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Abstract 

Big Data systems manage and process huge volumes of data constantly generated by various 

technologies in a myriad of formats. Big Data advocates (and preachers) have claimed that, relative to 

classical, relational/SQL Data Base Management Systems, Big Data technologies such as NoSQL, 

Hadoop and in-memory data stores perform better. This paper compares data processing performance 

of two systems belonging to SQL (PostgreSQL/Postgres XL) and Big Data (Hadoop/Hive) camps on a 

distributed five-node cluster deployed in cloud. Unlike benchmarks in use (YCSB, TPC), a series of R 

modules were devised for generating random non-aggregate queries on different subschema (with 

increasing data size) of TPC-H database. Overall performance of the two systems was compared. 

Subsequently a number of models were developed for relating performance on the system and also on 

various query parameters such as the number of attributes in SELECT and WHERE clause, number of 

joins, number of processing rows etc. 
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1. INTRODUCTION 

 

Big Data refers to the storage, processing and analysis of big volumes of data, generated 

with big velocity in a big variety of sources and formats (Buhl et al., 2013; Kowalczyk and 

Buxmann, 2014; Stonebraker, 2012b; Ylijoki and Porras, 2016). As the volume, speed and 

heterogeneity of data have accelerated with the web and mobile technologies, centralizing all 

the data in a monolith database and/or data warehouse system became less and less feasible. In 

terms of data storage and processing, essential for Big Data solutions is the distributed 

computing with systems deployed in-house or in cloud (Jacobs, 2009). 
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Traditional relational/SQL databases and data warehouses could be part of any 

viable Big Data system. But in terms of data storage and processing Big Data has brought 

mainly three group of technologies: NoSQL data stores (Cattell, 2010; Cogean et al., 

2013; Fotache et al., 2014; Lungu and Tudorica, 2013), Hadoop ecosystems (Fotache and 

Hrubaru, 2016; Hrubaru and Fotache, 2015; Li et al., 2014; Stonebraker, 2012a), and 

NewSQL/in-memory systems (Pavlo and Aslett, 2016; Stonebraker, 2012a; Trancoso, 

2015). A recurrent theme in Big Data literature is the improved performance of data 

processing in new Big Data technologies compared to the classical relational/SQL Data 

Base Management Systems (RDMS’s). 

This paper inquires the performance related to data processing operations of two 

systems, one representing the relational/SQL camp - PostgreSQL/Postgres XL and the other 

the Big Data camp - Hadoop/Hive. Both are free, open-source technologies, largely popular 

and affordable for almost any type of organizations. Tests were devised on a distributed 

five-node cluster deployed in cloud (Amazon).  

Unlike some acknowledged benchmarks such as YCSB (Cooper et al., 2010) and TPC 

(Transaction Processing Performance Council - TPC, 2014), the focus here was on 

executing (and collecting the results, i.e. the duration of query completion) randomly 

generated non-aggregate queries on TPC database subschema loaded with different volumes 

of data and. Results were related to various parameters of executed queries. In this paper the 

generated queries (by modules written in R language) were non-aggregate, i.e. lacking 

GROUP BY and HAVING clauses. 

Overall performance of the two systems was compared. Subsequently a number of 

models were developed for relating performance on the data store and also on various query 

parameters such as the number of attributes in SELECT and WHERE clause, number of 

joins, number of processing rows etc. 

 

2. POSTGRES AND HADOOP/HIVE AS BIG DATA TECHNOLOGIES  

 

Relational/SQL DBMS’s and Hadoop ecosystem are popular choices for data 

persistence systems today. Relational databases were proposed in 1970s and become 

operational in 1980s, whereas Hadoop technologies developed at a spectacular pace after 

2003. As all other RDBMS’s, PostgreSQL was based mainly on a centralized architecture. 

In recent years, as a response to Big Data pressure, PostgreSQL has been gradually 

incorporating principles of distributed computing but it is not a fully distributed DBMS 

yet. As consequence the tests were performed on Postgres-XL which is a forked version 

of PostgreSQL designed to be distributed and has some other features like MPP 

(PostgresXL, 2016). 

 

2.1 PostgreSQL/Postgres XL 

 

Postgres XL is a shared nothing distributed database management system (Figure no. 

1) acting as a cluster that can split OLTP and OLAP workloads among its nodes and can 

scale horizontally (scale-out). It is based on Postgres and fully supports SQL.  
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Source: PostgresXL (2016) 

Figure no. 1 – Postgres XL architecture 

 

Postgres XL is based on three major components: 

 Global Transaction Manager (GTM) node handles distributed transactions and 

provides ACID capabilities. GTM is vital for Postgres XL architecture so it is usually 

deployed on a separate and (more) powerful machine. For dealing with the risk of a single 

point of failure for the cluster, a standby GTM node can be configured for transparently 

taking over when master GTM fails. 

 Coordinator node handles client application requests, determines which data nodes 

need to be queried and builds and sends execution plans to the data nodes. It also gathers the 

results and sends them to the client applications. Coordinators hold only metadata (in 

catalog views). If one coordinator fails, then the application will transparently connect to 

another. 

 Data node holds the data and does the processing. It is recommended to have as 

many coordinators as the data nodes in a cluster in order to manage the workload balance 

and to reduce the network calls. 

A functional cluster must have all the three types of nodes. Optionally GTM-Proxy 

nodes can be installed for grouping multiple messages coming from Coordinator and Data 

nodes on the same server. Each node is in fact a Postgres instance, and resource allocations 

such as port numbers need configuration. Postgres XL is fully ACID compliant and it is an 

open source project targeted to merge back its functionalities to Postgres source code. Since 

it is based on Postgres, it supports all its functionality. 

Data is either distributed through a shard key or replicated at each data node. Data 

which is small in volume and relatively static can be replicated, while big data should be 

sharded. Data collocation is important for sharded tables, since joins should operate on a 

single node ideally, and not send data through network from one node to another because 

this usually hampers performance. When a query is issued to a Coordinator, it identifies the 

nodes holding the data, produces an execution plan and sends it to the data nodes. Each data 

node processes the query in parallel and sends back the results to the coordinator. Scalability 

can be achieved by adding nodes in the cluster when workloads require it, and the system 

will transparently self-rebalance in terms of data. High availability is achieved by adding 
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slave nodes for each data nodes that take over the request when a data node fails. Postgres 

XL works on both Windows and Linux systems and maps very well to elastic clouds such as 

Amazon AWS.  

 

2.2 Hadoop/Map Reduce/Hive 

 

Hadoop is essentially a framework for storing data in large clusters of commodity data. 

Fitted for storing and processing big volumes of heterogeneous data Hadoop is not appropriate 

for dealing with big velocity requirement since it was designed to process static data.  

Hadoop architecture (Figure no. 2) has two main components: the storage which is a 

distributed file system (HDFS) and the processing component which is most cases relies on 

a MapReduce implementation. MapReduce is a framework/algorithm designed specifically 

for parallel processing which maps very well to the HDFS philosophy of storing data across 

multiple data nodes in a distributed environment. Recent Hadoop releases provides 

additional data processing using a new resource engine (YARN) and a new data processing 

framework, Apache Tez (Lublinsky et al., 2013, pp. 435-455). 

 

 
Source: Doulkeridis and Norvag (2014) 

Figure no. 2 – HDFS architecture 
 

The main characteristics of HDFS are sequential writing, lack of support for random 

reads and the fact it cannot update the content of a file (White, 2015, pp. 73-99). In HDFS a 

file is split between multiple blocks and distributed across multiple commodity machines in 

a Hadoop cluster. These nodes are called data nodes, and the information about blocks 

(name, size, path, permissions) – the metadata, are stored on a name node. Data nodes keep 

data in blocks. Each data node runs a background process which keeps tracks of the blocks 

and talks to the name node about status and health. The metadata on the name node keeps 

track of the block stored on each slave node. 

A Map Reduce job is a piece of code (written in Java, Python etc.) that runs on each 

data node in a cluster containing two main functions/interfaces: (1) Map which processes the 

input in parallel, produces key value pairs which become input to a (2) Reduce function 

which produces the final result – see Figure no. 3.  
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Source: Doulkeridis and Norvag (2014) 

Figure no. 3 – Map-Reduce dataflow 
 

The first step in the flow is a logical input split based on the number of data nodes in 

the cluster and the number of data blocks. After setting the number of mappers, the 

processing starts in memory (for performance reasons) until the buffer is filled, and from 

this point on, the buffer will be spilled to the disk. The result of each mapper is then 

shuffled –this is when the data from each task tracker is sent through the network, and this 

can be a performance penalty, depending on the network latency. The result of the shuffle 

is the actual input to the reducer which applies the code logic to produce the final result 

and persist it in HDFS.  

As Li et al. (2014) pointed out, MapReduce adopted a loosely coupled design, where the 

processing engine is independent of the underlying storage system, allowing the system to 

scale its processing and storage both up and down as needed. Another advantage is the fact 

that the distribute execution of the program, the resource allocation, block identification and 

monitoring of the execution is done by the framework itself. Hence there are some common 

patterns in which Map Reduce works best: summarization, filtering, grouping and joining.  

The main problem with Map-Reduce is a consequence of its tightness to the input data. 

Programmer must know in detail the data structure and has to design and implement all the 

logic of both Map and Reduce phase. Changes in the input data are not only about changes 

in data the structure (new keys, new attributes, etc.) but also changes in data volume scale 

which can affect the logic used by a client application to process the data. This kind of logic 

and decisions are automatically taken by an optimizer in the case of a RDBMS, but for Map 

Reduce, it is the programmer’s responsibility to implement it. In contrast to relational/SQL 

DBMSs, Map-Reduce lost the logical data independence (Hrubaru and Fotache, 2015). 

It is difficult for inexperienced users (non-programmers) to write Map-reduce jobs to 

solve even the simplest of queries, which were a trivial task in high-level languages such as 

SQL (Stonebraker, 2015). Consequently, a large number of Big Data projects focused on 

building frameworks that implement high-level query languages (SQL-like) hiding to the 

users all the details of Map-Reduce tasks. Hive has been created by the Facebook Data 

Infrastructure Team as an open-source data warehousing solution built on top of the Hadoop 

environment (Sakr et al., 2013; Thusoo et al., 2009). 

Hive projects structure into the data stored in HDFS by storing the metadata in system 

catalog file called metastore – see Figure no. 4. The query lifecycle in Hive is similar to that in 

a relational database server (Hrubaru and Fotache, 2015) - parsing (syntactic and semantic), 

execution plan generation (using an optimizer which can be a rule based one or in the latest 

versions a cost based one), generating the steps (Map Reduce jobs) and executing them. 



26 Marin FOTACHE, Ionuț HRUBARU 
 

 
Source: Li et al. (2014) 

Figure no. 4 – Hive basic architecture 
 

Hive works with well-known concepts from relational databases such as tables, 

columns, rows and data types. Data types, there are primitive (string, integer, timestamp, 

date, etc.) and collections data types (struct, array, and map) but custom types can be 

created, all implemented in Java and inheriting the underlying behaviour. Besides tables, 

from a logical perspective there are partitions also. Tables in Hive can be partitioned, just 

like in a classical RDBMS, using different columns as criteria to horizontally split the data.   

Hive Query Language (HiveQL) is a SQL like declarative language which is used for 

both DDL and DML operations in Hive (Hrubaru and Fotache, 2015; Sakr et al., 2013). 

Since Hive is in fact another layer over Map Reduce, all the HiveQL commands will be 

translated in Map Reduce jobs executed against HDFS. This has the advantage of hiding 

the Map Reduce implementation from the end user and tells hive what the user wants not 

how to process it.  

Apparently Hive provides what Map-Reduce could not, i.e. data logical independence. 

But logical data independence in Hive is incomplete. HiveQL provides features for directly 

interacting with the physical layer. There are clauses for serialization and de-serialization, 

file formats etc. Hive operates based on schema on read principle. The logical data model is 

available only for projecting structure over a physical file and data block.  

 

3. TPC-H BENCHMARK 

 

A large number of benchmarks have been proposed for assessing data processing 

performance for data stored/servers deployed in centralized or distributes architectures 

implemented in house or in cloud. Currently Yahoo! Cloud Serving Benchmark (YCSB) and 

Transaction Processing Performance Council (TPC) are the most prominent. As the interest 

was in relating query execution duration to various query parameters, the latter was preferred. 

TPC is a non-profit corporation established for defining transaction processing and 

database benchmarks and to disseminate objective, verifiable benchmarks for data 

performance in one of the following four categories: 

 OLTP: TPC-C and TPC-E; 

 Decision support: TPC-H, TPC-DS and TPC-DI; 
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 Virtualization: TPC-WMS; 

 Big Data: TPCx-HS. 

Considering the batch processing nature of Hadoop and the objective of comparing it 

with other systems, specifically a classical RDBMS, TPC-H was chosen as the benchmark 

for this paper. TPC Benchmark H (Transaction Processing Performance Council - TPC, 

2014) is a decision support benchmark that comes with both a logical database design (a 

schema structured in a set of predefined tables) – see Figure no. 5 – and a set of predefined 

queries (templates) that are executed against the schema.  

 

 
Source: Transaction Processing Performance Council - TPC (2014) 

Figure no. 5 – TPC-H database schema  
 

The standard implementation provides two tools, DBGen for generating the schema 

and populate the database, and QGen that generates queries based on values for specific 

input parameters in the templates (Kejser, 2014). The volume of data generated is set 

through a scale factor parameter (SF) for which the minimum is the estimated business data 

of 10000 suppliers (almost 10 million rows) with approximately 1 GB of storage data.  

There are two performance metrics reported by TPC-H: 

 Query – per – Hour Performance metric (QphH@Size) which takes into account 

the database size (Scale Factor), the query processing power for a single stream and query 

throughput for multiple concurrent users; 

 Price/Performance metric which takes into account Price/QphH@Size 

The components of the TPC-H database consist of eight individual tables (the Base 

Tables) as seen in Figure no. 5. Inside the parenthesis there is the prefix of each table. The 
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record count is either fixed (tables NATION and REGION) or dynamic based on the scale 

factor (SF). The arrows point to one-to-many relationship between parent and child table 

(primary and foreign keys).  

TPC-H proposed twenty-two decision support queries and two database refresh 

functions which must be executed as part of the TPC-H benchmark. Queries generated by 

QGen module are guaranteed to be compliant with the standard. However, adjustments and 

changes can be made to the queries from a syntactical point of view to guarantee executions 

on specific DBMS. There are two performance metrics suggested by the TPC-H benchmark: 

(1) Query power which measures the time in seconds taken to execute all 22 queries by one 

user/session only (one query stream) and (2) Query throughput which accounts for a 

variable number of users.  

 

4. METHOD AND TOOLS 

 

The experimental design proposed in this paper questioned the generally 

acknowledged idea that, in distributed architectures, Big Data/Hadoop technologies perform 

better than traditional SQL/relational technologies in data processing (database query). 

Gradually increasing the database size, a couple of models were built and tested for 

predicting system performance based on various query parameters and the database loading. 

 

4.1 Design 

 

A module was devised (in R language) for generating random non-aggregate queries to 

be executed on various subschema of TPC-H database. Each subschema was created and 

populated for a specific scale factor (data loading) – see Table no. 1 – and have distinct, 

randomly generated records. 

 
Table no. 1 – Number of records for each table and scale factor 

Table in TPC-H schema SF = 0.5 SF = 1 SF =  2 SF = 5 

REGION 5 5 5 5 

NATION 25 25 25 25 

CUSTOMER 75,000 150,000 300,000 750,000 

SUPPLIER 5,000 10,000 20,000 50,000 

PART 100,000 200,000 400,000 1,000,000 

PARTSUPP 400,000 800,000 1,600,000 4,000,000 

ORDERS 750,000 1,500,000 3,000,000 7,500,000 

LINEITEM 2,999,671 6,001,215 11,997,996 29,999,795 

 

Each generated query had a random numbers of attributes in SELECT and WHERE 

query clauses. Then attributes in both clauses were also selected randomly. Based on the 

attributes, FROM clause was automatically built so that the query can extract and filter the 

attributes. Filter predicate (WHERE clause) was also randomly generated using connectors 

such as AND and OR, and various operators (BETWEEN, IN, >, >=, etc.). Queries were 

meant to be operational, so every query was targeted for a specific scale factor subschema 

(100 queries were created and launched for each scale factor subschema).  
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4.2 Variables 

 

The variable of most interest was the duration of the query (the interval required for each 

system for completing a query) codified as duration. Average number of processed rows 

within a query was preferred to the scale factor variable and coded avg_n_of_rows. Nominal 

variable dbserver qualify the system (Hive or Postgres) where each query was executed and 

query duration was recorded. Other variables refer to various query parameters: 

 n_of_attribs_select – number of attributes in SELECT clause; 

 n_of_attribs_where – number of attributes in WHERE clause; 

 length_attrib_string__select – sum of string (CHAR and VARCHAR) attributes 

length in SELECT clause; 

 length_attrib_string__where – sum of string attributes length in WHERE clause; 

 n_of_and__where – number of AND connectors in WHERE clause; 

 n_of_between__where – number of BETWEEN operators in WHERE clause; 

 n_of_oper_eq_where – number of equality (=) operators in WHERE clause; 

 n_of_oper_other_than_eq_where – number of comparison operators, other that the 

equality operator (>, >=, <, <=, <>) in WHERE clause; 

 n_of_in__where – number of IN operators in WHERE clause; 

 n_of_in_values__where – total number of values included as arguments for IN 

operators in WHERE clause; 

 n_of_joins – number of table joins; 

 n_of_pku_int__select – number of integer and primary key attributes in SELECT; 

 n_of_pku_int__where – number of integer and primary key attributes in WHERE. 

Some of the parameters, such as n_of_and__where, n_of_between__where, 

n_of_in__where, n_of_joins, are basic, “raw” operators whereas parameters like n_of_at-

tribs_select, length_attrib_string__where, n_of_oper_other_than_eq_where, are pre-

aggregated (e.g n_of_attribs_select is the sum of integer, number/real, char, varchar and 

date attributes included in SELECT clause). Additional details about variables are provided 

in section 5.1. 

 

4.3 Platforms 

 

The system under testing was a five-node cluster running Oracle Linux Server version 

7.2 and deployed into AWS cloud using c4.2xlarge instances which have 8 vcpu, 15GB of 

RAM and 1000 mbps dedicated EBS bandwidth. Expected throughput is 128 MB/s and 

8000 IOPS 16 KB size. Disks were standard EBS volumes each node having 70GB which at 

some point was increased by 100GB because Hive map reduce jobs were exhausting all the 

space when running with 5 GB scale factor. Special private IPs, hostnames, firewall rules 

and opened ports were applied to solve connectivity issues so that nodes could communicate 

between themselves. 

All nodes in the cluster were configured using public key authentication for password 

less SSH login. Putty was used to SSH on the machines. On each node Hadoop was installed 

using Cloudera Distribution CDH 5.7.1. This distribution contains Hadoop 2.6 and Hive 

1.1.0. Java 1.7 was used to run Hadoop. One node was configured as the name node while 

the remaining four were configured as data nodes. For the Hadoop cluster setup, 

administration and monitoring, Cloudera Manager was used. Apache Hue was used for Hive 
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to create databases and load data into the TPCH tables together with the hive command line 

interface (CLI).  

Data has been loaded from the Linux file system into HDFS using LOAD command 

which made data accessible for Hive. Tables have been created in HIVE with CREATE 

TABLE command and the data was automatically distributed on each node’s HDFS.  

Jobs have been monitored for resource utilization: memory, disk space and CPU. 

After tests were run on Hive, the Hadoop cluster was stopped and uninstalled and the 

data has been cleared. Then Postgres XL version 9.5 was installed in the cluster using 

pgxc_ctl utility. Using the tarball from their official site did not work and the problem was 

solved by cloning the latest Git repository from 9.5 STABLE branch, manual building the 

installer with make and then deploying it in the cluster using one GTM node, 4 coordinators 

and 4 data nodes with pgxc_ctl utility. WAL (write ahead log) had to be moved to a mount 

disk with more free space (/var). Pgxc_ctl utility was used to administer (start/stop) and 

monitor the cluster.  

Tables can be created either as distributed tables on each node or replicated ones. It 

makes sense to distribute large tables and to replicate small ones. One important thing in a 

distributed system is data locality – when joins are involved they should happen locally by 

collocating data with same keys.  

In Postgres XL tables LINEITEM and ORDERS were distributed by HASH using 

ORDERKEY and tables PART and PARTSUPP were distributed by HASH using 

PARTKEY as the column. Also CREATE TABLE AS command used keyword 

ROUNDROBIN for distributing the created table on all the nodes, otherwise the table would 

have been replicated and performance would suffer especially from large result sets. 

In Hive, the distribution of the tables is done automatically by HDFS and not 

accessible to the user. The Hive clause CLUSTERED BY/DISTRIBUTE BY distributes the 

table in buckets inside each data node, but the data blocks location is controlled by HDFS, 

and not Hive. HDFS evenly distributes data across data nodes. 

Results were gathered with JMeter. Each query uses a CREATE TABLE AS statement 

to eliminate the network traffic and possible JMeter crashes because of memory exhaustion 

due to the result set size. After each query the table would be dropped to clear the disk space.  

Data was generated on each scale factor using DBGen (Kejser, 2014). The query 

generator was devised in R. The data analysis platform was open-source, R/RStudio with 

various packages (libraries) presented in the subsequent sections. Other R modules for data 

processing and analysis were created as well. All of the figures in sections 5.1 and 5.2 were 

created with ggplot2 package (Wickham, 2016). 

 

4.4 Methods 

 

First an Exploratory Data Analysis was conducted for describing the distribution of 

value for all the variables and also for comparing the overall performance of the two data 

stores. A number of questions were considered in performance comparison, as they could 

generate testable hypotheses. 

 Is overall Hive/Hadoop performance better than PostgreSQL? 

 Which factor loading (database size) seems more appropriate for relational/SQL 

technologies (Postgres XL) and which are more appropriate for Big Data (Hadoop/Hive) 

technologies? 
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 Which is the database size threshold when Big Data technology have to replace 

SQL data stores? 

Exploratory data analysis for overall and each scale factor results were accompanied 

by a set of non-parametric tests for assessing the statistical significance of the results. As 

shown in next section (5), non-parameter tests were necessary, as normality and variance 

homoscedasticity requirements were not fulfilled. In order to confirm the statistical 

significance of differences previously identified using graphics and descriptive statistics, the 

following hypotheses were tested: 

H1: Overall non-aggregate query performance is better for Postgres than Hive 

H2: Non-aggregate query performance is better for Postgres than Hive for scale factor 0.5 

H3: Non-aggregate query performance is better for Postgres than Hive for scale factor 1 

H4: Non-aggregate query performance is better for Postgres than Hive for scale factor 2 

H5: Non-aggregate query performance is better for Postgres than Hive for scale factor 5. 

Performance drivers were analysed building regression models. For each query the 

result (duration) of just one of the tested systems was used in the regression models 

(randomized/blocked design). Regression models were expected to provide reliable answers 

to questions such as: 

 are the performance differences between Postgres XL and Hive constant or varies 

on different levels of some of the predictors?  

 which are the most important predictors in explaining variation of the outcome 

(duration)? 

 is predictors interaction significant? 

As the requirements for OLS (Ordinary Least Square) regression were not met, the 

OLS models were subsequently tested using techniques such as Generalized Least Squares, 

Robust Regression (Huber M-Estimation) and Non-parametric, rank-based regression. 

 

5. RESULTS 

 

This section is organized as follows. First, the main parameters of generated non-

aggregate queries are presented. Second, results (duration of query execution) are compared 

for the tested systems, overall and on each scale factor. Third, performance drivers are 

identified and assessed through a series of regression models. 

 

5.1 Main parameters of generated non-aggregate queries  

 

In section 4.2 main variables of interest were explained. Distribution for variable 

duration will be described in the next section. This section will detail the values of the main 

query parameters and also variables associated to the database size.  

On average, the SELECT clause of the query contained about 19 attributes and the 

WHERE clause contained 14 attributes (see Figure no. 6). Median number of attributes was 

19 for SELECT and 13 for WHERE. 
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Figure no. 6 – Distribution of the values for number of attributes in SELECT  

and WHERE clauses 

 

Charts in Figure no. 7 compare the frequency of attributes in the SELECT clause by 

data type. As query attributes were randomly included in the queries, TPC-H database 

structure was pivotal in the results. The most frequent attributes in the SELECT clause are 

of type INTEGER (with both mean and median around 6), as the primary keys (surrogate 

keys) for most tables are of this type. Then come CHAR (mean=5.38, median=5) and 

VARCHAR (mean=4.57, median=4) followed by the NUMERIC - decimal or real 

(mean=3.5, median=3). As expected the least frequent is the DATE data type (mean=1.84, 

median=2). All distributions are skewed to the right.  

 

 
Figure no. 7 – Frequency the attributes data type in the SELECT clause 

 

Frequency of data type attributes in the WHERE clause is displayed in Figure no. 8. As 

in the case to the SELECT clause, the most frequent attributes in the SELECT clause were 

of type INTEGER (mean=4.71, median=4), followed by CHAR (mean and median of 4) and 

VARCHAR (mean=4.57, median=4).  
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Figure no. 8 – Frequency the attributes data type in the WHERE clause 

 

The left side of the Figure no. 9 depicts the distribution of string attributes length in 

the SELECT clause, by data type (CHAR vs VARCHAR). The scales are different for the 

two panels, so the aggregated length of CHAR attributes in SELECT clause varied 

between 1 and 253 whereas for VARCHAR attributes it varied between 23 and 1052. 

Distribution of CHAR attributes length is skewed to the right (mean=85, median=77) and 

for the VARCHAR attributes is bimodal (mean = 366, median= 308), with peaks around 

values of 175 and 1050. Figures and shapes were not radically different for the WHERE 

clause. 

 

    
Figure no. 9 – Frequency of attributes length for string attributes in SELECT (left)  

and WHERE (right) clauses 

 

It is generally expected that the duration of query execution to be less influenced by 

the frequency and length of various attributes in the SELECT clause, but predominantly 

by the structure of WHERE clause (apart from the type and length of attributes presented 

above).  

Figure no. 10 shows the number of the comparison operators in the WHERE clause by 

type. The most frequent operator is BETWEEN followed by IN. The figure depicts also the 

number of values in the IN clause showing that there are queries with more than 250 values 

in the list.  
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Figure no. 10 – Frequency of operators for comparison 

 

Figure no. 11 on the left shows the distribution of the number of tables and joins in the 

queries. The two parameters are perfectly correlated so one of them must be removed for 

avoiding collinearity in further regression models. Perfect correlation indicates that 

generated queries did not contain self joins (when simple, non-aggregate and not subqueried 

queries contain self-joins, the number of joins could exceed the number of tables). By far the 

most frequent number of tables included in queries was 8. Even if the query attributes were 

included randomly, apparently it was necessary to include most or all of the tables in order 

to make the queries operational (by building a proper JOIN chain). 

 

   
Figure no. 11 – Frequency of the number of tables and the number of joins (left) and the 

frequency of connectors AND and OR in WHERE clause (right) 

 

Another important factor that can influence query performance could be the number of 

AND and OR operators in the WHERE clause. The right side of Figure no. 11 depicts their 

distribution. Skewness of their distributions is related to the number of attributes (randomly) 

included the clause WHERE.  
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Naturally one of the most important divers of query execution duration was the size of 

the processed data. Instead of the scale factor variable interest was initially on four other 

parameters related to the data size: the minimum number of processed rows in a query 

(min_n_of_rows), the maximum number of processed rows in a query (max_n_of_rows), the 

average number of processed rows in a query (avg_n_of_rows) and the median number of 

processed rows in a query (median_n_of_rows).  

 

 
Figure no. 12 – Summaries about the number of processed rows in a query 

 

Figure no. 12 shows that the distribution of all four parameters is not continuous (a 

consequence of including in the data set the results of only four scale factors). Variable 

min_n_of_rows id highly concentrated on value 1. Also variable max_n_of_rows has a small 

number of values. Finally of four variables only avg_n_of_rows was kept in the analysis, as 

it seems to present the larger variability. 

 

5.2 Query duration on two data servers for the five-node cluster 

 

This section investigates one of the main topic of interest for the thesis, i.e. big data 

technologies performance compared to traditional SQL/relational counterpart when processing 

medium-sized data.  

Particularly, the main questions were: 

 Is overall Big Data (Hive/Hadoop) system performance better than the relational/ 

SQL (PostgreSQL) performance? 

 Which factor loading (database size) seems more appropriate for relational/SQL 

technology and which are more appropriate for Big Data technology? 

 Which is the database size when Hadoop/Hive will clearly be a better option than 

Postgres XL? 

Exploratory data analysis for overall and each scale factor results were accompanied 

by a set of non-parametric tests for assessing the statistical significance of the results. As 
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will be seen, non-parameter tests were necessary, as normality and variance 

homoscedasticity requirements were not fulfilled (so t-tests were not appropriate). 

Figure no. 13 presents an overview of overall (all scale factors) distribution of query 

duration in Hive and PostgreSQL. Both the superimposed density curves (left side of the 

figure) and the boxplot of duration for the tested systems (right) provide a proper glimpse of 

overall performance. 

 

 
Figure no. 13 – Overlapping density curves (left) and boxplot (right) for the distribution of 

duration (all scale factors)  

 

Next investigated question was if there are significant differences in performance 

between Hive and PostgreSQL among different scale factors (loadings) of the database – see 

Figure no. 14. Specifically, it was expected that, with the increase of database size, Hive 

will catch-up and eventually outperform PostgreSQL. 

 

 
Figure no. 14 – Comparison of duration median, quartiles and outliers, by each scale factor 
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Figure no. 14 shows that, contrary to what was expected, with the increase of the 

database size, the performance gap between PostgreSQL and Hadoop/Hive did not shrink al 

all, but on the contrary. Table no. 2 provides the values of medians, differences of medians 

and ratio of median for the duration of queries in each of the two tested systems, overall and 

for each scale factor. 

PostgreSQL performed better than Hive overall and for each scale factor. The highest 

gap was recorded for scale factor of 2. With the increase of database size from scale factor 2 

to 5 the gap ration narrows spectacularly, and one can speculate about the gap in the case of 

higher scale factors (10, 50, and 100). 

 
Table no. 2 – Basic figures about PostgreSQL-Hive performance gap 

Scale 

factor 

Median 

hive 

Median 

pg 

Diff 

median 

hive-pg 

Ratio 

median 

hive/pg 

0.5 203.891 14.338 189.553 14.22 

1 363.749 41.798 321.951 8.703 

2 879.909 77.059 802.85 11.419 

5 1671.336 267.746 1403.59 6.242 

Overall 513.832 61.657 452.175 8.334 

 

In order to confirm the statistical significance of differences previously identified using 

graphics and descriptive statistics, the following hypothesis will be tested: 

H1: Overall non-aggregate query performance is better for PostgreSQL than Hive 

H2: Non-aggregate query performance is better for PostgreSQL than Hive for scale 

factor 0.5 

H3: Non-aggregate query performance is better for PostgreSQL than Hive for scale 

factor 1 

H4: Non-aggregate query performance is better for PostgreSQL than Hive for scale 

factor 2 

H5: Non-aggregate query performance is better for PostgreSQL than Hive for scale 

factor 0.5 

Classical parametric test for comparing performances of two data servers would be the 

t-test for paired data. This test requires that data to be normally distributed and to have equal 

variance. In R there is a plethora of functions for normality, such as shapiro.test (base R) for 

Shapiro-Wilk normality test, ks.gof in package pgirmess (Giraudoux, 2016) for Kolmogorof-

Smirnov goodness of fit test to normal distribution and ad.test in package nortest (Gross and 

Ligges, 2015) for Anderson-Darling test for normality. In each case the null hypothesis was 

H0: the distribution of duration is normal and the alternative hypothesis was Ha: the 

duration does NOT follow a normal distribution. Non-normality was reported by all the 

functions (W = 0.624144359, p-value = 1.76E-38). 

As the normality assumption was not met for the technical score, a non-parametric 

“paired” Wilcoxon Signed-Rank test (Kloke and McKean, 2015, pp. 16-22) was performed 

using function wilcox.test implemented in base R and wilcox.exact implemented in package 

exactRankTests (Hothorn and Hornik, 2015), overall and for each scale factor. 
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The tested null and alternative hypotheses for the Wilcoxon Signed-Rank test were 

stated as follows (see column alternative which shows the current setting of the alternative 

hypothesis): 

 H0: The median difference between paired samples is 0 (median of query duration 

in Hive – median of query duration in PostgreSQL); alternative hypothesis Ha: The median 

difference between paired samples is different from 0 – this is the case when alternative is 

set on “two.sided” value.  

 H0: The median difference between paired samples is equal or less than zero; 

alternative hypothesis Ha: The median difference between paired samples is larger than 0 – 

this is the case when alternative is set on “greater” value.  

 H0: The median difference between paired samples is equal or greater than zero; 

alternative hypothesis Ha: The median difference between paired samples less than 0 – this 

is the case when alternative is set on “less” value.  

The groups correspond to query execution duration in Hive and PostgreSQL. The 

medians of the two groups were 513.832 (Hive) and 61.657 (PostgreSQL), respectively.  

The paired Wilcoxon Signed-rank test shows in Table no. 3, that there is a significant 

effect of group (V = 79283, p-value < 2.493E-64). Reported difference between median of 

query duration in Hive and that of PostgreSQL was 624.76, 95% CI [530.92, 704.87]. 

 
Table no. 3 – Results of paired Wilcoxon Signed-rank tests 

scale function 
V-sta-

tistic 

p-

value 

alter-

native 
method 95% CI 

median 

(Hive-Pg) 

estimate 

overall wilcox.test 79283 2.49* 

E-64 

two.sided WSRTCC [530.9, 

704.9] 

624.76 

overall wilcox.test 79283 1.25*  

E-64 

greater WSRTCC [543.7, 

Inf] 

624.76 

overall wilcox.test 79283 1 less WSRTCC [-Inf, 

 692.7] 

624.76 

overall wilcox.exact 79283 0 greater AWSRT [543.7, 

Inf] 

624.76 

0.5 wilcox.test 4894 3.83* 

E-16 

two.sided WSRTCC [175.4, 

191.4] 

183.76 

0.5 wilcox.test 4894 1.92* 

E-16 

greater WSRTCC [176.9, 

Inf] 

183.75 

0.5 wilcox.test 4894 1 less WSRTCC [-Inf, 

190.1] 

183.75 

0.5 wilcox.exact 4894 2.22* 

E-16 

greater AWSRT [176.9, 

Inf] 

183.75 

1 wilcox.test 4920 1.82* 

E-16 

two.sided WSRTCC [383.2, 

595.0] 

466.48 

1 wilcox.test 4920 9.12* 

E-17 

greater WSRTCC [400.0, 

Inf] 

466.48 

1 wilcox.test 4920 1 less WSRTCC [-Inf, 

577.7] 

466.48 

1 wilcox.exact 4920 1.11* 

E-16 

greater AWSRT [400.0, 

Inf] 

466.17 

2 wilcox.test 5050 3.96* 

E-18 

two.sided WSRTCC [730.3, 

922.2] 

823.89 
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scale function 
V-sta-

tistic 

p-

value 

alter-

native 
method 95% CI 

median 

(Hive-Pg) 

estimate 

2 wilcox.test 5050 1.98* 

E-18 

greater WSRTCC [741.9, 

Inf] 

823.89 

2 wilcox.test 5050 1 less WSRTCC [-Inf, 

909.2] 

823.89 

2 wilcox.exact 5050 0 greater AWSRT [741.9, 

Inf] 

823.93 

5 wilcox.test 5041 5.19* 

E-18 

two.sided WSRTCC [1415.2, 

1958.5] 

1703.28 

5 wilcox.test 5041 2.60* 

E-18 

greater WSRTCC [1484.9, 

Inf] 

1703.28 

5 wilcox.test 5041 1 less WSRTCC [-Inf, 

1919.8] 

1703.28 

5 wilcox.exact 5041 0 greater AWSRT [1484.9, 

Inf] 

1703.32  

WSRTCC - Wilcoxon signed rank test with continuity correction 

AWSRT - Asymptotic Wilcoxon signed rank test 

 

As the database size increased so was the case of the median of Hive – PostgreSQL 

difference. 

 

5.3 Main drivers of non-aggregate query performance for the five-node cluster 

hostes in (Amazon) cloud  

 

Previous section suggested that in the case of non-aggregate queries executed on a 

five-node distributed cloud architecture, Postgres performs better than Hadoop/Hive, overall 

and on each scale factor. This section investigates the relationship between the outcome 

(query duration) and various query parameters as predictors in a series of regression models. 

An R module was devised for selecting the appropriate regression model 

incrementally. Starting linear regression models included the outcome (duration) and all the 

predictors described in section 4.2. As shown in section 5.2, the distribution of variable 

duration was skewed. Consequently, the regression model outcome was transformed without 

compromising the model clarity, from duration to the cube root of duration (√        
 

). 

 
Table no. 4 – The most non-significant attribute of each iteration model 

Iter. Removed predictor Estimate Std. Err. t-value p-value 

1 n_of_attribs_select -0.0036 0.0159 -0.2239 0.8229 

2 n_of_pku_int__select 0.0224 0.0389 0.5759 0.5650 

3 length_attrib_string__where 0.0004 0.0005 0.8040 0.4219 

4 n_of_pku_int__where -0.0873 0.0579 -1.5065 0.1327 

5 n_of_in_values__where 0.0040 0.0024 1.6616 0.0974 

6 n_of_in__where -0.7971 0.4841 -1.6467 0.1004 

7 n_of_oper_eq_where -0.0570 0.0531 -1.0740 0.2835 

8 n_of_oper_other_than_eq_where -0.0445 0.0411 -1.0836 0.2792 

9 n_of_between__where -0.0384 0.0415 -0.9248 0.3556 

10 n_of_and__where -0.0554 0.0386 -1.4352 0.1520 
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Using a step-wise procedure, in each iteration the most non-significant attribute (the 

attribute with the largest/non-significant p-value) was removed – see Table no. 4. The 

process stopped when current linear model contained no attributes whose p-value was less 

than 0.05. This was the reference model, labelled as model B.  

 

 
Figure no. 15 – Correlation plot for variables in model B 

 

Next model variables correlations were checked for detecting collinearity. Spearman 

correlation coefficients were preferred as the distribution of predictor was not normal. 

Figure no. 15 presents the correlation plot produced by R function corrplot of package 

corrplot (Wei and Simko, 2016). Correlation coefficients did not exceed 0.64 which was 

adequate for model validity. 

From model B, model A (which serves as a null model) was derived by removing the 

categorical factor (dbserver). Model C resulted by adding interactions in the model B 

(initially, all interactions were tested but gradually the least significant interactions were 

removed until the model contained only significant interactions). Table no. 5 contains key 

information about the competing models A, B and C: formula, R
2
 (r-squared), adjusted R

2
, 

p-value describing the overall significance of the model and AIC (Akaike's Information 

Criterion) with the degrees of freedom. 

As the models are nested, an ANOVA test was performed to check for model 

improvement. Tested null hypotheses were H0a: model B does not improve the prediction of 

the outcome relative to model A and H0b: model C does not improve the prediction of the 

outcome relative to model B. In both cases, function anova (base R) suggested the test 

results were significant. For H0a F (df=1) = 885.89, p-value < 2.2E-16, whereas for H0b F 

(df=5) = 90.69, p-value < 6.8E-12.  
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Table no. 5 – Summaries of main three regression models for randomized data 

Model Formula R2 Adj.R2 p-value 
AIC 

(df) 

A 

duration ^ .3 ~ 1.0983   

+  0.6839 * avg_n_of_rows  

+ 0.0143 * n_of_attribs_where  

+ 0.0017 * length_attrib_string__select  

+ 0.2517 * n_of_joins 

0.30 0.29 1.27e-29  
1758 

(6) 

B 

duration ^ .3 ~ 1.2489   

-  3.5143 * dbserverPostgreSQL  

+ 0.6953 * avg_n_of_rows  

+ 0.0284 * n_of_attribs_where  

+ 0.0016 * length_attrib_string__select  

+ 0.4680 * n_of_joins 

0.76 0.76 1.89e-120 
1327 

(7) 

C 

duration ^ .3 ~ 2.26981   

 - 2.3951 * dbserverPostgreSQL 

 + 0.3394 * avg_n_of_rows  

 - 0.0386 * n_of_attribs_where  

 + 0.0008 * length_attrib_string__select  

 + 0.4198 * n_of_joins  

 - 0.1826 * dbserverPostgreSQL:avg_n_of_rows  

 - 0.0016 * dbserverPostgreSQL: 

         length_attrib_string__select  

+ 0.0194 * avg_n_of_rows:n_of_attribs_where 

+ 0.0005  * avg_n_of_rows:    

        length_attrib_string__select  

+ 0.0001 * n_of_attribs_where: 

        length_attrib_string__select 

0.80 0.79 7.12e-128 
1274 

(12) 

 

Figure no. 16 contains the two plots of the statistically significant interaction effects of 

predictor dbserver with predictors avg_n_of_rows (left) anf length_string__select (right). 

The plots were generated with package effects (Fox, 2003). In both cases the slopes differ 

between the panels corresponding to the server levels, suggesting that interaction between 

predictors is important in explaining the variation of the outcome.  

 

 
Figure no 16 – Visualize interaction effects with package effects 

 



42 Marin FOTACHE, Ionuț HRUBARU 
 

Another way to visualize the interaction between predictors is provided by package 

interplot (Solt et al., 2016). It represents the conditional coefficients (“marginal effects”) of 

variables included in multiplicative interaction terms. Function interplot plots the changes in 

the coefficient of one variable in a two-way interaction term conditional on the value of the 

other included variable, including a simulated 95% confidential intervals of these 

coefficients. Notably interplot plots the changes in the conditional coefficient of one 

variable in the interaction, rather than changes in the dependent variable itself. The chart in 

the left side of Figure no. 17 shows how the database server affected the coefficient for the 

predictor avg_n_of_rows on the outcome (duration ^ .3), whereas that in the right side of the 

figure shows how the database server affected the coefficient for the predictor 

length_attrib_string__select on the outcome (duration ^ .3), 

 

 
Figure no 17 – Visualize interaction effects with package interplot 

 

Next the models A, B and C were tested for conformity with the Ordinary Least 

Square assumptions. Error independence of the models was questionable since function 

durbinWatsonTest in package car (Fox and Weisberg, 2011) reported autocorrelation (p-

value = 0) in all the cases. Function dwtest in package lmtest (Zeileis and Hothorn, 2002) 

reported similar results. Also constant error variance (homoscedasticity) was not met by 

any of the models since the null hypothesis of homoscedasticity was rejected by function 

ncvTest of package car with p-values below 0.001. Results was confirmed with the 

studentized Breusch-Pagan test. Function bptest in package lmtest reported also p-values 

below 0.001.  

Error normality was not met, both graphically (function qqPlot in package car) – see 

Figure no. 18 and with function shapiro.test (base R). Nevertheless, error departure from 

normality is not huge for all three models. 

 

     
Figure no 18 – Error normality with qq-Plots for models A, B and C 
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Also models linearity is questionable in all three cases as the component plus residual 

plots show (see Figure no. 19). 

 

 
Figure no 19 – Residual vs. fitted plots for checking models linearity 

 

There were some issues related to outliers, high leverage points and influential 

observations as seen in the graph of Figure no. 20 generated with function influencePlot in 

package car. 

 

   
Figure no. 20 – Outliers, high leverage points and influential observations  

 

Variance Inflation Factor (function vif in package car) did not report collinearity in 

models A and B. Multicollinearity manifested in model C can be explained by the 

interaction terms. 

As the Ordinary Least Squares assumptions were not met, alternative regression 

methods were put in use in order to confirm or reject OLS findings. These methods were 

applied to model C as seemingly the most appropriate of the three models. 

Whenever linear regression models incorporate error dependence it was suggested to 

use Generalized Least Squares GLS (Faraway, 2015, p. 113; Fox, 2016, pp. 474-495). 

Package nlme (Pinheiro et al., 2016) is one option for building GLS models (function gls). 

GLS model C reported identical residual standard error and estimates for predictor 

coefficients. 

As model C contained outliers, high leverage points and unusual observations which 

determined the non-normality of errors (residuals), robust regression (Fox, 2016, pp. 586-

601) was applied for testing original OLS model C for significance. As the extreme erorrs 

were not numerous (see Figure no. 20), M-Estimation type of robust regression was 

preferred (Huber method). The mode was built with function rlm of package MASS 

(Venables and Ripley, 2002). Table no. 6 presents predictor estimated values, standard 

errors and t-values for “original” OLS model C and “Huber” model C.  
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Table no. 6 – Model C – Ordinary Least Squares vs. Huber (Robust, M-Estimation) Regression 

Predictor 

Model C - OLS Model C - Huber 

Coeff Std.Err t-value Coeff Std.Err t-value 

(Intercept) 2.2698 0.6938 3.2714 2.2972 0.6078 3.7797 

dbserverPostgreSQL -2.3951 0.2678 -8.9431 -2.1784 0.2346 -9.2852 

avg_n_of_rows 0.3394 0.0773 4.3888 0.4127 0.0678 6.0910 

n_of_attribs_where -0.0386 0.0157 -2.4577 -0.0308 0.0138 -2.2389 

length_attrib_string__select 0.0008 0.0005 1.6488 0.0008 0.0004 2.0072 

n_of_joins 0.4198 0.1107 3.7930 0.3737 0.0969 3.8543 

dbserverPostgreSQL: 

avg_n_of_rows 
-0.1826 0.0602 -3.0311 -0.2566 0.0528 -4.8635 

dbserverPostgreSQL: 

length_attrib_string__select 
-0.0016 0.0004 -3.9811 -0.0019 0.0003 -5.6335 

avg_n_of_rows: 

n_of_attribs_where 
0.0194 0.0036 5.3714 0.0174 0.0032 5.5189 

avg_n_of_rows: 

length_attrib_string__select 
0.0005 0.0001 3.7442 0.0006 0.0001 5.9852 

n_of_attribs_where: 

length_attrib_string__select 
0.0001 0.0000 2.3600 0.0000 0.0000 2.2427 

 

Another technique applied when OLS models expose problems is the non-parametric 

rank-based regression (Kloke and McKean, 2015, pp. 83-116). One of the available 

packages is Rfit (Kloke and McKean, 2012). Function rfit applied for model C found that the 

model is significant (Overall Wald Test = 2584.451, p-value=0) and produced predictor 

coefficients shown in Table no. 7. 

 
Table no. 7 – Model C predictors when applying non-parametric, rank-based regression 

Predictor 

Model C - OLS Model C – Rank-based 

Coeff p-value Coeff p-value 

(Intercept) 2.2698 0.0012 2.5217 0.0000 

dbserverPostgreSQL -2.3951 0.0000 -2.1984 0.0000 

avg_n_of_rows 0.3394 0.0000 0.3784 0.0000 

n_of_attribs_where -0.0386 0.0144 -0.0307 0.0153 

length_attrib_string__select 0.0008 0.1000 0.0010 0.0101 

n_of_joins 0.4198 0.0002 0.3363 0.0002 

dbserverPostgreSQL: 

avg_n_of_rows -0.1826 0.0026 -0.2223 0.0000 

dbserverPostgreSQL: 

length_attrib_string__select -0.0016 0.0001 -0.0019 0.0000 

avg_n_of_rows: 

n_of_attribs_where 0.0194 0.0000 0.0184 0.0000 

avg_n_of_rows: 

length_attrib_string__select 0.0005 0.0002 0.0006 0.0000 

n_of_attribs_where: 

length_attrib_string__select 0.0001 0.0188 0.0000 0.0292 

 

Differences in coefficient size for the predictors are minor. All of the models built 

using alternative techniques (other than OLS) displayed similar sign, scale and statistical 
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significance for predictor coefficients. Consequently, even if model C did not fit the OLS 

assumptions, it seems appropriate for the given the data set. 

 

6. DISCUSSION 

 

Big Data umbrella covers a large range of technologies for storing and processing large 

amounts of data produces at great speed (velocity) in a variety of formats (section 1). This 

paper compared two of the most popular products of “traditional” RDBMS’s and “in vogue” 

Hadoop systems. Postgres XL (as PostgreSQL fork) was chose instead of standard 

PostgreSQL distribution, as it is natively a distributed RDBMS and (almost) fully 

compatible with the SQL dialect implemented in PostgreSQL (section 2.1).  

Hive was preferred as Hadoop platform for testing, as it implements, as it provides a 

decent level of data independence and SQL-like query language – HiveQL (section 2.2). 

Both systems were installed and deployed on a five-node Amazon cluster (main 

features are described in section 4.3) so that the results are fully comparable. 

Relative to the current benchmarks for comparing data stores performance, this paper 

focused on testing queries generated randomly so that statistical tools could be (more) 

relevant. Currently the TPC-H benchmark provides 22 queries to be executed on different 

scale factors (section 3). Data about query execution (mainly query completion duration) is 

recorded for each tested data store and then compared. The 22-query set makes the results 

prone to be compared as this is the main goal of a benchmark. But is this 22-query set 

representative for the population of all of queries executed on a transactional (sales) 

database for a “typical” company/organization? The answer to this questions largely 

depends on each organizations information landscape (data structure, reporting 

requirements, data analysis etc.).  

As the query set was nominated (supposedly based on authors’ expertise) by TPC-H, 

the lack of queries randomness and their low variability makes the results less appropriate 

for statistical analysis. Moreover, generally papers on data stores performance have dealt 

mainly with basic operations (database load, update, or query) relating the results to just 

basic parameters, such as database size, number of concurrent used, etc.  

This paper tested the performance of Postgres XL versus Hadoop/Hive on randomly 

generated 100 query set for each scale factor (section 4.1) with a total of 400 executes 

queries. Data was generated for four scale factors of TPC-H database schema using DBGen 

utility (section 3). As the record sets of each scale factor is independent of the other scale 

factors), each query targeted a specific scale factor subschema (section 4.1). 

The finer-grained analysis of results was devised by recording not only the general 

information about query execution (duration, scale factor, data store), but also a variety of 

parameters about each query (section 4.2). As queries were randomly generated, most 

variables have a positive skewed distribution (section 5.1). Values for variables number of 

joins and number of tables (these two parameters are highly correlation since generated 

queries did not contain self-joins) are highly concentrated on value 7 (8), since even for 

queries with a small number of attributes an entire join chain was necessary to ensure query 

validity (functionality).  

For expressing the data size, four parameters were available: the minimum, maximum, 

average and median number of processed rows by the query. Of four, only avg_n_of_rows 

was kept in the analysis since it has the largest variability of four (section 5.1). 
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Overall results of query execution duration contradicted what was initially expected (al 

least by the authors), as seen in Figure no. 13. Duration range was quite large in Hive, from 

0 to about 6000 seconds with an average around 1000 seconds and a median about 500. The 

distribution was skewed to the right as further normality tests would confirm. By contrast, 

the distribution of overall query duration was more concentrated in PostgreSQL. The range 

varied between 0 and 1300, the average was placed around 150 seconds and the median was 

about 60 seconds. As with Hive, PostgreSQL distribution was skewed to the right. 

Overlapping density curves suggested differences in the concentration of values for two data 

servers. That came as a surprise, as it was expected that, when data size increases, 

Hadoop/Hive will eventually surpass PostgreSQL in a distributed architecture. Statistical 

tests confirmed the significance of performance gap suggested visually. 

Also in section 5.2, Figure no. 14 and Table no. 2 shows that with the increase of the 

database size, the performance gap between PostgreSQL and Hadoop/Hive did not shrink at 

all. Ratio of medians (of query duration) between Hive and PostgreSQL, overall and for each 

scale factor shown in Table no. 2 exposes a “low” for Hive at factor scale of 2 followed by a 

notable performance improvement for scale factor of 5. Statistical significance of the gap for 

each scale factor was confirmed by the tests deployed in section 5.2 (see also Table no. 3). 

One can only speculate that with further increase of the scale factor, Hive will 

eventually outperform Postgres XL. But for the available data set and deployed testing 

platform, it is obvious that Hadoop/Hive performed poorly. 

In section 5.3 the relationship between the outcome (query duration) and various query 

parameters as predictors was analysed with a series of regression models. As the distribution 

of the outcome variable was positively skewed, it was transformed (in subsequent regression 

models), from duration into duration ^ .3 (the cube root of duration or √        
 

). That 

does not alter models interpretability. 

Using a step-wise procedure, in each iteration the most non-significant attribute (the 

attribute with the largest/non-significant p-value) was removed (Table no. 4). The process 

stopped when current linear model contained no attributes whose p-value was less than 0.05. 

Resulted model was the baseline (model B). Model B predictors was tested for collinearity 

(Figure no. 15) and results did not display high correlation among predictors. 

For assessing the importance of nominal predictor dbserver a simpler model (model A) 

was drawn from the baseline model by simply removing the predictor. Predictor dbserver 

proved to be pivotal, since by adding it from model A to model B, model adjusted R
2
 

increased from 0.30 to 0.76 (Table no. 5).  Also Akaike's Information Criterion (AIC) 

decreased from 1758 to 1327 and ANOVA test for nested models (F (1) = 885.89, p-value < 

2.2E-16) suggested that model B (incorporating dbserver variable) models better the 

outcome variability as a function of predictors for the given dataset. That confirmed the 

results in section 5.2. 

Interactions were introduced in model C because it was expected that the performance 

differences could vary in each data system on different levels on certain predictors. Two 

predictors are said to interact in determining the outcome when the partial effect on one 

depends on the value of the other. Interaction refers to the manner in which predictors 

combine to affect the outcome, not the relationship between predictor themselves (Fox, 

2016, p. 141). Model C conformed to the principle of marginality that specifies that a model 

including interactions should normally include the main effects that “compose” the 

interactions (Fox, 2016, p. 144). This is referred also as the hierarchical principal (James et 
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al., 2014, p. 89). But generally the main effect of predictors that interact are neither tested 

nor interpreted (Fox, 2016, p. 144).  

Five interactions proved to be significant (see Table no. 5):  

 Between dbserver and avg_n_of_rows  

 Between dbserver and length_attrib_string__select  

 Between avg_n_of_rows and n_of_attribs_where 

 Between avg_n_of_rows and length_attrib_string__select  

 Between n_of_attribs_where and  length_attrib_string__select 

By adding interactions, from model B to model C, model adjusted R
2
 increased from 

0.76 to 0.79 (Table no. 5) which was quite spectacular, but notable. Model Akaike's 

Information Criterion (AIC) decreased from 1327 to 1274 and ANOVA test for nested 

models (F(5) = 90.69, p-value < 6.8E-12) also suggested that model C (incorporating above 

interactions) models better than model B the outcome variability.  

As this paper targeted mainly performance comparison between Hive and Postgres XL 

first two interaction terms were particularly important. On the two plots in Figure no. 16 the 

slopes differ slightly between the panels corresponding to the server levels, suggesting that 

interaction between predictors dbserver and avg_n_of_rows (left) and between predictors 

dbserver and length_string__select (right) are relatively important in explaining the 

variation of the outcome. Also in the interaction plot on the left side of Figure no. 17 shows 

that with the "increase" of the data server (from 0 for Hive to 1 for Postgres) along the x 

axis, the magnitude of the coefficient of predictor avg_n_of_rows decreases (along the y 

axis). Plot on the right side of Figure no. 17 suggests that with the “increase” of the data 

server (from Hive to PostgreSQL) along the x axis, the magnitude of the coefficient of 

length_at-trib_string__select decreases along the y axis. 

Model C seemed the best (among the three) in explaining the duration main drivers. It 

makes sense in terms of sign and size of predictor coefficients. Following the 

hierarchical/marginality principle, individual predictors occurring in interaction terms are 

not interpreted. It is the case of dbserver, avg_n_of_rows, length_attrib_string__select, and 

n_of_attribs_where. Regression coefficient of predictor n_of_joins is considerable. Every 

additional join in a query seemed to increase the cube root of duration (√        
 

) with .4. 

The size of coefficient for this predictor is explained by its narrow range of values (from 0 

to 7). Coefficients of interaction terms dbserverPostgreSQL:avg_n_of_rows and 

dbserverPostgreSQL:length_attrib_string__select were negative. As already suggested by 

the interaction plots, performance in Hadoop/Hive worsened (compared to Postgres XL) 

when database size increased and also when the query contains longer attributes of type 

string (CHAR and VARCHAR). 

Since OLS assumption on error independence, error normality (Figure no. 18), model 

linearity (Figure no. 19) and outliers, high leverage points and influential observations 

(Figure no. 20) were not checked, three alternative methods were put in use for confirming 

or rejecting OLS results for model C: 

 Generalized Least Squares GLS  

 M-Estimation (Huber method) robust regression (Table no. 6)  

 Non-parametric rank-based regression (Table no. 7) 

Results of applying all these three methods were in line with OLS model C (in terms of 

model significance, parameter size, sign and significance). 
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7. CONCLUSIONS AND FURTHER RESEARCH 

 

This paper results suggest that on a five-node distributed architecture deployed in 

cloud, for an average size of the database, Hadoop/Hive (as one of flagship Big Data 

technologies) failed to outperform the RDBMS contender (Postgres XL). Results validity 

is supported by the randomness of the tested queries, the variability of the database size 

and the non-parametric tests deployed accompanied by the regression models built and 

tested for explaining the main drivers of query duration (the key measure of data 

processing performance). 

The results must be reported strictly to the volume of processed data (0.5-5 GB which 

is quite typical for many companies), to the nature of tested queries (basically filtering, non-

aggregate) and also the transactional nature of the database (TPC-H databases is actually a 

sales database). Tests must be further deployed on database schemas with larger scale 

factors, on more powerful architectures (more numerous nodes), and using also aggregate 

queries which are the main ingredient of data processing in business information systems. 

As the default settings were used in testing the systems, another direction could refer to 

system tuning (i.e. indexes which would eliminate the costly full table scans) for both 

Postgres XL and Hadoop/Hive.  

Also data analysis for explaining and predicting system performance can be improved by 

using mixed regression levels. Since for larger scale factors, Postgres XL – Hive performance 

gap is expected to narrow and eventually to be reversed, classical OLS and robust, non-

parametric regression used in this paper could prove inadequate. Non-parametric regression 

models dealing better with non-linearity and correlation among predictors, such as MARS 

(Multivariate Adaptive Regression Splines), could be preferred instead. 
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