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Abstract

We consider a simple pure exchange economy with two assets, one riskless, yielding
a constant return on investment, and one risky, paying a stochastic dividend. Trading
takes place in discrete time and in each trading period the price of the risky asset is
fixed by imposing market clearing condition on the sum of traders individual demand
functions. We assume that agents’ strategies are consistent with maximizing a CRRA
utility, so that the individual demand for the risky asset is expressed as a fraction of the
agent’s wealth and the evolution of price and wealth distribution is described by means
of a dynamical system. We consider agents whose individual demand function is based
on future prices forecasts obtained on the basis of past market history and we analyze
two cases.

First, we consider a large population of quasi-homogeneous agents, whose individual
choices can be described as a random deviation from an underlying, common, behavior.
We denote the particular dynamics that emerges as “Large Market Limit” and, with the
help of numerical simulations, we provide some hints on the range of its applications.
As an example of application of the Large Market Limit we show how the results in
Chiarella and He (2001) concerning models with optimizing agents can be replicated in
our framework.

Next, we analyze the case of two agents with distinct, but generic, investment strate-
gies. We study the set of equilibria allowed by the two strategies and provide an asymp-
totic characterization of their relative performances. We find that the market endoge-
nously selects the dominant trader among the participants following a quasi-optimal
selection principle. The same principle, however, implies the impossibility of defining a
dominance order relation on the space of strategies.

JEL codes: G12, D83.

Keywords: Asset pricing, Price and wealth dynamics, Large market limit, Optimal selec-
tion principle.

∗We would like to thank Cees Diks, Pietro Dindo, Cars Hommes and the participants of the 10th Inter-
national Conference on Computing in Economics and Finance for helpful comments on earlier drafts of the
paper. Part of the paper was written while M.Anufriev was visiting the Center for Nonlinear Dynamics in
Economics and Finance (CeNDEF) at the University of Amsterdam whose kind hospitality and stimulating
environment are gratefully acknowledged. The usual disclaimers apply.

1



Contents

1 Introduction 2

2 Agent Based Trading Models in the CRRA Framework 4

3 Model Structure 5
3.1 Rescaling the Economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Dynamical System for Wealth and Return . . . . . . . . . . . . . . . . . . . . 7

4 Large Market Limit and Homogeneous Expectations 10

5 Technical Trading in the Large Market Limit 12
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1 Introduction

The standard classical models of financial markets, based on the presumption of the existence
of a representative agent with full information and rational expectations are regarded with
an increasing skepticism by a growing number of scholars working in the field of finance and
economic theory. This dissatisfaction led to the development of a new strand of literature
essentially built around quite heterogeneous contributions, developed in the last two decades,
which are often joined under the label of ”agent-based models”. One could roughly divide
these contributions in two partially overlapping classes. The first class contains models where
results come from a rigorous analytical investigation. Among many examples, let us mention
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the models discussed in Chiarella (1992),Kirman (1993), Lux (1995, 1997, 1998), Brock and
Hommes (1998), Gaunersdorfer (2000), Chiarella et al. (2002) and Chiarella and He (2001,
2002b, 2003), which bear a closer relationship with the present work. The second class consists
of models based on the presentation and discussion of extensive computer simulations. Such
an approach was used, among many others, in Levy et al. (1994), Arthur et al. (1997), LeBaron
et al. (1999), Lux and Marchesi (1999, 2000), Zschischang and Lux (2001), Farmer (2002),
Farmer and Joshi (2002) and Bottazzi et al. (2004).

This paper is mainly intended as a contribution to the first class of models. We present a
generic agent-based model and investigate its properties, under different specifications, using
analytical tools from the theory of dynamical system. At the same time, however, our results
shed new light upon various regularities that have been previously, and repeatedly, observed
in simulation-based studies.

We consider a simple, pure exchange, two-asset economy. The first asset is a riskless
security, yielding a constant return on investment. This security is chosen as the numéraire
of the economy. The second asset is a risky equity, paying a stochastic dividend. Trading
takes place in discrete time and in each trading period the price of the risky asset is fixed
by imposing market clearing condition on the aggregate demand function. The economy is
populated by a fixed number of agents acting as speculative traders. Agents participation to
the market is described in terms of their individual demand for the risky asset. The individual
demand functions are assumed proportional to traders wealth. That is, at each time step,
each trader expresses its demand for the asset, relative to a certain notional price, as the share
of its present wealth it is willing to invest in that asset. We refer to this particular choice for
the description of agents behavior as CRRA (Constant Relative Risk Aversion) framework.
Indeed, this behavior is consistent with the maximization of an expected constant relative risk
aversion (CRRA) utility function. Inside this framework many different agent behavior can be
considered and many different investment strategies devised. In the present paper, both for
definiteness, and, to a lesser degree, for mathematical tractability, we will focus our analysis
on the case in which the agents investment functions depend solely on the past aggregate
market performances, that is, so to speak, to “technical trading” behaviors.

Our goal is to study the market equilibria, i.e. the asymptotic properties of the price and
the wealth dynamics, when different heterogenous agents populate the economy. In general,
when the number of agents become large, this task can become quite difficult. In what follows
we will present the analysis of two particular, and complementary, cases: the case with an
infinite number of quasi-homogeneous agents and the case with just two agents.

In the first case we discuss a simplifying assumption, called “Large Market Limit”, which
postulates that the aggregate outcome of stochastic individual choices can be described as a
deterministic function of the state of the market. This simple situation can indeed be observed
when the investment choices of different agents are assumed to be independent random devi-
ations from a common behavior and the number of agents operating on the market tends to
infinity. Under the hypothesis of the “Large Market Limit”, the analysis of the system reduces
to the analysis of an economy where a single, representative agent, operates. We characterize
the market equilibria and derive their stability conditions under generic aggregate demand
function.

Next, we describe the asymptotic dynamics of our model when two agents, with distinct
but generic trading behavior, operate on the market. We derive the system describing the
evolution of the model and study the emerging equilibria and their local stability conditions.
We compare the two agents case with the case of homogeneous preferences and expectations
and show how a quasi-optimal selection principle endogenously characterizes the market self-
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selection toward best performing strategies.
In both cases, we show how, even if one leaves the explicit description of the agent invest-

ment choices unspecified, the market dynamics can be characterized, at least locally, in terms
of few simple parameters. Our results can be used to address some important questions raised
in previous analytical and numerical contributions. As an example, we extend to “generic”
agents behaviors the comparison performed in Chiarella and He (2001) between ”fundamen-
tal”, ”trend-following” and “contrarian” agents. Following the suggestion in Zschischang and
Lux (2001) we also investigate the interplay between heterogeneity in traders risk aversion and
heterogeneity in the length of the temporal window of past prices they use to obtain prediction
about future.

The rest of the paper is organized as follows. In the next Section we present a brief
discussion of the motivations behind the choice of a CRRA framework for a financial agent
based model, with some reference to previous works. In Section 3 the general description of
our simple economy is provided. Under the assumption of CRRA agents behavior, we are able
to derive the price and the wealth dynamics as a multi-dimensional dynamical system. In
Section 4 we discuss the “Large Market Limit”. This limit is applied to the study of models
where “technical” agents forecast the future return distribution on the basis of past market
history in Section 5. The validity of the “Large Market Limit” is further discussed, with the
help of numerical analysis, in Section 6. Section 7 is devoted to the case of two distinct agents
operating on the market. In Section 8 we summarize our findings and list the directions for
further researches. The proofs of propositions are given in Appendix A. Some of them use
classical results from the theory of dynamical systems which we collect in Appendix B.

2 Agent Based Trading Models in the CRRA Frame-

work

The choice of a CRRA framework is somewhat unusual among agent-based analytical models,
where the general preference seems to go for models in which the demand functions of agents
is independent from the level of their wealth; a choice which is consistent with the maximiza-
tion of a constant absolute risk aversion (CARA) expected utility. Examples of this approach
are the Santa-Fe artificial market model described in Arthur et al. (1997) and LeBaron et al.
(1999), and, among the analytical investigations, Brock and Hommes (1998) and its gener-
alizations in Gaunersdorfer (2000), Brock et al. (2004) and Chiarella and He (2002a, 2003).
The CARA framework is relatively more simple to handle, exactly because, in this case, the
price dynamics is independent from the wealth distribution. This implies, as a direct eco-
nomic consequence, that in these models all agents have the same impact on price formation,
irrespectively of their wealth. This relatively awkward property hints to the possibility that
these models miss some important features of the real markets. Moreover, there are empirical
and experimental evidence (see e.g. Levy et al. (2000)) suggesting that the behavior of traders
and investors is consistent with a decreasing (with wealth) absolute risk aversion and/or with
a constant relative risk aversion.

For this reason, the simulation-based models, which are not constrained by the need of
mathematical simplicity, often assume CRRA utility-maximization, as in Levy et al. (1994,
1995) and Levy and Levy (1996). There has been,however, some controversy about the ro-
bustness and the relevance of the CRRA results (see e.g. Zschischang and Lux (2001)), so that
an analytical investigation of such a framework seems necessary. Few analytical attempts in
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this direction have been made. To our knowledge, they have been so far limited to the models
presented in Chiarella and He (2001, 2002b). Moreover, the impossibility of deriving a closed
analytical expression for the solution of the CRRA expected utility maximization problem
forced Chiarella and He to rely upon approximated expressions for the agent demand func-
tion and, more hazardously, to introduce an ad-hoc assumption about the normality of the
underlying returns distribution which is, in general, not consistent with the actual dynamics
generated by their models.

Our approach is different. Instead of deriving the agent’s individual demand from an
approximated utility maximization principle, we model, in total generality, the investment
choice of the agent as some smooth function of his expectations. This investment function can
be agent-specific, partially due to the fact that its shape should somehow depend on the agent’s
attitude toward risk, and partially due to the different possible ways in which an agent can
transform an available information set (public or private) into predictions about the future.
Since we only require the proportionality of agents investment allocation to agents current
wealth, without further assumptions about the way in which these allocations are determined,
our model substantially extends previous analytical agent-based contributions with respect to
the actual degree of heterogeneity allowed in the description of agents behavior.

3 Model Structure

We consider a simple pure exchange economy where trading activities are supposed to take
place in discrete time. The economy is composed by a risk-less asset (bond) giving a constant
interest rate rf > 0 and a risky asset (equity) paying a random dividend Dt at the end of
period t. The risk-less asset is assumed the numéraire of the economy and its price is fixed to
1. The price Pt of the risky asset is determined at each period on the base of its aggregate
demand imposing a market-clearing condition.

Suppose that this simple economy is populated by a fixed number of N traders. The
dynamics through each period proceeds as follows. At time t, before the trade starts, agent
i (i = 1 . . .N) possesses At,i shares of risky asset and Bt,i shares of risk-less asset. Thus, the
wealth of the agent can be computed for any notional price P as Wt,i(P ) = At,i P +Bt,i.

Suppose that the agent i decides to invest a fraction πt,i of his wealth into the risky asset
and a fraction 1 − πt,i into the riskless asset. Then his individual demand for the risky asset
becomes πt,iWt,i(P )/P . The aggregate demand is the sum of all individual demands, and the
price Pt is defined as one where aggregate demand is equal to aggregate supply. Assuming a
constant supply of risky asset, whose quantity can then be normalized to 1, the price Pt is
determined as the solution of the equation

N∑

i=1

πt,iWt,i(P ) = P . (3.1)

At this moment also the new portfolio of any agent is determined. After the trade, at the end
of period t, the random dividend Dt per risky asset and constant interest rate rf per riskless
asset are paid (in terms of numéraire). The economy is ready for the next round. A diagram
describing the different steps composing a trading session is presented in Fig. 1.

To derive the dynamics of the wealth, notice that before the next trading session the agent
i possesses At+1,i = πt,iWt,i(Pt)/Pt shares of risky asset and also Bt+1,i = (1 − πt,i)Wt,i (1 +
rf) + πt,iWt,iDt/Pt of risk-less security. The first term in the latter expression reflects the
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period t

It−1 → πt,i

At,i Bt,i

Pt
rf Dt︸ ︷︷ ︸

It → πt+1,i

At+1,i Bt+1,i

*

q

:

z

j
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Figure 1: A diagram of the trading round at period t. The participation of the agent in the trade

is limited to the choice of the investment share πt,i (shown inside the box). This share depends, in

general, on the information set It−1 available to the agent and, together with the current portfolio

composition, determines the individual demand. From these individual demands, the clearing price

Pt can be fixed, and, at the same time, the new agents’ positions in the risky asset are determined.

At the end of period t, the dividend and interest rate are paid. Their realized values, together with

the fixed price, both enhance the information set and also define the new portfolio composition.

contribution of the risk-free interest payment and the second term is the dividend payments.
The agent’s wealth at time t+ 1 is Wt+1,i = At+1,i Pt+1 +Bt+1,i, so that:

Wt+1,i = Wt,i (1− πt,i) (1 + rf) +
Wt,i πt,i
Pt

(Pt+1 +Dt) . (3.2)

Provided that the share πt,i does not depend on current wealth explicitly, the following system
determines the value of Wt,i and Pt





Pt =
N∑

i=1

πt,iWt,i

Wt,i = Wt−1,i (1− πt−1,i) (1 + rf ) +
Wt−1,i πt−1,i

Pt−1

(Pt +Dt−1) ∀i ,

(3.3)

where we rewrote (3.2) at time t. In the present framework, as it also happens on real markets,
the wealth of each agent and the prevailing asset price are determined simultaneously. The
investment fraction πt,i can be considered as a complete description of the agent’s behavior.

3.1 Rescaling the Economy

The dynamics described by (3.3) represent an economy which is intrinsically growing. In order
to see that let us sum the second equation in (3.3) over all the agents to obtain the dynamics
of the total wealth

Wt = Wt−1 (1 + rf ) + [Pt +Dt−1 − Pt−1 (1 + rf)] . (3.4)
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From (3.4) it is immediate to see that the presence of a constant positive riskless return rf
introduces an “exogenous” expansion of the economy, due to the continuous injections of new
bonds, whose price remains, under the assumption of totally elastic supply, unchanged. This
effect is obvious if one assumes that the market is perfectly efficient and no arbitrage is possible.
Under the no-arbitrage hypothesis, indeed, the expected value at time t−1 of the second term
in the right-hand side of (3.4) has to be equal to zero, so that Et−1[Wt] = Wt−1 (1 + rf ).
Consequently, the total wealth is characterized by an unbounded steady increase.

Both for theoretical (i.e. analytical investigations) and for practical (i.e. computer simula-
tions) reasons it is convenient to remove this exogenous economic expansion from the dynamics
of the model. To this purpose it is useful to introduce rescaled variables

wt,i =
Wt,i

(1 + rf)t
, pt =

Pt
(1 + rf)t

, et =
Dt

Pt (1 + rf)
, (3.5)

denoted with lower case names. The relations between the different quantities expressed in
terms of the un-rescaled, upper case, variables and the rescaled, lower-case, ones can be easily
obtained using (3.5). In particular the return from the risky asset Rt reads

Rt =
Pt − Pt−1

Pt−1

= rt(1 + rf) + rf , (3.6)

where rt stands for the price return in terms of the rescaled prices

rt =
pt
pt−1

− 1

so that zero total return for the rescaled prices rt = 0 corresponds to the risk-free actual return
Rt = rf .

We rewrite the market dynamics defined in (3.3) using the set of variables introduced in
(3.5) to obtain





pt =

N∑

i=1

πt,i wt,i

wt,i = wt−1,i + wt−1,i πt−1,i

(
pt
pt−1

− 1 + et−1

)
∀i ∈ {1, . . . , N} .

(3.7)

These equations give the evolution of the state variables wt,i and pt over time, provided that
the stochastic (due to random dividend payment Dt) process {et} is given and the set of
investment shares {πt,i} is specified. As expected, the dynamics defined in (3.7) imply a
simultaneous determination of the equilibrium price pt and of the agents’ wealths wt,i: the N
variables wt,i defined in the second equation appear on the right-hand side of the first, and, at
the same time, the variable pt defined in the first equation appears in the right-hand side of the
second. Due to that simultaneity, these N + 1 equations provide only an implicit definition of
the state of the system at time t. For analytical purposes, it is necessary to derive the explicit
equations that govern the system dynamics.

3.2 Dynamical System for Wealth and Return

The transformation of the implicit dynamics of (3.7) into an explicit one is not generally
possible and entails restrictions on the possible market positions available to agents. This
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can be easily seen in the case of a single agent. Suppose that only one agent operates on the
market, and suppose that he possesses B bonds and 1 equity (i.e. the total supply). If the
agent decides to invest a share π of capital in the risky asset, the price equation would read

π (B + Pt) = Pt . (3.8)

The left- and the right-hand sides of this equations are linear functions of the asset price Pt
and the equilibrium price is thus obtained by the intersection of these two straight lines. It
is immediate to see that if π = 1 the two lines never intersect and if π > 1 the intersection
is in the third quadrant and gives a negative price. We are then led to assume π < 1, i.e. to
forbid short positions in bonds B. In the dynamical setting such requirement transforms into
the restriction on possible sequences of investment shares, since the current trader position
depends on his past investment. Hence, in the general n-agents case we expect to have a
restriction on the possible values of the N -tuple (π1, . . . , πN )’s over time.

Let us introduce an useful notation that allows the formulation of the dynamics in a more
compact form. Let ai be an agent specific variable, dependent or independent from time t.
We denote with

〈
a
〉
t

the wealth weighted average of this variable at time t on the population
of agents, i.e.

〈
a
〉
t

=

∑N
i=1 ai wt,i
wt

, where wt =
N∑

i=1

wt,i . (3.9)

The next result gives the condition for which the dynamical system implicitly defined in
(3.7) is well defined explicitly with positive prices.

Theorem 3.1. From equations (3.7) it is possible to derive a map R+N → R+N that describes
the evolution of wealth wt,i ∀i ∈ {1, . . . , N} with positive prices pt ∈ R+ ∀t provided that

(〈
πt
〉
t
−
〈
πt πt+1

〉
t

)(〈
πt+1

〉
t
− (1− et)

〈
πt πt+1

〉
t

)
> 0 ∀t . (3.10)

If this is the case, the price growth rate rt+1 = pt+1/pt − 1 reads

rt+1 =

〈
πt+1 − πt

〉
t
+ et

〈
πt πt+1

〉
t〈

πt (1− πt+1)
〉
t

(3.11)

and the evolution of wealth, described by the wealth growth rates ρt+1,i = wt+1,i/wt,i − 1, is
given by

ρt+1,i = πt,i
(
rt+1 + et

)
= πt,i

〈
πt+1 − πt

〉
t
+ et

〈
πt
〉
t〈

πt (1− πt+1)
〉
t

∀i ∈ 1, . . . , N . (3.12)

Proof. See appendix A.1.

The explicit price dynamics can be now derived from (3.11) in a trivial way. Price will
be positive if the condition (3.10) is satisfied. This inequality is nothing else than the in-
tertemporal many-agents extension of the constraint π < 1 that we derived from (3.8) on the
permitted values of the control variables. In general, it may be quite difficult to check whether
the inequality in (3.10) holds at each time step. From the practical point of view, it is better
to make this condition more binding but, at the same time, simpler. This is performed in the
following
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Figure 2: Dividend-price ratio. Source: data set on Standard&Poor 500 index by Robert Shiller

available online http://www.econ.yale.edu/~shiller/data.htm.

Proposition 3.1. Consider the system defined in Theorem 3.1. If there exist two real values
πmin and πmax such that

0 < πmin ≤ πt,i ≤ πmax < 1 ∀t , ∀i ∈ {1, . . . , N} (3.13)

and et ≥ 0, the condition (3.10) is always satisfied and the dynamics of (3.12) and (3.11) is
bounded. Moreover, in this case there exist constants ρmin, ρmax, rmin and rmax, such that:

ρmin ≤ ρt,i ≤ ρmax ∀t ∀i and rmin ≤ rt ≤ rmax ∀t .

Proof. See appendix A.2.

Thus, if all possible investment choices are confined on some compact subinterval in (0, 1),
then the equations (3.11) and (3.12) give well-defined dynamics in terms of price and wealths.

Having obtained the explicit dynamics for the evolution of price and wealth one would
be interested in characterizing its fixed point. Unluckily, the dynamics defined by (3.11) and
(3.12) does not possess any interesting fixed point. Indeed, if the price and the wealth are
constant, one would have rt+1 = ρt+1,i = 0 for any t and i. This would imply, in periods when
a positive dividend et is paid, πt,i = 0 for any i. That is, the only possible fixed point is the
one in which there is not demand for the risky asset. The reasons for the lack of interesting
fixed points rests in the fact that, even if an exogenous expansion due to the risk-free interest
rate has been removed with the rescaling of variables performed in Section 3.1, an expansion
due to the dividend payments is still present. The presence of such an expansion would
suggest to look for possible asymptotic states of steady growth. More so if Proposition 3.1
is assumed valid and all the returns are bounded. Notice, however, that this analysis in not
possible in general: the possible dependence of the dividend yield et on price makes impossible
to rewrite the dynamics in Theorem 3.1 is terms of the sole price and wealth returns. But,

9



do we need to retain this dependence? The historical time series of the annual data of et
for the Standard&Poor 500 index are reported in Fig. 3.2. It is apparent that the yield can
be reasonably described as a bounded positive random variable whose behavior is roughly
stationary. This empirical evidence suggests the following additional 1

Assumption 1. The dividend yields et are i.i.d random variables obtained from a common
distribution with positive support, mean ē and standard deviation σe.

Under Assumption 1, the direct dependence on price disappears from (3.11) and (3.12) so
that the dynamics of the economy is fully specified in terms of rt and ρt,i.

4 Large Market Limit and Homogeneous Expectations

The general dynamics described by (3.11) and (3.12) are rather difficult to analyze. One
reason being the necessity to track the wealth of each agent, and, consequently, of having a
system whose dimension is, at least, as large as the number of agents.

Additional complication can come from the actual specification of the investment decisions
π’s, which should be considered, in general, endogenous variables. Let assume a common
information scenario and let It−1 be the information set publicly available to agents at the
beginning of time t. The subscript here stresses the fact that the last available information
is from period t− 1. This set can contain past realizations of price pt−1, pt−2, . . . , of dividend
yield et−1, et−2, . . . , and, in principle, also the entire state of the economy in the previous
time steps, encompassing the choices of different agents and their portfolios. The investment
decision πt,i is naturally based on the set It−1 which, in turn, possesses an infinite dimension.
We are then led to consider an infinite dimensional system in order to dynamically derive the
investment decisions of agents.

In this Section we introduce a simplifying assumption that can be used to obtain a descrip-
tion of the economy in terms of a low dimensional stochastic dynamical system even when
many agents are supposed to operate in the market. To this purpose we need a preliminary
simple

Lemma 4.1. The wealth-weighted average of market investment choices at time t+ 1,
〈
πt+1

〉

can be computed using present wealth shares wt,i according to

〈
πt+1

〉
t+1

=
〈
πt+1

〉
t
+ (rt+1 + et)

(〈
πt+1 πt

〉
t
−
〈
πt+1

〉
t

〈
πt
〉
t

)
. (4.1)

Proof. See Appendix A.3.

Now let us make the following

Assumption 2. There exist a deterministic function F such that

〈
πt
〉
t

= F (It−1) . (4.2)

Moreover, the investment choices at successive time steps satisfy

〈
πt πt+1

〉
t

=
〈
πt
〉
t

〈
πt+1

〉
t

. (4.3)

1This assumption is common to several works in literature, for instance Chiarella and He (2001). Con-
sequently, a further reason to have this assumption introduced is to maintain comparability with previous
investigations.
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In Assumption 2 we require that the average investment choice is described by some time-
invariant function of past information. In addition, we assume that the sample average of the
product of the investment shares can be replaced by the product of their sample averages.
Notice that the averages in (4.3) are wealth-weighted as defined in (3.9).

Let us now analyze the consequences of Assumption 2 on our model. Using (4.3) the price
return in (3.11) reads

rt+1 =

〈
πt+1

〉
t
−
〈
πt
〉
t
+ et

〈
πt
〉
t

〈
πt+1

〉
t〈

πt
〉
t
−
〈
πt
〉
t

〈
πt+1

〉
t

, (4.4)

while, using (3.12), the total wealth growth rate ρt+1 becomes

ρt+1 =
〈
πt
〉
t
(rt+1 + et) =

〈
πt+1

〉
t
−
〈
πt
〉
t
+ et

〈
πt
〉
t

1−
〈
πt+1

〉
t

. (4.5)

These two equations contain only “average” quantities. Moreover, when (4.3) is valid, (4.1)
reduces to

〈
πt+1

〉
t

=
〈
πt+1

〉
t+1

. Substituting this relation in (4.4) and (4.5) and using (4.2)
one can obtain a description of the dynamics of the model in terms of aggregate variables only





〈
πt+1

〉
t+1

= F (It)

rt+1 =
F (It)−

〈
πt
〉
t
+ et

〈
πt
〉
t
F (It)〈

πt
〉
t
−
〈
πt
〉
t
F (It)

ρt+1 =
F (It)−

〈
πt
〉
t
+ et

〈
πt
〉
t

1− F (It)
It+1 = It ∪ {rt+1, ρt+1}

, (4.6)

where the last line is meant to represent the increase in the information set when the new
price, and consequently the new return and aggregate wealth, is revealed.

Under Assumption 2 the dynamics of the system is strongly simplified. One question,
however, remain to be answered: under which circumstances this assumption can be considered
a reliable description of a multi-agent system? Obviously, Assumption 2 is satisfied in the
homogeneous case, when all agents possess the same beliefs and preferences, so that at each
time step πt,i =

〈
πt
〉
t
, ∀i.

A more interesting example is constituted by the case of “purely noisy” agents. Suppose
that at each time step the investment shares of the N agents are randomly and independently
drawn from a common distribution with average value π̄ and support in (0, 1). In this case the
informational set is irrelevant and in the N → ∞ limit, if the share of wealth of each agent
goes to zero, one has

〈
πt
〉
t

= π̄. In this case, (4.3) is clearly fulfilled, so that the conditions of
Assumption 2 are replicated, and the dynamics of returns in (4.4) reduces to

rt+1 =
π̄

1− π̄ et . (4.7)

The return rt fluctuates around some average value which depends positively both on the
dividend yield and on the average investment share π̄.

We can generalize the “pure noise” model and assume that the investment decision of each
agent is a ”noisy” version of a basic common choice; formally

πt,i = F (It−1) + εt,i , (4.8)
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where the ε’s are independent (across time and across different agents) random variables
with zero mean. When N → ∞ the sample of independent random variables becomes large,
the sample average converges to the average of the variable distribution, so that one can
expect2 that

〈
πt
〉
t
→ F (It−1). If shocks are independent across time, one can also expect the

fulfillment of (4.3) for the corresponding limits. Therefore, the dynamics are described by the
system (4.4) and (4.5) with

〈
πt
〉
t

replaced by F (It−1). Since any “theoretical” relation for the
averages of random variables is violated on finite samples, we consider this behavior as a sort
of “limiting” situation and call it a Large Market Limit (LML). Proposition 3.1 guarantees
that when the range of F is a compact subinterval of (0, 1), the price is always positive.

Since all the statements in the previous paragraph were only presumable, one should
immediately pose the question about their validity. The answer, of course, could depend
on the particular functional form chosen for F . In more general terms, one could ask the
question: Under which specifications the LML theoretically exists, i.e. in which sense and
under which conditions the limit of

〈
πt
〉
t

is defined and when relation (4.3) is satisfied? We
do not give a general answer to this non-trivial question in this paper, leaving it for future
research. Instead, we use the following approach: in the next Section we analyze different
models, obtained from different specifications of the agents behavior, assuming that the LML
exists. In Section 6, with the help of computer simulations, we show to what extent the LML
can be considered a satisfactory approximation of the actual multi-agents dynamics.

5 Technical Trading in the Large Market Limit

For the present analysis we assume that the agent investment choice πt+1 only depends on
past realized price returns, so that the information set is reduced to the past returns history
It = {rt, rt−1, . . . }. In this way the past wealth return ρt does not affect future investment
decisions and the wealth dynamics can be removed from (4.6). Notice that, in our framework,
the behavior of agents who base their investment choices on the sole analysis of past prices
returns cannot be considered inconsistent. Since we postulate, in Assumption 1, that the
dividend process is stationary and proportional to price and that this information is publicly
available, the notion of under- or over-evaluated asset cannot be applied and the price and
wealth levels should be disregarded in agent’s decisions. In such circumstances, deciding
the present investment choice on the base of past market returns is a completely consistent
behavior.

Under the previous assumptions, the dynamics of the model is defined by the following





〈
πt+1

〉
t+1

= f(rt, rt−1, . . . )

rt+1 =

〈
πt+1

〉
t+1
−
〈
πt
〉
t
+ et

〈
πt
〉
t

〈
πt+1

〉
t+1〈

πt
〉
t
−
〈
πt
〉
t

〈
πt+1

〉
t+1

.
(5.1)

The function f fully describes the way in which agents process information about past market
performances to decide their future investment. It encompasses both the forecasting activity
and the portfolio decision that agents make based on the outcome of this activity. The system
(5.1) remains, in general, infinitely dimensional due to the dependence of f on the entire
history of realized returns.

2Note that all averages which we consider are weighted with respect to variables changing over time.
Therefore we cannot straightforwardly use any limit theorem to justify our reasoning.
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In what follows we will consider examples, of increasing generality, in which agents decide
future investments making use of only a small number of statistics obtained from the available
information set. In this way, one is able to reduce the description of the model to a low-
dimensional system. For the sake of clarity but with some abuse of notation, in the following
analysis we will use πt to denote the wealth-weighted average

〈
πt
〉
t
.

5.1 Näıve forecast

The simplest forecasting rule consists in taking the last realized return as a predictor for
the next period return. We denote this rule as “näıve forecast”. If one assumes that agents
conform to this rule, the system (5.1) reduces to





πt+1 = f(rt)

rt+1 =
f(rt)− πt + et πt f(rt)

πt (1− f(rt))

(5.2)

where the function f is defined on (−1,+∞), i.e. for all possible price returns. In principle
the image of f can be the whole real set. In general, however, for certain values of πt the
ensuing dynamics can violate (3.10) and lead to negative or infinite prices. As a solution of
this problem, one can supplement the system above with the requirement that Proposition 3.1
has to be fulfilled. This is equivalent to consider a function f with values in (0, 1).

To analyze the possible equilibria that characterize (5.2), we consider its dynamical skele-
ton, replacing the random dividend et with its mean value ē. We have the following:

Proposition 5.1. Consider the deterministic skeleton of (5.2). If (π∗, r∗) is a fixed point of
the system, then

(i) The equilibrium is feasible, i.e. the equilibrium prices are positive, if π∗ < 1.

(ii) The equilibrium investment share π∗ satisfies

π∗ = f

(
ē

π∗

1− π∗
)

. (5.3)

and the price return is defined by

r∗ = ē
π∗

1− π∗ . (5.4)

(iii) The fixed point is (locally) asymptotically stable if

f ′

π∗ (1− π∗) < 1 ,
r∗ f ′

π∗ (1− π∗) < 1 and
(2 + r∗) f ′

π∗ (1− π∗) > −1 , (5.5)

where f ′ = df(r∗)/dr.

Proof. See Appendix A.4.

The first condition states that economically meaningful equilibria3 are characterized by
values of the average investment share inside the open interval (−∞, 1). This condition derives

3In principle, also a feasible equilibria can lead to the appearance of negative prices when the average
dividend ē is substituted by a realization of the dividend process ē→ et.
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Figure 3: An arbitrary function f is shown in panel (a), and the associated function g, defined
according to (5.6), is reported on panel (b). Any fixed point of g, i.e. any intersection of its graph
with the diagonal line gives the equilibrium value of the investment share π∗. The equilibrium value
of the return r∗ is defined according to (5.4)

from the specification of (3.10) to the case of homogeneous choices and from the further
requirements that r∗ > −1. According to (5.4), if π∗ is positive, the equilibrium return is
positive and the asymptotic dynamics is a steady increase of the risky asset price. If π∗

is negative, the equilibrium price return is also negative and the price of the risky asset
goes asymptotically to 0. Finally, if π∗ = 0 the price of the asset is stationary4. Once the
function f is specified, all the equilibria are characterize through (5.3). Notice that if one
considers a choice function f with image in (0, 1), so to fulfill Proposition 3.1, only equilibria
associated with asymptotically increasing prices (r∗ > 0) are possible. In general, however,
any equilibrium investment share π∗ can be seen as the fixed point of an auxiliary function g,
defined on (−∞, 1) according to

g(π) = f

(
ē

π

1− π

)
. (5.6)

The function g transforms monotonically the interval (−∞, 1) into (−1,+∞) and applies f
to the result. See the example reported in Fig. 3.

Finally, the third point of Proposition 5.1 provides the conditions for the asymptotical
stability of the fixed point. The stability regions can be easily represented in the parameters
space using the function g defined in (5.6). Since g′(π∗) = ē f ′(r∗)/(1 − π∗)2, the conditions
(5.5) can be rewritten in a more compact form using g and read

g′

r∗
< 1 , g′ < 1 and g′

2 + r∗

r∗
> −1 , (5.7)

where g′ stands for the derivative of the function g computed in π∗. In Fig. 4 we draw the
stability region for the fixed point in the coordinates r∗ and g′(π∗). As can be seen, if the
absolute value of the slope of g, and, hence, of f , computed at the equilibrium return r∗,
increases, the system tends to lose its stability. At the same time, fixed points characterized
by smaller values of r∗ are, in general, less stable.

4Remember, however, that we are describing the economy in terms of the rescaled variables defined in (3.5)
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Figure 4: The stability region (gray) and the bifurcation types for the system (5.2) in parameter
space with coordinates r∗ and g′(π∗). The fixed point is locally stable if it belongs to the gray area
which is the union of two disjoint open sets. The type of bifurcation that the system undertakes
when it leaves this area are denoted by labels on the boundaries that would be crossed.

To understand the effect of the slope of the function f on the fixed point stability, let us
observe the impact on the system (5.2) of a sudden positive shock in the investment share. We
will assume that the function f is increasing in the fixed point r∗, the case of the decreasing
function being similar. Let us suppose that at time 0 the system is in the fixed point (π∗, r∗).
At the beginning of time t = 1 the investment share suddenly increases of an amount δπ > 0
so that π1 = π∗+δπ. Since the price return is an increasing function of the present investment
choice, the price return at time t = 1 becomes larger than the equilibrium value r∗ and, for
small values of δπ one has r1 ∼ r∗ + α δπ where the coefficient α depends on the values of
π∗ and ē. At the next time step t = 2, the previous increase in the price return leads to an
increase in the agent excecation about future return and, consequently, to an higher value of
the agent investment shares pi2, given by π2 = f(r∗ + α δπ) ∼ π∗ + f ′ α δπ. The slope of the
investment function f ′ affects the strength with which agent reacts to variations in expectation
level. The future dynamics of the system crucially depends on how sensitive the investment
share is to these variations. Indeed, if f ′ � 1 it is π∗ < π2 < π1 and the system moves again
toward the fixed point. In general, the fixed point can be stable also when f ′ is large enough
to generate a reinforcement effect, such that π2 > π1. Since the return r2 depends on both π2

and π1, the reinforcement should be large enough to lead to an increase in the price return
r2 > r1. If this is not the case, the system starts to revert toward the fixed point in the
following step t = 3.

On Fig. 5 we show how the oscillations of π and r damp when the slope of the function f
is small and how they are reinforced in the opposite case. On panel (b), the return falls down
immediately at t = 1, while on panel (d) it increases further and create a quasi-periodical
behavior with period 6.
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Figure 5: Trajectories for systems perturbed away from equilibrium. When the function f(r) =

0.5 + 0.0498 r and the fixed point (0.501, 0.02) are considered, both π (panel a) and r (panel b)

stabilize through the oscillations. For the function f(r) = 0.5 + 0.26 r the oscillations of π (panel c)

and r (panel d) around the fixed point (0.505, 0.02) are reinforcing and the system does not stabilize.

In both cases is ē = 0.02.

One can get more insights by applying the Theorem B.2 from Appendix B to analyze the
type of bifurcation occurring when one of the conditions in (5.5) is violated. The bifurcation
analysis is provided by the following

Proposition 5.2. Let us suppose that two of the three inequalities in (5.5) hold. Then,
generally, the fixed point of the system (5.2) undertakes a

(i) fold bifurcation, if r∗ f ′ = π∗ (1− π∗);

(ii) flip bifurcation, if (2 + r∗) f ′ = −π∗ (1− π∗);

(iii) Neimark-Sacker (secondary Hopf) bifurcation, if f ′ = π∗(1− π∗).

A summary of the previous results is reported in Fig. 4 where the labels along the bound-
aries of the stability set specify the type of bifurcation that the system undertakes when that
particular curve is crossed. Notice that for relatively small values of the equilibrium price re-
turn, i.e. |r∗| < 1, the system can loose stability through a flip or Neimark-Sacker bifurcation.
In this case, if one perturbs the system away from its equilibrium with a small shock on the
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investment share, the large absolute value of f ′ is responsible for an amplification of this per-
turbation, based on the feedback mechanism that links investment share and market return,
which ultimately leads to an oscillatory system behavior. For larger values of the equilibrium
return, namely r∗ > 1, if the investment choice function is too steep at the equilibrium, i.e. if
f ′ > 1, the equilibrium is lost by a fold bifurcation, which implies a local exponential growth
of the price returns.

5.2 Forecast by extrapolation of past average return

Next we move from the “naive” forecast of the previous example to the case in which agents use
a slightly more sophisticated forecasting techniques: they take, as predictor of future return,
the average of past realized returns. Inside this framework, it seems reasonable to consider
weighted averages, since one can think that the mood prevailing on the market may change
over time and more recent values of the price return could contain more information about
future prices than the older ones. This requirement is satisfied by the exponentially weighted
moving average (EWMA) estimator yt defined as

yt = (1− λ)
∞∑

τ=0

λτ rt−τ (5.8)

where λ ∈ [0, 1) is a parameter describing the weights attached to past realized returns. The
weights are declining geometrically in the reverse time, so that the last available observation
rt has the highest weight. The value of λ determines how the relative weights are distributed
among the recent and older observations. Intuitively, even if all past observations are taken
into account in the definition of yt, one can say that λ measures the length of the agent’s
memory. The extreme value λ = 0 corresponds to the the näıve forecast considered above.

The EWMA estimator admits the following recursive definition

yt = λyt−1 + (1− λ)rt (5.9)

so that (5.1) can be reduced to a finite dimensional system





πt+1 = f(yt)

yt+1 = λyt + (1− λ)
f(yt)− πt + et πt f(yt)

πt (1− f(yt))

. (5.10)

Analogously to the näıive forecast case, the investment share is defined as some function of
the forecasted return. In the present case, however, the forecasted return is provided by the
EWMA estimator yt. The function f is defined on the interval of possible returns (−1,+∞).
As in the previous example, further constraints on the image of the function f might be
required in order to keep the dynamics of the system inside the set of economically meaningful
states.

The following result characterizes the existence and the local stability of the fixed points
of system (5.10)

Proposition 5.3. Consider the deterministic skeleton of system (5.10). If (π∗, y∗) denotes a
fixed point of the system then

(i) The equilibrium is feasible, i.e. the equilibrium prices are positive, if π∗ < 1.
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(a) (b)

Figure 6: In the coordinates y∗ and g′(π∗) for the system (5.10), it is shown: (a). The enlargement

of the stability regions with increase of λ. For small value λ = 0.1, the fixed point is locally stable in

one of two black sets. When λ increases to the value 0.7, the stability area in addition contains two

grey areas. (b). Types of the bifurcations.

(ii) The equilibrium investment share π∗ satisfies

π∗ = f

(
ē

π∗

1− π∗
)

, (5.11)

the equilibrium price return is equal to the equilibrium value of the predictor, r∗ = y∗,
and is given by

r∗ = ē
π∗

1− π∗ . (5.12)

(ii) The fixed point is (locally) asymptotically stable if

f ′

π∗ (1− π∗) <
1

1− λ ,
r∗ f ′

π∗ (1− π∗) < 1 and
(2 + r∗) f ′

π∗ (1− π∗) > −
1 + λ

1− λ , (5.13)

where f ′ denotes the derivative of the function f in the point y∗.

Proof. See Appendix A.5.

The dynamics of system (5.10) is very similar (at least locally, near the fixed points) to the
dynamics in the case of näıve forecast. Indeed, the possible values of economically meaningful
equilibria can be still characterized as fixed points of the auxiliary function g defined in (5.6).

According to item (ii), at equilibrium the realized price return r∗ coincides with the pre-
diction of the EWMA estimator y∗. This is an important consistency result. In general, any
meaningful economic dynamics should avoid equilibria based on systematic mistakes by the
side of traders.

The stability conditions (5.13) are similar to the conditions obtained for näıve forecast and
reduce to them when λ = 0. With the help of the auxiliary function g the stability region can
be defined by a simple set of inequalities

g′

r∗
<

1

1− λ , g′ < 1 and g′
2 + r∗

r∗
> −1 + λ

1− λ . (5.14)
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Two different regions defined by (5.14) with two different values of the parameter λ are shown
in panel (a) of Fig. 6. As can be seen, the increase in the value of the parameter λ, that is,
loosely speaking, in the agent’s memory length, brings stability into the system 5. This can be
easily understood comparing the EWMA forecast (5.8) with the näıve forecast: any shock in
the present investment behavior leads to smaller changes in the expected future return when
the former is used instead of the latter.

Since the value of λ does not affect the position of the fixed point, the enlargement of the
stability region with the increase of the value of λ implies that the system can be stabilized
by means of this sole parameter. Any fixed point (except, possibly, the ones with y∗ = 0)
becomes stable when λ takes a sufficiently large value (see Fig. 6).

The possible ways in which a system fixed point can loose stability when the values of the
different parameters are varied is provided by the following

Proposition 5.4. Let us suppose that two of the three inequalities in (5.13) hold. Then,
generally, the fixed point of the system (5.10) undertakes

(i) fold bifurcation, if r∗ f ′ = π∗ (1− π∗);

(ii) flip bifurcation, if (2 + r∗) f ′ = −π∗ (1− π∗) (1 + λ) /(1− λ);

(iii) Neimark-Sacker (secondary Hopf) bifurcation, if f ′ = π∗(1− π∗)/(1− λ).

Proof. This result is a straight-forward application of the Theorem B.2 from Appendix B.

An illustration of the last Proposition is given in panel (b) of Fig. 6.

5.3 Forecast by extrapolation of past average return and variance

Our last example of the application of the LML consists in the extension of the previous model
to agents who decide their future investment based not only on the estimated value of future
return, but also on the estimated variance. The latter can indeed be thought as a measure of
expected risk. We introduce the exponentially weighted moving average (EWMA) estimator
for the variance

zt = (1− λ)

∞∑

τ=0

λτ
(
rt−τ − yt

)2
, (5.15)

where yt is an EWMA of past returns as given in (5.8) and λ ∈ [0, 1) is the usual “memory”
parameter. Notice that the estimators (5.8) and (5.15) together admit the following recursive
definition

yt = λyt−1 + (1− λ)rt

zt = λzt−1 + λ (1− λ)
(
rt − yt−1

)2
, (5.16)

which allows the reduction of (5.1) to a 3-dimensional dynamical system




πt+1 = f(yt, zt)

yt+1 = λyt + (1− λ)
f(yt, zt)− πt + et πt f(yt, zt)

πt (1− f(yt, zt))

zt+1 = λzt + λ(1− λ)

[
f(yt, zt)− πt + et πt f(yt, zt)

πt (1− f(yt, zt))
− yt

]2

. (5.17)

5This is a quite intuitive and robust result that in Bottazzi (2002) has been found to characterize the LML
also in CARA framework
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The investment function f depends now on two variables, yt and zt, and is generally defined
on (−1,+∞)× [0,+∞). Again, further requirements on its functional form might be needed
in order to obtain meaningful economic dynamics. The discussion of the previous examples
directly applies.

The following Proposition characterizes the fixed points of (5.17) and gives the sufficient
conditions for their local stability.

Proposition 5.5. Consider the deterministic skeleton of system (5.17). If (π∗, y∗, z∗) denotes
a fixed point of the system than

(i) The equilibrium is feasible, i.e. the equilibrium prices are positive, if π∗ < 1.

(ii) The equilibrium investment share π∗ satisfies

π∗ = f

(
ē

π∗

1− π∗ , 0
)

. (5.18)

the equilibrium price return is equal to the equilibrium value of its predictor, r∗ = y∗,
and is given by

r∗ = ē
π∗

1− π∗ (5.19)

while for the predictor of variance it is z∗ = 0.

(iii) The fixed point is (locally) asymptotically stable if

f ′y
π∗ (1− π∗) <

1

1− λ ,
r∗ f ′y

π∗ (1− π∗) < 1 and
(2 + r∗) f ′y
π∗ (1− π∗) > −

1 + λ

1− λ , (5.20)

where f ′y denotes the partial derivative of the function f with respect to the first variable
computed in the point (y∗, 0).

Proof. See Appendix A.6.

There are only minor differences between the last statement and Proposition 5.3. In item
(ii) the condition characterizing the equilibrium average investment share π∗ has slightly
changed, because the function f now depends on two variables. However, the geometrical
characterization of equilibria as fixed points of an auxiliary function g is still valid, provided
one uses the function g(π) = f(ē π/(1−π), 0). Accordingly, the illustration in Figure 3 is still
valid. The consistency result for the equilibrium return estimator y∗ = r∗ is confirmed and is
extended to the variance estimator z∗, whose value at equilibrium becomes zero, as expected
for a geometrically increasing price dynamics.

The stability conditions given in item (iii) are the same as in (5.13), with the only difference
that now is the partial derivative of function f that enters the expression. With the help of the
auxiliary function g, (5.20) can be reduced to the set of conditions (5.14). As a consequence,
the stability regions looks the same as in Fig. 6 and the bifurcation analysis remains unchanged.
Proposition 5.4 holds for the system (5.17) as well.

In conclusion, even if the introduction of a measure of risk could change the global behavior
of the system, the local dynamics in a neighborhood of the fixed points remain essentially the
same.
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5.4 An Example: Extending the Chiarella and He model

The framework discussed in the previous sections can be used to model a large class of trad-
ing behaviors. Different behaviors are described by different possible specifications of the
investment function f.

Here, as a simple exercise, we show how the general theorems provided above can be used
to replicate and extend some of the results presented in Chiarella and He (2001). In the next
Section we briefly review the assumptions of this paper and write down the relevant equations
using the original notations. In the Section that follows, we show how to translate these
equations in our framework and obtain the generalization of the original results.

5.4.1 Definition of the model

This paper describe a two asset economy identical to the one introduced in Sec. 3. The risky
security pays a dividend Dt so that the ex-dividend return on the risky asset at period t reads

rct+1 =
Pt+1 +Dt − Pt

Pt
. (5.21)

The dividend yield αt = Dt/Pt is assumed i.i.d and the investment choice πt,i of agent i at
time t is obtained by maximizing the expected utility of future wealth

max
πt,i

E [U(Wt+1,i)] , (5.22)

where U stands for a CRRA power-like utility function

U(W ) =
W 1−γ

1− γ , (5.23)

and the parameter γ represents the degree of relative risk aversion. Due to the impossibility
of finding an explicit expression of the solution of (5.22), Chiarella and He propose a mean-
variance approximation obtained considering a continuous time analogue to this optimization
problem6.

Under this approximation each agent i is assumed to form expectation at time t about
future return Et,i[r

c
t+1] and variance Vt,i[r

c
t+1] and his individual demand curve reads

πt,i =
1

γ

Et,i [r
c
t+1]− rf

Vt,i [rct+1]
. (5.24)

The precise definition of this demand function depends on how agents form expectations
with respect to future returns and returns variance. Chiarella and He consider the following
specifications

Et [rct+1] = rf + δ + d r̄ct (5.25)

Vt [rct+1] = σ2 [1 + b (1− (1 + vt)
−ξ)] (5.26)

6See Appendix A.1 in Chiarella and He (2001). Notice that no optimization of the error incurred in
considering the mean-variance approximation is provided so that one does not know how much of the final
result depends on it.
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where r̄ct−1 and vt−1 stand for the sample estimates of the average return and variance computed
as equally weighted averages of the previous L observations

r̄ct =
1

L

L∑

k=1

rct−k and vt =
1

L

L∑

k=1

[rct−k − r̄ct−1]2 . (5.27)

The expected conditional return (5.25) is defined as the risk free rate rf plus the excess return.
The latter is made of a constant component, a sort of risk premium, δ > 0, and a variable
component, d r̄ct , proportional to the sample average of past realized returns. The parameter
d is assumed to represent the way in which agents react to variations in the history of realized
returns and can be used to distinguish between different classes of investors. A trader with
d = 0 will ignore past realized returns and, consequently, can be thought as a fundamentalist. If
d > 0 the agent can be considered a trend follower, and a contrarian if d < 0. Analogously, the
expression for the conditional variance (5.26) contains a constant component σ2 and depends
on the realized variance through two parameters, b and ξ.

5.4.2 Equilibrium analysis in the homogeneous case

In Chiarella and He (2001) an analytical result is presented which characterizes the existence
and the stability of the fixed points in the case of homogeneous expectations when L = 1. For
larger values of L, the authors rely only on numerical simulations to show that an increase in
the value of L tends to stabilize the system.

In what follows we introduce a slight modification of (5.27) that leaves, however, the spirit
of the original assumptions unchanged. In this way we are able to present the analytical
investigation of equilibrium stability for longer time horizons.

As a first step, however, it is convenient to rewrite the agent demand function according
to the notations introduced in Sec. 3.1.

Separating the contribution of the capital gain from the dividend yield (5.27) becomes

r̄ct =
1

L

L∑

k=1

Rt−k +
1

L

L∑

k=1

αt−k−1 (5.28)

vt =
1

L

L∑

k=1

[
Rt−k −

1

L

L∑

k=1

Rt−k +
(
αt−k−1 −

1

L

L∑

k=1

αt−k−1

)]2
. (5.29)

Since we are interested in the analysis of the deterministic skeleton of the system we can
replace the yield process {αt} with its average ᾱ so that the second term in (5.29) disappears
and, using the definitions in (3.5) one has

r̄ct = rf + ē (1 + rf) +
1

L
(1 + rf)

L∑

k=1

rt−k (5.30)

vt =
1

L
(1 + rf)

2
L∑

k=1

(
rt−k −

1

L

L∑

k=1

rt−k
)2

(5.31)

where ē = ᾱ/(1 + rf).
In order to obtain a more tractable expression we replace the equally weighted averages

that appears in the previous equations with the respective EWMA estimator defined in (5.8)
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and (5.15). With the substitution

1

L

L∑

k=1

rt−k → yt (5.32)

1

L

L∑

k=1

(
rt−k −

1

L

L∑

k=1

rt−k

)2

→ zt (5.33)

one obtains

r̄ct = rf + ē (1 + rf) + yt (1 + rf) (5.34)

vt = (1 + rf )2 zt . (5.35)

The estimators yt and zt depend on the parameter λ. For λ = 0 they reduce to the original
equally weighted estimators for L = 1. With the increase of λ, the weight on the past
realizations is higher so that the effect is equivalent to an increase in the parameter L.

With this choice for the estimators the agent investment function reduces to a particular
case of the general form discussed in Sec. 5.3. Indeed, considering (5.34) and (5.35) together
with the expression for the individual demand function (5.24) one has

f(yt, zt) =
δ̄ + d̄ α + d̄ rf + d̄ yt (1 + rf)

1 + b [1− (1 + (1 + rf)2 zt)−ξ]
(5.36)

where δ̄ = δ/(γ σ2), d̄ = d/(γ σ2) and α = (1 + rf) ē. Applying Proposition 5.5 one gets

Proposition 5.6. Consider the deterministic skeleton of system (5.17), where the function f
is given in (5.36). Then:

(i) The equilibrium investment share π∗ satisfies

π∗ = δ̄ + d̄ α + d̄ rf + d̄ y∗ (1 + rf) . (5.37)

(ii) The equilibrium price return is characterized as follows:

(ii.a) if d̄ = 0

y∗ = r∗ = ē
δ̄

1− δ̄ , (5.38)

(ii.b) if d̄ 6= 0

y∗± = r∗± = −ē− 1

2 (1 + rf)


rf +

δ̄ − 1

d̄
±
√(

rf −
1− δ̄
d̄

)2

− 4 ē (1 + rf)

d̄


 , (5.39)

when the expression under the squared root in the right-hand side is non-negative.

(iii) The following conditions are sufficient for the local asymptotical stability of the fixed
point:

d̄ C < 1 , −d̄ A <
1

1− λ and d̄ (2A− C) <
1 + λ

1− λ , (5.40)

where A and C read

A =
1 + rf

π∗ (π∗ − 1)
and C =

α

(π∗ − 1)2
. (5.41)
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Proof. Consider the definition of f as in (5.36) and substitute it in (5.18) to obtain (5.37).
Substituting this last equation in (5.19) one has

(y∗ + ē) (1− δ̄ − d̄ē (1 + rf)− d̄rf − d̄y∗(1 + rf)) = ē . (5.42)

If d̄ = 0, then r∗ = ē δ̄/(1− δ̄), and (ii.a) is proven. If d̄ 6= 0, you get (ii.b) by solving (5.42)
as a second degree equation in y∗. From (5.36), it is f

′
y = d̄/[1 + b[1 − (1 + vt)

−ξ]] and from
(5.37) and (5.39) substituted into (5.20), (iii) immediately follows.

First of all notice that the equilibrium conditions (5.38) and (5.39) in our model correspond
to equations (3.4) and (3.5) in Proposition 3.1 of Chiarella and He (2001) respectively. The
expression of the fixed points does not depend on the value of λ (or L).

For λ > 0 (i.e. L = 1), the conditions in (5.40) exactly replicate those in Corollary 3.3 in
Chiarella and He (2001). As can be seen from (5.40), with the increase in the memory length,
the system becomes more stable, coherently with the idea that the more cautious the choice
of the agent with respect to recent returns, the higher the stability of the return dynamics.

6 Numerical Analysis of the Large Market Limit

In the previous analysis we have presented analytical results on the existence and stability of
equilibria for a class of different deterministic dynamical systems. However, our main interest
lies in the analysis of agent-based models characterized by, at least, two different sources of
randomness: first, the idiosyncratic noise components εt,i appearing in the definition (4.8)
of the agent investment choice and, second, the exogenous stochastic dividend process {et}
defined in Assumption 1. In order to reduce the analysis of stochastic models to deterministic
ones, we have made two distinct simplifications: we postulated that, when a large number
of agents is present on the market, the aggregate effect of the choices of the different agents
can be reduced, under the Large Market Limit, to a deterministic function of the state of the
market so that one can rely on Assumption 2 to obtain the dynamics of the model. Next,
we replaced the dividends process et with its mean ē in the low-dimensional system obtained
under Assumption 2 in order to derive the deterministic dynamics that has been studied using
the standard tools of the theory of dynamical systems.

Obviously, the analysis of the derived deterministic systems is worthwhile only as far as
the two simplifications described above represent a meaningful approximation of the original
model. In other terms, one should prove that the actual differences between the deterministic
and the original stochastic model can be considered, in the cases of interest, ”small”. To this
purpose, first, it is necessary to understand how an to what extent the dynamics generated
by a finite population of agents differ from the ones obtained under Assumption 2. Second,
one has to compare the behavior of the deterministic case to the behavior of the system when
different realizations of the stochastic dividend process are considered.

With the help of computer simulations we try to explore both these issues here. We are not
able to provide general results, however, and we limit our analysis to few examples that can,
nonetheless, be considered representative of the cases discussed in the previous examples. As
we illustrate below, it turned out that, even if differences between the limiting deterministic
behavior and the actual stochastic implementation of the model do exist, they become smaller
when the size of the population of agents increases and the variance of the dividend process
decreases.
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Figure 7: Trajectories of the system for naive forecasters with linear investment function f1(r) =

0.5 + 0.0498r. Panel (a): the LML with constant dividend yield (the thickest line) is compared with

simulations obtained with a population of N = 1000 idiosyncratic agents and two different values of

the variance of the idiosyncratic shocks εt,i. Panel (b): simulations with different number of agents

and a fixed variance of the idiosyncratic components in investment functions σ2
ε = 0.00002. Panel

(c): the dynamics in the LML with constant dividend yield (the thickest line) is compared with the

LML with yield drawn from the normal distribution. Results with two different values for the yield

variance are shown. Panel (d): the LML with random dividend yield (the thickest line) is compared

with the simulation with 1 and 50 agents.

6.1 Effect of agent-specific noise

Let us start considering a constant dividend yield ē and focus on the effect of the noisy
components in agents investment function. Let us consider the simple case of a linear invest-
ment function. For definiteness, consider the “naive” (see Section 5.1) investment function
f(r) = 0.5 + 0.0498 r. Under the LML the system converges to the stable equilibrium with
price return r∗ ' 0.02008016. If noise is added to the individual demand functions, the ob-
served returns fluctuates, as shown in Fig. 7. However, when the number of agents is fixed,
the variance of these fluctuations decreases with the variance of εt,i (panel a). At the same
time, if the variance of the noise is kept fixed, the variance of the fluctuations decreases with
the increase of the population size N (panel b). Both these effects are presented in Table 1
where the sample mean and variance of simulated trajectories are reported for different values
of the number of agents N and of the variance of the idiosyncratic noise σ2

ε . When N →∞ or
σ2
ε → 0, the average of the return converges to r∗ and the variance goes to 0. In order to show

that these results are not simulation-specific, we compute the mean absolute deviation from r∗
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Figure 8: Average over 100 simulations of the sample mean (boxes) and variance (circles) of the
deviation of returns from the LML deterministic system as function of the number of agents. Different
lines correspond to different values of the variance σ2

ε . Panel (a): constant dividend yield. Panel (b):
random dividend yield.

σ2
ε 0.000001 0.00001 0.0001 0.001 0.01

N = 1 2.008205e-02 2.009684e-02 2.023999e-02 2.165633e-02 3.573289e-02
1.773948e-03 5.609896e-03 1.774379e-02 5.621061e-02 1.807372e-01

N = 10 2.008040e-02 2.008231e-02 2.010091e-02 2.028336e-02 2.193753e-02
6.410769e-04 2.027306e-03 6.409194e-03 2.018357e-02 6.131534e-02

N = 100 2.008017e-02 2.008032e-02 2.008195e-02 2.009849e-02 2.026070e-02
1.943986e-04 6.147246e-04 1.943614e-03 6.138590e-03 1.920147e-02

N = 1000 2.008022e-02 2.008036e-02 2.008093e-02 2.008390e-02 2.010480e-02
6.359172e-05 2.011009e-04 6.359529e-04 2.010011e-03 6.309014e-03

N = 10000 2.008018e-02 2.008023e-02 2.008040e-02 2.008099e-02 2.008099e-02
2.034083e-05 6.432284e-05 2.033877e-04 6.426056e-04 6.426056e-04

Table 1: Sample means and standard deviations of the price return for different number of agents

N and different values of the idiosyncratic component variance σ2
ε .

and the return variance over 100 independent simulations. The results are presented on panel
(a) of Fig. 8. as can be seen, both variables converge to 0 when the size of the population
increases.

6.2 Randomness of the yield

Now let us explore the dynamic effect of considering random dividends. On panel (c) of
Fig. 7 we compare the return dynamics of the stochastic system (5.2) with the dynamics of
its deterministic skeleton. The presence of random dividends distorts the returns trajectory.
When the variance of the yield decreases, however, these distortions become smaller and
smaller.

Finally, it is interesting to investigate the interplay between the two sources of randomness.
In particular, one can ask whether the low dimensional stochastic system obtained under
Assumption 2 is a good approximation of the ”typical” dynamics in the case of many agents
with noisy investment functions. In panel (d) of Fig. 7 we compare the returns dynamics
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obtained from system (5.2) (with random dividends) with the dynamics generated by the
multi-agents model for different population sizes N . As can be seen, the observed differences
decrease when the number of agents increases. This is confirmed by the statistics obtained
from repeated independent simulations reported in panel (b) of Fig. 8.

In conclusion, we can say that, for what concerns the framework considered in Section 5,
the LML provides, at least locally, a reasonable approximation of the original models also for
a moderately small (N ∼ 50) population of agents.

7 Heterogeneous Agents

Until now the heterogeneity in agents’ demand came into our analysis only through idiosyn-
cratic small random components, that we averaged out using the Large Market Limit. Indeed,
Assumption 2 played a major role in the previous analysis.

In this Section we will move to a “truly” heterogeneous model in which the individual
investment functions of different agents are structurally different. We still assume that these
functions are based on EWMA estimation of future price dynamics. For the sake of simplicity,
we confine our analysis on the case of 2 agents, but the results can be easily generalized for
larger population.

Let us suppose that 2 agents operate on the market. At the beginning of time t + 1 they
consider previous market performances to compute: (i) the exponentially weighted moving
averages of realized returns yt,1 and yt,2 according to (5.8), and (ii) the exponentially weighted
moving averages of realized variance zt,1 and zt,2 according to (5.15). We allow different weights
in agents’ estimates, which we denote as λ1 and λ2, respectively. Agent i (i ∈ {1, 2}) chooses
his investment share πt+1,i according to

πt+1,i = fi(yt,i, zt,i) , (7.1)

where f1 and f2 are two arbitrary continuous functions with values in [πmin, πmax] ⊂ (0, 1).
According to the Proposition 3.1, the resulting dynamics is guaranteed to generate positive
prices and can be described using (3.11) and (3.12).

As discussed in Section 3, the system cannot possess any fixed point in terms of wealths
and prices. One has, instead, to analyze the system in terms of price and portfolios returns.
To this purpose it is convenient to write the 2 agents system using the relative agents wealths
ϕt,i = wt,i/wt (i ∈ {1, 2}), where wt = wt,1 + wt,2 stands for the total wealth. In this way, the
dynamics of the total wealth can be removed from the system to obtain a 7-dimensional system
with the following state variables: the agents investment choices πt,1 and πt,2 defined in (7.1),
the agents forecast about future return yt,1 and yt,2, the agents forecast about future variance
zt,1 and zt,2, and, finally, the relative wealth of the first agent ϕt,1 (of course, ϕt,2 = 1− ϕt,1).





πt+1,1 = f1(yt,1, zt,1)

πt+1,2 = f2(yt,2, zt,2)

yt+1,1 = λ1 yt,1 + (1− λ1) rt+1

yt+1,2 = λ2 yt,2 + (1− λ2) rt+1

zt+1,1 = λ1 zt,1 + λ1 (1− λ1)
(
rt+1 − yt,1

)2

zt+1,2 = λ2 zt,2 + λ2 (1− λ2)
(
rt+1 − yt,2

)2

ϕt+1,1 =
ϕt,1 (πt,1 (rt+1 + ē) + 1)

1 + (πt,2 + ϕt,1 (πt,1 − πt,2)) (rt+1 + ē)
,

(7.2)
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where the price return rt+1 is given by

rt+1 =
ϕt,1 (f1(yt,1, zt,1) (1 + ē πt,1)− πt,1) + (1− ϕt,1) (f2(yt,2, zt,2) (1 + ē πt,2)− πt,2)

ϕt,1 πt,1 (1− f1(yt,1, zt,1)) + (1− ϕt,1) πt,2 (1− f2(yt,2, zt,2))
. (7.3)

The following result (which can be easily proven with a bit of algebra) characterizes the
fixed points of (7.2)

Proposition 7.1. Let (π∗1, π
∗
2 , y
∗
1, y
∗
2, z
∗
1 , z
∗
2 , ϕ

∗
1) be a fixed point of the deterministic skeleton of

system (7.2), then it is

r∗ = y∗1 = y∗2 and z∗1 = z∗2 = 0 . (7.4)

and the following three cases are possible

(i) Dominance of agent 1. In this case ϕ∗1 = 1 and it is

π∗1 = f1

(
ē

π∗1
1− π∗1

, 0

)
, r∗ = ē π∗1/(1− π∗1) , π∗2 = f2 (r∗, 0) . (7.5)

(ii) Dominance of agent 2. In this case ϕ∗1 = 0 and it is

π∗2 = f2

(
ē

π∗2
1− π∗2

, 0

)
, r∗ = ē π∗2/(1− π∗2) , π∗1 = f1 (r∗, 0) . (7.6)

(iii) Coexistence of the two agents. In this case it is ϕ∗1 ∈ (0, 1) and the investment shares of
both agents must coincide and be equal to π∗

π∗ = f1

(
ē

π∗

1− π∗ , 0
)

= f2

(
ē

π∗

1− π∗ , 0
)

. (7.7)

Moreover, r∗ = ē π∗/(1− π∗).

Notice that the situations described in the first two items are symmetric under the inter-
change of the two agents. Thus, this Propositions actually distinguishes between two different
cases. The first case is where one of the agents dominates the other, so that he conquers the
market and asymptotically possesses all the wealth. The second case is where both agents
survive and coexist on the market (item (iii)).

Let us see how the previous Proposition can help in understanding the question of survival
of different strategies (i.e. agents) on the market. Assume that, initially, only one agent, let
say agent 1, operates on the market7. In this single agent situation, the analysis developed
in the Section 5 provides the conditions for the existence of a fixed point. Assume that the
system is initially in a fixed point so that the investment share π∗1 satisfies (7.5) and the return
is defined as r∗ = ē π∗1/(1− π∗1).

Now, imagine that the second agent, agent 2, enters the market. According to Propo-
sition 7.1 different things can happen. It is possible that the investment choice of the first
agent π1 does not change, the price return r∗ remains the same and the second agent adapts,
accordingly, his investment strategy. In this case, the second agent remains marginal, and the

7Of course, with more realism, one can think about the average agent of some cluster of ”similar” agents,
”similar” in the Large Market Limit sense.
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first agent maintains his dominant position. On the contrary, it is possible that the second
agent takes a preponderant position on the market, displacing the first agent who, being un-
able to lead the market, adapts his investment choice to the newcomer strategy and maintain
a marginal position. This is the fixed point described in item (ii). In principle, it is also
possible that after the entry of agent 2, the two agents coexist on the market, and both retain
a finite share of wealth (item (iii)). This third situation is, however, non-generic. Indeed, it
requires the fulfillment of equality (7.7) by the two functions f1 and f2. In order to see it, let
us introduce the auxiliary functions gi (i ∈ {1, 2}) defined, in analogy with the single agent
case, as gi(π) = fi(ē π/(1−π), 0). The equality (7.7) imposes that these two functions crosses
the main diagonal exactly at the same point, as in panel (a) of the Fig. 9. A minimal variation
in one of the two functions leads to the impossibility of this equilibrium.

Among the different effects that the entry of a new agent can possibly generate, which
is the one actually chosen by the market? To answer this question, one has, first of all, to
perform the stability analysis of the different possible fixed points. The results of this analysis
are collected in the following

Proposition 7.2. Let x∗ = (π∗1, π
∗
2, r
∗, r∗, 0, 0, ϕ∗1) be a fixed point of the system in Proposi-

tion 7.1. Then

(i) If ϕ∗1 = 1 the fixed point is (locally) asymptotically stable if

π∗2 < π∗1 (7.8)

and

f ′1,y
π∗1 (1− π∗1)

<
1

1− λ1

,
r∗ f ′1,y

π∗1 (1− π∗1)
< 1 and

(2 + r∗) f ′1,y
π∗1 (1− π∗1)

> −1 + λ1

1− λ1

, (7.9)

where f ′1,y stands for the partial derivative of the function f1 with respect to the first
variable.

(ii) If ϕ∗1 = 0 the fixed point is (locally) asymptotically stable if (7.8) and (7.9) hold with
reversed indices 1 and 2.

(iii) The fixed point with ϕ∗1 ∈ (0, 1) is non hyperbolic.

Proof. See Appendix A.7.

The stability conditions (7.9) coincide with the single-agent conditions (5.20) as if the
dominant strategy would operate alone on the market. However, we have the important
additional condition (7.8). Remember that the investment share of the second agent is given
by π∗2 = f2(r∗, 0). Continuing our example, we can conclude that the entry of agent 2 in the
market will not reduce the dominant position of agent 1 if the share of wealth that the entrant
agent would invest at the equilibrium point of the incumbent is lower that the share of wealth
invested by the latter. In other terms, in order to displace the incumbent from his dominant
position, the entrant must possess a more aggressive strategy, according to which an higher
amount of wealth is invested in the risky asset.

In general, we found that a two-agents equilibrium is stable if (i) the corresponding one-
agent equilibrium (i.e. the equilibrium obtained when the dominant strategy operates alone
in the market) is stable and (ii) the dominant strategy is the one characterized by the highest
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investment in the risky asset. Following Chiarella and He (2001) we call this result a quasi-
optimal selection principle. Indeed, the market dynamics follows an optimal selection principle
since condition (7.8) states that it is the strategy with the highest investment levels in the
risky asset which survives and, according to Proposition 7.1, this implies that the market
selects the strategy generating the highest price returns. Due to the further requirement of
(7.9), however, this optimal strategy may be unable to generate a stable steady growth, from
which the quasi specifier.

In their cited contributions, Chiarella and He analyzed different particular models, with
different typologies of agents. Common to all cases was the presence of multiple equilibria and
the fact that, asymptotically, one of the two agents possessed the total market wealth while
the other was displaced out of the market. Now, it should be clear that the Proposition 7.2
is the general formulation of this observation. It also clarifies that the total number of fixed
points is the sum of the number of fixed points when only the first agent is present on the
market plus the number of fixed points when only the second is present.

On the Fig. 9 we show some possible cases which can occur, according to our quasi-optimal
selection principle, for different couples of investment functions. On panel (b) the situation of
a single stable equilibrium is shown. Here the first agent dominates the market. On panel (c)
the system has two stable equilibria: one where the first agent dominates and one where the
second agent dominates. The domains of attraction of these equilibria depends on the exact
specification of the demand functions. Finally, on the panel (d) we present a case without any
stable fixed point. Notice that this situation may happen even when the corresponding 1-agent
models, when only one of the two agents is present on the market, have stable equilibria.

Another useful aspect of our generalized selection principle is its applicability to the case
of agents with different “memories”, i.e. with different values of the parameter λ. Our result
allows to compare the relative relevance of the memory parameter λ and of the shape of the
individual demand functions in deciding the stability of a given equilibrium. As in one-agent
case, the location of equilibria does not depend on the value of λ. Again, conditions (7.9)
implies that the stability domain increases when the value of λ1 increases. When λ1 → 1 these
conditions eventually hold for almost any equilibrium (except those where r∗ = 0). However,
the additional condition (7.8) is independent from the value of λ, but only depends on the
form of the agents’ investment functions. Therefore, the role of λ for the stability may not
be as important as the role of the demand functions: if f1 and f2 are such that (7.8) is not
satisfied, the equilibrium is unstable irrespectively of the value of λ.

This result suggests a simple explanation of the following suggestive statement, concerning
the result of a simulation model, appeared in Zschischang and Lux (2001) (p.568):

Looking more systematically at the interplay of risk aversion and memory span,
it seems to us that the former is the more relevant factor, as with different [risk
aversion coefficients] we frequently found a reversal in the dominance pattern:
groups which were fading away before became dominant when we reduced their
degree of risk aversion.

In the model by Zschischang and Lux agents have a limited memory span and forecast the
next return as the average of past realized returns. In all other respects the agents’ behavior is
the same as in our framework. Since different lengths of the memory span can be approximated
by different values of λ, the result described in the above quotation is exactly what expected
according to our principle.
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Figure 9: The equilibria for the dynamics with 2 agents in terms of the auxiliary functions g1

and g2. (a). Non-generic equilibrium with agents investing the same amount π∗. (b). One agent

dominates another. The investment share of the first agent π∗1 is determined in a standard way,

while the investment share of the second agent π∗2 is given as g2(π∗1). (c). Two stable equilibria with

investment shares (π∗1 , π
∗
2) and (π∗∗1 , π∗∗2 ). (d). Two unstable equilibria.

8 Conclusions

This paper extends previous contributions and presents novel results concerning the character-
ization and stability of equilibria in speculative pure exchange economies with heterogeneous
traders. Our results also provide some analytical background to the growing literature about
numerical simulations of artificial agent-based financial market.

Let us shortly review the assumption we made and our achievements in order to sketch
the possible future lines of research. We considered a simple analytical framework using a
minimal number of assumptions (2 assets and Walrasian price formation). We modeled agents
as speculative traders and we imposed the sole constraint that their participation to the trading
activity be described by an individual demand function proportional to the their wealth. We
found that with prescribed but arbitrary specification about the agents’ behavior, the feasible
dynamics of the economy (i.e. the dynamics for which prices stay always positive) can be
described as a multi-dimensional dynamical system.

For definiteness and in order to provide stricter characterization of the properties of the
model, following a common approach in agent-based literature, we considered agents who form
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their individual demand function on the predictions about future price returns obtained from
the publicly available past prices history.

Inside this framework, we analyzed models in which different agents possess demand func-
tions that are random deviations from a common, underlying, behavior. We showed that,
when the number of agents becomes large, the Large Market Limits can be applied to reduce
the description of the economy to a low-dimensional stochastic system. This allowed us to
interpret the Large Market Limit as the situation where the representative agent paradigm
is valid. We thoroughly explored this situation, finding the local stability conditions for the
market equilibria and showing the bifurcation types generated by the violation of these con-
ditions. We also discussed the effect on equilibria stability of the agents “memory’, i.e. of the
length of the past market history that agents take in consideration to build they predictions
about future prices.

Finally, we moved to the case of 2 heterogeneous agents and presented the fixed point
stability analysis of this system. We showed that the conditions for the existence of fixed
points and the conditions for their stability are very similar to the corresponding conditions in
the situation with one single agent. Notwithstanding this similarity, however, we found that
different scenarios are possible: in a stable fixed point, one can have a non-generic case where
two traders coexist on the market and a generic case in which one of the agents dominates
the other and ultimately capture the entire market. However, it can also be the case that two
agents, whose strategies, when present alone on the market, lead to systems possessing stable
fixed points, lead, when present together, to a system that does not possess any stable fixed
point. Or, more interesting, they can lead to system with multiple stable fixed points. This
last possibility implies that the final dominance of one strategy on the other depends on the
market initial conditions. Ultimately, this is a proof of the impossibility (at least inside our
framework) to build any dominance order relation on the space of trading strategies.

The analysis presented in this paper can be extended in many directions. First of all,
inside our general framework, numerous specifications of the traders strategies are possible, in
addition to the ones already considered. They range from the evaluation of the “fundamen-
tal” value of the asset, maybe obtained from a private source of information, to a strategic
behavior that try to keep in consideration the reaction of other market participants to the
revealed individual choices. The same can be said about the dividend yield process, that we
assumed randomly and independently drawn from a stationary distribution. Actually, this
assumption implies that the investors are not aware whether the price is growing because of
some fundamental reasons, or because of a non-fundamental speculation-driven price bubble.
It would be interesting to relax our assumptions on the yield process and consider agents who
try to distinguish between these two different situations and behave correspondingly.

APPENDIX
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A Proofs of Theorems, Propositions and Lemmas

A.1 Proof of Theorem 3.1

Plugging the expression for wt,i from the second equation in (3.7), into the right hand-side of the first
equation and assuming pt−1 > 0 and, consistently with (3.10), pt−1 6=

∑
πt,i πt−1,iwt−1,i one gets:

pt =

(
1− 1

pt−1

∑
πt,i πt−1,i wt−1,i

)−1 (∑
πt,i wt−1,i + (et−1 − 1)

∑
πt,i wt−1,i πt−1,i

)
=

= pt−1

∑
πt,iwt−1,i + (et−1 − 1)

∑
πt,iwt−1,i πt−1,i∑

πt−1,iwt−1,i −
∑
πt,i πt−1,i wt−1,i

=

= pt−1

〈
πt
〉
t−1
−
〈
πt−1 πt

〉
t−1

+ et−1

〈
πt−1 πt

〉
t−1〈

πt−1

〉
t−1
−
〈
πt−1 πt

〉
t−1

,

where we used the first equation in (3.7) rewritten for time t−1 to get the second equality. Condition
(3.10) is immediately obtained imposing pt > 0. The price return and wealth return for the agent i
at time t can now be derived straightforwardly.

A.2 Proof of Proposition 3.1

If (3.13) is valid for all the π’s it is also valid for the wealth-weighted averages, i.e. we have: πmin ≤〈
πt
〉
≤ πmax, π2

min ≤
〈
πt πt+1

〉
≤ π2

max and πmin (1−πmax) ≤
〈
πt (1−πt+1)

〉
≤ πmax (1−πmin).

Since et > 0, both factors on the left hand side of (3.10) are positive and so the constraint is
satisfied. At the same time, since the denominator of the expressions in (3.12) and (3.11) is strictly
greater than zero, and numerators are bounded, these two expressions remain bounded.

A.3 Proof of Lemma 4.1

As we know ρt+1,i = πt,i (rt+1 + et), so that:

〈
πt+1

〉
t+1

=
∑

i

πt+1,i
wt+1,i∑
j wt+1,j

=
∑

i

πt+1,i
wt,i (1 + ρt+1,i)∑
j wt,j (1 + ρt+1,j)

=

=

∑
j πt+1,j wt,j (1 + πt,j (rt+1 + et))∑

j wt,j (1 + πt,j (rt+1 + et))
=

=

∑
j πt+1,j wt,j + (rt+1 + et)

∑
j πt+1,j πt,j wt,j∑

j wt,j + (rt+1 + et)
∑

j πt,jwt,j

Dividing both numerator and denominator in the last expression on
∑

j wt,j , one get

〈
πt+1

〉
t+1

=

〈
πt+1

〉
t
+ (rt+1 + et)

〈
πt+1 πt

〉
t

1 + (rt+1 + et)
〈
πt
〉
t

.

Thus

〈
πt+1

〉
t+1
−
〈
πt+1

〉
t

= (rt+1 + et)
(〈
πt+1 πt

〉
t
−
〈
πt+1

〉
t+1

〈
πt
〉
t

)
.

From this equality the statement immediately follows.
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A.4 Proof of Proposition 5.1

It is straightforward to get (5.3) and the statement of the item (i), as soon as the conditions πt =
πt+1 = π∗ and rt = rt+1 = r∗ are imposed in the system. To prove the second item we use the general
results refreshed in the Appendix B. The Jacobian matrix J of the system in a fixed point reads:

J =

[
0 f ′

−1/(π∗ (1− π∗)) (1 + r∗) f ′/(π∗ (1− π∗))

]
.

Thus, the trace is Tr(J) = (1 + r∗) f ′/(π∗ (1−π∗)) and the determinant is Det(J) = f ′/(π∗ (1−π∗)).
Applying now the result of the Theorem B.1 we get the conditions (5.5).

A.5 Proof of Proposition 5.3

The items (i) and (ii) are obvious. The Jacobian matrix J of the system in a fixed point reads:

J =

[
0 f ′

−(1− λ)/(π∗ (1− π∗)) λ+ (1− λ) (1 + y∗) f ′/(π∗ (1− π∗))

]
. (A.1)

Thus, the trace is Tr(J) = λ + (1 − λ) (1 + y∗) f ′/(π∗ (1 − π∗)) and the determinant is Det(J) =
(1− λ) f ′/(π∗ (1− π∗)). Applying now the result of Theorem B.1 we get the conditions (5.13).

A.6 Proof of Proposition 5.5

The items (i) and (ii) are obvious. Let x = π∗ (1 − π∗). The Jacobian matrix J in a fixed point
reads:

J =




0 f ′y f ′z
−(1− λ)/x λ+ (1− λ) (1 + y∗) f ′y/x (1− λ) (1 + y∗) f ′z/x

0 0 λ


 ,

where f ′z is the partial derivative of the function f with respect to z. Thus, one of the eigenvalues is,
obviously, λ < 1, while the others are the eigenvalues of the matrix (A.1). The only change is that
f ′ becomes now f ′y in our notation. Then conditions (5.20) immediately follow.

A.7 Proof of Proposition 7.2

We start with writing the Jacobian J of the system (7.2). The dimension of this matrix is 7× 7 and
the order of variables will be the following: π1, π2, y1, y2, z1, z2, ϕ1. We should compute the Jacobian
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in a fixed point characterized in the item (i) of this Proposition. The Jacobian reads:

J =




0 0 f ′1 y ...

0 0 0 ...
(1− λ1) r′π1

(1− λ1) r′π2
λ1 + (1− λ1) r′y1

...

(1− λ2) r′π1
(1− λ2) r′π2

(1− λ2) r′y1
...

0 0 0 ...
0 0 0 ...
ϕ′π1

ϕ′π2
ϕ′y1

...

(A.2)

... 0 f ′1 z 0 0

... f ′2 y 0 f ′2 z 0

... (1− λ1) r′y2
(1− λ1) r′z1 (1− λ1) r′z2 (1− λ1) r′ϕ

... λ2 + (1− λ2) r′y2
(1− λ2) r′z1 (1− λ2) r′z2 (1− λ2) r′ϕ

... 0 λ1 0 0

... 0 0 λ2 0

... ϕ′y2
ϕ′z1 ϕ′z2 ϕ′ϕ




,

where for simplicity we use the variable ϕ instead of ϕ1. In above expression the notation like
f ′i y and f ′i z stand for the partial derivatives of the function fi (i = 1, 2) with respect to yt,i and
zt,i, correspondingly. Also we denote as r ′π1

(ϕ′π1
) the partial derivative of rt+1 (ϕt+1) with respect

to πt,1. Analogously other notation is defined. The expression for rt+1 is given in (7.3), whereas
the expression for ϕt+1 is in the last row of the system (7.2). Notice also that a lot of ”zeros” in
the 5th and 6th rows are due to the squared term in (7.2) in the expressions for zt+1,1 and zt+1,2,
correspondingly. The derivative of that term with respect to any variable will contain the factor
rt+1 − yt,i which is equal to 0 in a fixed point.

In order to proceed further we have to evaluate some of the partial derivatives remaining in J in
the fixed point. First of all, notice that

r′ϕ =
∂rt+1

∂ϕt,1
=

ē π∗1 π
∗
2 (π∗1 − π∗2)

π∗2 (1− π∗2) + ϕ∗1 (π∗1 (1− π∗1)− π∗2 (1− π∗2))2
,

which is equal to 0 in the equilibria with ϕ1 ∈ (0, 1). On the other hand, if ϕ1 = 1, then it is easy to
see that

ϕ′π1
=
∂ϕt+1

∂πt,1
= 0 and ϕ′π2

=
∂ϕt+1

∂πt,2
= 0 .

Moreover, using the chain rule and the fact that

∂ϕt+1

∂rt+1
= 0 , (A.3)

one can easily check that also

ϕ′y1
=
∂ϕt+1

∂yt,1
= 0 , ϕ′y2

=
∂ϕt+1

∂yt,2
= 0 , ϕ′z1 =

∂ϕt+1

∂zt,1
= 0 and ϕ′z2 =

∂ϕt+1

∂zt,2
= 0 .

Thus, when ϕ1 ∈ (0, 1) then the Jacobian has all zeros in the last column except ϕ′ϕ. When ϕ1 = 1
then the Jacobian has all zeros in the last raw except ϕ′ϕ. In both cases, therefore the Jacobian has
an eigenvalue

ϕ′ϕ =
∂ϕt+1

∂ϕt,1
=

1 + π∗2 (r∗ + ē)

1 + π∗1 (r∗ + ē)
. (A.4)
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This eigenvalue is inside of the unit circle only if π∗1 > π∗2 which proves the relation (7.8). Moreover,
if π∗1 = π∗2 the eigenvalue is equal to 1 and the item (ii) is proven. Also it is clear that there are two
eigenvalues µ5 = λ1 and µ6 = λ2 inside the unit circle. Now, in the fixed point where ϕ∗1 = 1 we have

r′π2
=
∂rt+1

∂πt,2
= 0 and r′y2

=
∂rt+1

∂yt,2
= 0 ,

so that the Jacobian has eigenvalues µ4 = λ2 and µ2 = 0, and the remaining are the eigenvalues of
the matrix

J =

[
0 f ′1 y

(1− λ1) r′π1
λ1 + (1− λ1) r′y1

]
.

This matrix coincides with the matrix (A.1), since

r′π1
=
∂rt+1

∂πt,1
=
π∗1 ē− 1− r∗ (1− π∗1)

π∗1 (1− π∗1)
= − 1

π∗1 (1− π∗1)
,

r′y1
=
∂rt+1

∂yt,1
=

f ′1 y
π∗1 (1− π∗1)

(
1 + ē

π∗1
1− π∗1

)
=
f ′1 y (1 + y∗1)

π∗1 (1− π∗1)
.

Thus the conditions (7.9) are also proven.

B Stability Conditions and Bifurcation Types for 2 × 2

Matrices

Here we present some classical results from the theory of difference equation. For the extensive theory
of the stability and bifurcation analysis of the autonomous dynamical systems see e.g Guckenheimer
and Holmes (1983) or Kuznetsov (1995). Consider a general 2-dimensional non-linear dynamical
system

{
x1,t+1 = f1(x1,t, x2,t)

x2,t+1 = f2(x1,t, x2,t)
, (B.1)

and suppose that (x?1, x
?
2) is a fixed point of the system. Moreover, let J(x?1, x

?
2) denote the Jacobian

matrix of the system (B.1) computed in this fixed point:

J(x?1, x
?
2) =

∥∥∥∥
J1,1 J1,2

J2,1 J2,2

∥∥∥∥ . (B.2)

Let t = J1,1 + J2,2 and d = J1,1 J2,2 − J1,2 J2,1 be, respectively, the trace and the determinant of
matrix (B.2). Then the following result takes place:

Theorem B.1. Sufficient conditions for the local stability.
The fixed point (x?1, x

?
2) of the system (B.1) is locally asymptotically stable if the following conditions

are satisfied

−1− d < t < 1 + d ,

d < 1 .
(B.3)
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Figure 10: Stability region for a fixed point of a 2d dynamical system in Trace-Determinant coordi-

nates.

Proof. The characteristic polynomial computed in a fixed point in our notations reads

λ2 − t λ+ d = 0

Thus, the stability analysis reduces to the analysis of the region in the (t, d) parameters space, where
the absolute values of both roots

λ± =
t±
√
t2 − 4 d

2
(B.4)

are less than 1. There are two cases.
If t2 ≥ 4 d there are two real roots λ− ≤ λ+ (coinciding when t2 = 4 d) and for the local stability

we need that both λ+ < 1 and also λ− > −1. It is straightforward to see that it leads to the following
conditions on trace and determinant

t < 2 and 1− t+ d > 0 (B.5)

t > −2 and 1 + t+ d > 0 (B.6)

The area S1 on Fig. B contains those points where these conditions are satisfied and both roots are
real.

Instead, if t2 < 4 d there are two complex conjugate roots and the stability condition reads

|λ| =
√
λ+λ− =

√
d < 1 (B.7)

Corresponding region is labeled S2 on Fig. B. Now, all points corresponding to stable fixed point lie
in the triangle shaped by the union of S1 and S2. This triangle is described by the conditions (B.3).

Notice that if the fixed point is stable there are two possible qualitative behavior of the system
in a neighborhood of it. If eigenvalues of Jacobian are not real, then the local behavior of the system
is characterized by the superposition of the rotation and exponential convergence towards the fixed
point, so that the resulting time series of both state variables have cyclical component. Such situation
is referred as a focus. If the eigenvalues of Jacobian are real, then we have a node.

37



According to the Theorem B.1, if all 3 inequalities in (B.3) hold, the fixed point is stable. The
fixed point is locally unstable if at least one of that inequalities has an opposite sign. The situation
in which with the change of one or more parameters the fixed point loses its stability is called a
bifurcation. The following theorem summarize the information about types of bifurcations.

Theorem B.2. The fixed point of the system (B.1) looses its stability when one of the inequalities
in conditions (B.3) is changing its sign. Moreover, the system has

(i) fold bifurcation, if t = 1 + d;

(ii) flip bifurcation, if t = −1− d;

(iii) Neimark-Sacker (secondary Hopf) bifurcation, if d = 1.

Proof. From the proof of the previous theorem it is clear that when the parameters cross the line
separating region S1 from I1 at Fig. B (when d = 1), the modulus of the complex eigenvalues become
larger than 1. Thus the system undertakes a Neimark bifurcation. When the line between S2 and I2

is crossed (and so t = 1 + d) the largest real eigenvalue becomes greater than 1 a fold bifurcation is
observed. Finally, if the line between S2 and I3 is crossed (i.e. t = −1−d) the smallest real eigenvalue
becomes less than −1, and the flip bifurcation is observed.
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