
ln( )

m
R

i

i im






 
 

 
       (42) 

where 
i  is the volatility forecast (i=CIV0.2, CIV0.25, CIV0.3, CIV0.1-0.3, CIV0.3-0.1, CIVU, 

CIVDW), 
R  is the subsequent realised volatility, m is the number of observations. The MSE, 

RMSE and the MAE are indicators of absolute errors, while the MAPE indicates the percentage 

error. The QLIKE discriminates between positive and negative errors by assigning a larger penalty 

if the forecast underestimate realised volatility. Since a higher volatility is usually associated with 

negative market returns, the QLIKE function considers more important the correct estimation of 

volatility peaks than volatility minima.  

The evaluation measures for the volatility forecasts are reported in Table 2. In order to see if 

the differences in forecasting performance are significant from a statistical point of view, we 

compare the predictive accuracy of the forecasts by computing the Diebold and Mariano test 

statistic (for more details see Diebold and Mariano (1995)) by using the MSE function which is 

considered as robust to the presence of noise in the volatility proxy (Patton (2010)). The pair-wise 

comparisons are reported in Table 3 (t-statistics along with the p-values). Note that a negative 

(positive) t-statistic indicates that the row model produced smaller (larger) average loss than the 

column model. The Diebold and Mariano test statistic under the null of equal predictive accuracy is 

distributed as a N(0,1).    

According to all the indicators CIV0.25 and CIV0.3 obtain the best performance even if they 

are not distinguishable according to the Diebold and Mariano test. CIV0.2 performs better than 



CIV0.4. The forecasting performance improves when the corridor shrinks (from an overall 40% cut 

of CIV0.2 to an overall 50%-60% cut of CIV0.25 and CIV0.3) but then deteriorates if the cut is too 

heavy (an 80% cut of CIV0.4), indicating the presence of an “optimal” cut around 50%-60%. 

Among asymmetric measures, the one which relies more on call prices (CIV0.1-0.3) performs better 

than the one which relies more on put prices (CIV0.3-0.1), but looking at the Diebold and Mariano 

tests of equal predictive accuracy the two measures are not distinguishable. Both upside and 

downside corridor measures obtain a poor performance, however CIVDW, which focus on put 

option prices performs better than CIVUP, which focus on call option prices.  

In order to further investigate the robustness of the results, it is useful to look at the 

correlations between the implied volatility measures and subsequent realised volatility, which are 

reported in Figure 3. As we can see, CIV0.25 has the highest correlation with realised volatility, 

while CIV0.3 has a markedly lower correlation. Therefore the results point to an overall low degree 

of information of out-of-the-money options and substantially confirm the preliminary results of 

Muzzioli (2010b) which point to an overall 50% cut of the risk neutral distribution. Among corridor 

measures with asymmetric cuts, the one which uses more put prices than call prices (CIV0.3-0.1) 

has a strikingly higher correlation with future realised volatility than the one which uses more call 

prices than put prices. The result is the opposite than the one obtained by looking at the 

performance evaluation based on the ranking functions, where CIV0.1-0.3 obtains a little better 

performance than CIV0.3-0-1, which however is not statistically significant according to the 

Diebold and Mariano test. Looking at the different performance obtained by CIVUP and CIVDW, 

the results based both on the Diebold and Mariano test and on the correlation with realised volatility 

point to a better performance of CIVDW. Therefore we can say that overall, the asymmetric cut that 

trims the risk neutral distribution in  the upper part more than in the lower part is more informative 

about future realised volatility. Put prices which carry information on the probability of a downturn 

move of the underlying asset convey better information about future realised volatility.  

 



8. The results for the variance risk premium. 

The investigation of the variance risk premium is pursued into two steps, first we investigate 

the overall variance risk premium; second we use upside and downside realised and implied 

variance measures in order to investigate the risk premium in the upper and lower part of the risk 

neutral distribution.  

In Table 4 are reported the descriptive statistics for realised variance ( 2

R ), the variance 

swap rate (VSR) and the risk premium measured both in Euro terms (EVRP) and in log returns 

terms (LVRP). As we can see the average swap rate is overwhelmingly higher than the average 

realised variance, reflecting the presence of a substantial variance risk premium. The variance swap 

rate is more volatile than realised variance, since it has been computed with the prices of different 

options series which differ in strike price and time to maturity. Overall, the variance risk premium is 

found to be large and negative: the average risk premium in Euro terms is equal to -2.472, and the 

average risk premium in log terms is -0.417. This means that investors do considerably price 

variance risk: the average Euro loss for each notional amount of 100 Euro invested in a long 

variance swap is -2.472 Euro.  The average continuously compounded excess return of being long 

the variance swap and holding it to maturity is -41.7%. The negative average returns are both 

statistically different from zero (the t-statistics are adjusted for serial dependence, according to 

Newey-West).  Therefore investors are willing to accept a strongly negative return being long in a 

variance swap, in order to be hedged against peaks in volatility.  

In Table 5 are reported the descriptive statistics for upside and downside realised variance 

(
2

RU , 
2

RD ) , upside and downside corridor realised variance (
2

RUC , 
2

RDC ) and upside and 

downside variance swap rate (VSRU , VSRD ). Upside and downside measures computed either by 

accumulating positive and negative returns (
2

RU , 
2

RD ) or by separating realisations higher or lower 

than the barrier equal to the forward price (
2

RUC , 
2

RDC ) are very similar. On average, upside 

realised variance measures are also not very different from downside realised variance measures 



(upside corridor realised variance is a little higher than downside corridor realised variance). Upside 

realised variance measures display negative skewness, while downside realised variance measures 

display positive skewness. The downside variance swap rate is much more higher than the upside 

variance swap rate, meaning that investors price more negative realisations of the underlying than 

positive ones.  

In Table 6 are reported the descriptive statistics for upside and downside risk premia 

computed both in Euro terms and in log-return terms and by using both upside and downside 

realised variance ( 2

RU , 2

RD ) and upside and downside corridor realised variance ( 2

RUC , 2

RDC ). 

Upside and Downside risk premia, computed with both methodologies, are negative and sizeable 

and all statistically significant (the t-statistics are adjusted for serial dependence, according to 

Newey-West). The average Euro loss for each notional amount of 100 Euro invested in a long 

downside corridor variance swap is -1.76 Euro, while for an upside corridor variance swap is -0.74 

Euro. If realised semi-variance is measured by positive and negative returns, for a downside 

corridor variance swap the average Euro loss is -1.62 and for an upside corridor variance swap the 

average Euro loss is -0.89. 

It follows that downside risk premia are overwhelmingly higher than upside risk premia. If 

realised semi-variance is measured by positive and negative returns, the downside risk premium is 

almost twice than the upside risk premium, if realised semi-variance is measured with returns 

higher or lower than the forward value of the underlying, then the downside risk premium is 

between two and three times the upside risk premium. This means that investors highly price 

downside risk (more than two times than upside risk).  

 

9. Conclusions  

 



In this paper we have exploited the concept of corridor implied volatility in order to analyse 

the sensitivity of the forecasting performance of corridor measures to the choice of the barriers and 

shed light on the information content of different parts of the risk neutral distribution of the stock 

price. As for the first goal of our study, different corridor measures with symmetric and asymmetric 

cuts have been analysed and the difference in the forecasting performance has been statistically 

scrutinised on the basis of the Diebold and Mariano test of equal predictive accuracy with the use of 

a robust loss function. As for the second goal of our study, upside and downside corridor measures 

have been used in order to understand the nature of the variance risk premium. 

As for the sensitivity analysis to the choice of the barriers, the results substantially 

corroborates the preliminary findings in Muzzioli (2010b), by finding an optimal cut around 50%-

60% of the risk neutral distribution. Moreover, the use of asymmetric cuts does not ameliorate the 

performance. There is a weak evidence of superiority of the corridor measure which rely more on 

put prices on the one which relies more on call prices, highlighting that the left part of the risk 

neutral distribution (the one which accounts for drops in the underlying asset price) is the most 

important in the derivation of the volatility measure.  

In the Italian market the variance risk premium is found to be large and negative. Investors 

are willing to pay sizable premiums and experience a loss on average, in order to be hedged against 

peaks of variance. Upside and Downside risk premia are negative and sizeable and both statistically 

significant. Downside risk premia are overwhelmingly higher than upside risk premia (more than 

two times higher).  This means that investors heavily price downside risk. Downside risk premium 

is the main component of the overall risk premium. The results are consistent across different 

measures of semi-variance (which discriminate between positive and negative returns, or 

realisations higher or lower than a threshold). 

The present paper lends itself to be extended in many directions. High on the research 

agenda is the use of a longer dataset in order to investigate the unbiasedness and efficiency of the 

different volatility forecasts. Moreover, we would like also to investigate if the variance risk 



premium composition (downside versus upside) changes in periods of high-low volatility. Another 

important question regards the robustness of the results to the change of the proxy for realised 

volatility. Leaving for future research the question, we are confident that the substitution of a 

different proxy would not change the ranking, since the computation methodology which exploits 

intra-daily five-minutes squared returns, provides large gains in terms of consistent ranking with 

respect to other more noisy volatility proxies (Patton and Sheppard (2009), Hansen and Lunde 

(2006)). Moreover, the results for the variance risk premium decomposition do not change if 

different measures of realised semi-variance (which discriminate between positive and negative 

returns, or realisations higher or lower than a threshold) are used. 
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Figure 1. Realised volatility and corridor implied volatility with symmetric cuts. 
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Figure 2. Realised volatility and corridor implied volatility with asymmetric cuts. 
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Figure 3. Correlation of corridor implied volatility measures with realised volatility. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1.  Descriptive statistics for the volatility series. 

Statistic R CIV0.2 CIV0.25 CIV0.3 CIV0.4
CIV0.1-

0.3

CIV0.3-

0.1
CIVUP CIVDW

Mean 0.22 0.24 0.23 0.22 0.17 0.23 0.24 0.18 0.20 

Std dev 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.03 

Skewness -0.70 0.55 0.48 -0.25 -0.18 -0.05 0.12 0.76 0.00 

Kurtosis 3.00 3.08 2.89 4.42 3.59 5.39 2.95 3.82 2.63 

Jarque 

Bera 
10.84 6.53 5.09 12.39 2.66 31.30 0.37 16.25 0.75 

p-value 0.00 0.04 0.08 0.00 0.26 0.00 0.83 0.00 0.69 

The Table presents the descriptive statistics for the volatility series used in the sensitivity analysis: r = realised 

volatility, CIV  = corridor implied volatility (p = 0.2, 0.25, 0.3, 0.4  respectively for CIV0.2, CIV0.25, CIV0.3, 

CIV0.4,), CIV0.1-0.3 = corridor implied volatility with upper cut equal to 0.1 and lower cut equal to 0.3, CIV0.3-0.1 = 

corridor implied volatility with upper cut equal to 0.3 and lower cut equal to 0.1, CIVUP  = upside corridor implied 

volatility, CIVDW  = downside corridor implied volatility. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. Predictive accuracy of the different volatility measures. 

 

 CIV0.2 CIV0.25 CIV0.3 CIV0.4
CIV0.1 

-0.3

CIV0.3-

0.1
CIVUP CIVDW

MSE 0.0013 0.0009 0.0009 0.0030 0.0012 0.0014 0.0020 0.0015 

RMSE 0.0362 0.0306 0.0294 0.0550 0.0339 0.0377 0.0451 0.0390 

MAE 0.0299 0.0251 0.0226 0.0482 0.0272 0.0309 0.0387 0.0323 

MAPE 0.1458 0.1221 0.1072 0.2176 0.1313 0.1500 0.1733 0.1486 

QLIKE -0.5238 -0.5267 -0.5252 -0.4849 -0.5235 -0.5230 -0.5072 -0.5138 

The Table presents the indicators of the goodness of fit of the volatility series used in the study for the 30-day horizon: 

MSE = 2

1

1
( )

m

i R

im
 



 , RMSE = 2

1

1
(( ) ( ))

m

i R

im
 



 , MAE = 

1

1 m

i R

im
 



 , MAPE = 

1

1 m
i R

i Rm

 




 , 

QLIKE = 

1

1
ln( )

m
R

i

i im






 
 

 
 , where 

i  is the volatility forecast, 
R   is the subsequent realised volatility, m is the 

number of observations. , CIV  = corridor implied volatility (p = 0.2, 0.25, 0.3, 0.4  respectively for CIV0.2, CIV0.25, 

CIV0.3, CIV0.4,), CIV0.1-0.3 = corridor implied volatility with upper cut equal to 0.1 and lower cut equal to 0.3, CIV0.3-0.1 

= corridor implied volatility with upper cut equal to 0.3 and lower cut equal to 0.1, CIVUP  = upside corridor implied 

volatility, CIVDW  = downside corridor implied volatility. 



 

Table 3. Diebold and Mariano tests: pair-wise comparisons (MSE). 

 CIV0.25 CIV0.3 CIV0.4 CIV0.1-0.3 CIV0.3-0.1 CIVUP CIVDW

CIV0.2 4.13 2.72 -2.97 1.01 -1.52 -1.39 -0.49 

 0.00 0.01 0.00 0.32 0.13 0.17 0.62 

CIV0.25  0.35 -4.20 -1.84 -3.79 -2.53 -1.72 

  0.72 0.00 0.07 0.00 0.01 0.09 

CIV0.3   -5.93 -1.99 -2.05 -3.86 -2.59 

   0.00 0.05 0.04 0.00 0.01 

CIV0.4    3.95 2.70 4.07 4.57 

    0.00 0.01 0.00 0.00 

CIV0.1-0.3    -1.35 -2.05 -1.01 

     0.18 0.04 0.31 

CIV0.3-0.1     -1.15 -0.23 

      0.25 0.82 

CIVUP       2.31 

       0.02 

The Table reports the t-statistic and associated p-value for the Diebold and Mariano test of equal predictive accuracy for 

each couple of forecasts. The loss function used is the MSE= 2

1

1
( )

m

i R

im
 



 , where 
i  is the volatility forecast, 

R   

is the subsequent realised volatility, m is the number of observations, CIV  = corridor implied volatility (p = 0.2, 0.25, 

0.3, 0.4  respectively for CIV0.2, CIV0.25, CIV0.3, CIV0.4,), CIV0.1-0.3 = corridor implied volatility with upper cut 

equal to 0.1 and lower cut equal to 0.3, CIV0.3-0.1 = corridor implied volatility with upper cut equal to 0.3 and lower cut 

equal to 0.1, CIVUP  = upside corridor implied volatility, CIVDW  = downside corridor implied volatility.  

 

 

 

 

 

 

 

 

 

 

 



Table 4. Descriptive statistics for the variance measures and the risk premium in Euro terms and in log returns terms. 

Statistic 2

R  VSR EVRP LVRP 

Mean 0.047 0.072 -2.472 -0.417 

Std. Dev. 0.009 0.016 1.680 0.278 

Skewness -0.469 0.514 -0.131 0.097 

Kurtosis 2.606 3.022 3.032 3.491 

Jarque-Bera 5.668 5.774 0.380 1.525 

Probability 0.059 0.056 0.827 0.466 

t-stat   -9.738 -9.482 

p-value   0.000 0.000 

The Table presents the descriptive statistics for realised variance, the variance swap rate and the risk premium, 

computed both in Euro terms EVRP =
2( )RN VSR   and in log-return terms LVRP = 

2log( / )R VSR , where 
2

R is 

realised variance and VSR is the variance swap rate. 

 



 

Table 5. Descriptive statistics for upside and downside variance measures and swap rates. 

 
2

RU
 

2

RD  2

RUC  2

RDC  VSRU VSRD 

Mean 0.024 0.023 0.025 0.022 0.032 0.040 
Std. Dev. 0.004 0.005 0.015 0.019 0.007 0.012 
Skewness -0.599 0.510 -0.122 0.498 1.080 0.363 
Kurtosis 2.598 2.891 1.808 1.888 4.518 2.648 

Jarque-Bera 8.718 5.745 8.077 12.165 38.028 3.559 
Probability 0.013 0.057 0.018 0.002 0.000 0.169 

The Table presents the descriptive statistics for upside and downside realised variance (
2

RU , 
2

RD ), upside and 

downside corridor realised variance (
2

RUC , 
2

RDC ), upside and downside variance swap rates (VSRU, VSRD).  

 



 

Table 6. Descriptive statistics for upside and downside risk premia. 

 EVRPD EVRPDC EVRPU EVRPUC LVRPD LVRPDC LVRPU LVRPUC 

Mean -1.62 -1.76 -0.89 -0.74 -0.50 -1.39 -0.32 -0.66 

Std. Dev. 1.26 2.33 0.67 1.50 0.37 1.81 0.23 1.20 

Skewness -0.17 0.38 -0.26 -0.07 0.45 -0.94 0.26 -1.75 

Kurtosis 3.08 2.60 3.19 2.23 3.89 2.93 2.35 5.84 

Jarque-Bera 0.65 3.96 1.72 3.36 8.76 19.13 3.83 110.65 

Probability 0.72 0.14 0.42 0.19 0.01 0.00 0.15 0.00 

t-stat -8.38 -4.45 -7.59 -2.14 -9.02 -4.40 -8.39 -3.23 

p-value 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 

The Table presents the descriptive statistics for upside and downside risk premia, computed both in Euro terms and in 

log-return terms and by using both upside and downside realised variance (
2

RU , 
2

RD ) and upside and downside 

corridor realised variance (
2

RUC , 
2

RDC ), as follows: EVRPU = 
2( )RUN VSRU  , LVRPU = 

2log( / )RU VSRU , 

EVRPD = 
2( )RDN VSRD  , LVRPD = 

2log( / )RD VSRD , EVRPUC = 
2( )RUCN VSRU  , LVRPUC = 

2log( / )RUC VSRU , EVRPDC = 
2( )RDCN VSRD  , LVRPDC = 

2log( / )RDC VSRD .  
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