

Scientific Annals of Economics and Business

63 (SI), 2016, 21-50

DOI: 10.1515/saeb-2016-0134

PERFORMANCE ANALYSIS OF TWO BIG DATA TECHNOLOGIES ON

A CLOUD DISTRIBUTED ARCHITECTURE. RESULTS FOR NON-

AGGREGATE QUERIES ON MEDIUM-SIZED DATA

Marin FOTACHE*, Ionuț HRUBARU**

Abstract

Big Data systems manage and process huge volumes of data constantly generated by various

technologies in a myriad of formats. Big Data advocates (and preachers) have claimed that, relative to

classical, relational/SQL Data Base Management Systems, Big Data technologies such as NoSQL,

Hadoop and in-memory data stores perform better. This paper compares data processing performance

of two systems belonging to SQL (PostgreSQL/Postgres XL) and Big Data (Hadoop/Hive) camps on a

distributed five-node cluster deployed in cloud. Unlike benchmarks in use (YCSB, TPC), a series of R

modules were devised for generating random non-aggregate queries on different subschema (with

increasing data size) of TPC-H database. Overall performance of the two systems was compared.

Subsequently a number of models were developed for relating performance on the system and also on

various query parameters such as the number of attributes in SELECT and WHERE clause, number of

joins, number of processing rows etc.

Keywords: Big Data, cloud computing, performance benchmarks, Hadoop, Hive, PostgreSQL, Postgres

XL, R

JEL classification: M15

1. INTRODUCTION

Big Data refers to the storage, processing and analysis of big volumes of data, generated

with big velocity in a big variety of sources and formats (Buhl et al., 2013; Kowalczyk and

Buxmann, 2014; Stonebraker, 2012b; Ylijoki and Porras, 2016). As the volume, speed and

heterogeneity of data have accelerated with the web and mobile technologies, centralizing all

the data in a monolith database and/or data warehouse system became less and less feasible. In

terms of data storage and processing, essential for Big Data solutions is the distributed

computing with systems deployed in-house or in cloud (Jacobs, 2009).

*
 Faculty of Economics and Business Administration, Alexandru Ioan Cuza University of Iaşi, Romania;

e-mail: fotache@uaic.ro.
**

 Faculty of Economics and Business Administration, Alexandru Ioan Cuza University of Iaşi, Romania;
e-mail: ionut.hrubaru@gmail.com.

22 Marin FOTACHE, Ionuț HRUBARU

Traditional relational/SQL databases and data warehouses could be part of any

viable Big Data system. But in terms of data storage and processing Big Data has brought

mainly three group of technologies: NoSQL data stores (Cattell, 2010; Cogean et al.,

2013; Fotache et al., 2014; Lungu and Tudorica, 2013), Hadoop ecosystems (Fotache and

Hrubaru, 2016; Hrubaru and Fotache, 2015; Li et al., 2014; Stonebraker, 2012a), and

NewSQL/in-memory systems (Pavlo and Aslett, 2016; Stonebraker, 2012a; Trancoso,

2015). A recurrent theme in Big Data literature is the improved performance of data

processing in new Big Data technologies compared to the classical relational/SQL Data

Base Management Systems (RDMS’s).

This paper inquires the performance related to data processing operations of two

systems, one representing the relational/SQL camp - PostgreSQL/Postgres XL and the other

the Big Data camp - Hadoop/Hive. Both are free, open-source technologies, largely popular

and affordable for almost any type of organizations. Tests were devised on a distributed

five-node cluster deployed in cloud (Amazon).

Unlike some acknowledged benchmarks such as YCSB (Cooper et al., 2010) and TPC

(Transaction Processing Performance Council - TPC, 2014), the focus here was on

executing (and collecting the results, i.e. the duration of query completion) randomly

generated non-aggregate queries on TPC database subschema loaded with different volumes

of data and. Results were related to various parameters of executed queries. In this paper the

generated queries (by modules written in R language) were non-aggregate, i.e. lacking

GROUP BY and HAVING clauses.

Overall performance of the two systems was compared. Subsequently a number of

models were developed for relating performance on the data store and also on various query

parameters such as the number of attributes in SELECT and WHERE clause, number of

joins, number of processing rows etc.

2. POSTGRES AND HADOOP/HIVE AS BIG DATA TECHNOLOGIES

Relational/SQL DBMS’s and Hadoop ecosystem are popular choices for data

persistence systems today. Relational databases were proposed in 1970s and become

operational in 1980s, whereas Hadoop technologies developed at a spectacular pace after

2003. As all other RDBMS’s, PostgreSQL was based mainly on a centralized architecture.

In recent years, as a response to Big Data pressure, PostgreSQL has been gradually

incorporating principles of distributed computing but it is not a fully distributed DBMS

yet. As consequence the tests were performed on Postgres-XL which is a forked version

of PostgreSQL designed to be distributed and has some other features like MPP

(PostgresXL, 2016).

2.1 PostgreSQL/Postgres XL

Postgres XL is a shared nothing distributed database management system (Figure no.

1) acting as a cluster that can split OLTP and OLAP workloads among its nodes and can

scale horizontally (scale-out). It is based on Postgres and fully supports SQL.

Performance Analysis of Two Big Data Technologies on a Cloud Distributed Architecture… 23

Source: PostgresXL (2016)

Figure no. 1 – Postgres XL architecture

Postgres XL is based on three major components:

 Global Transaction Manager (GTM) node handles distributed transactions and

provides ACID capabilities. GTM is vital for Postgres XL architecture so it is usually

deployed on a separate and (more) powerful machine. For dealing with the risk of a single

point of failure for the cluster, a standby GTM node can be configured for transparently

taking over when master GTM fails.

 Coordinator node handles client application requests, determines which data nodes

need to be queried and builds and sends execution plans to the data nodes. It also gathers the

results and sends them to the client applications. Coordinators hold only metadata (in

catalog views). If one coordinator fails, then the application will transparently connect to

another.

 Data node holds the data and does the processing. It is recommended to have as

many coordinators as the data nodes in a cluster in order to manage the workload balance

and to reduce the network calls.

A functional cluster must have all the three types of nodes. Optionally GTM-Proxy

nodes can be installed for grouping multiple messages coming from Coordinator and Data

nodes on the same server. Each node is in fact a Postgres instance, and resource allocations

such as port numbers need configuration. Postgres XL is fully ACID compliant and it is an

open source project targeted to merge back its functionalities to Postgres source code. Since

it is based on Postgres, it supports all its functionality.

Data is either distributed through a shard key or replicated at each data node. Data

which is small in volume and relatively static can be replicated, while big data should be

sharded. Data collocation is important for sharded tables, since joins should operate on a

single node ideally, and not send data through network from one node to another because

this usually hampers performance. When a query is issued to a Coordinator, it identifies the

nodes holding the data, produces an execution plan and sends it to the data nodes. Each data

node processes the query in parallel and sends back the results to the coordinator. Scalability

can be achieved by adding nodes in the cluster when workloads require it, and the system

will transparently self-rebalance in terms of data. High availability is achieved by adding

24 Marin FOTACHE, Ionuț HRUBARU

slave nodes for each data nodes that take over the request when a data node fails. Postgres

XL works on both Windows and Linux systems and maps very well to elastic clouds such as

Amazon AWS.

2.2 Hadoop/Map Reduce/Hive

Hadoop is essentially a framework for storing data in large clusters of commodity data.

Fitted for storing and processing big volumes of heterogeneous data Hadoop is not appropriate

for dealing with big velocity requirement since it was designed to process static data.

Hadoop architecture (Figure no. 2) has two main components: the storage which is a

distributed file system (HDFS) and the processing component which is most cases relies on

a MapReduce implementation. MapReduce is a framework/algorithm designed specifically

for parallel processing which maps very well to the HDFS philosophy of storing data across

multiple data nodes in a distributed environment. Recent Hadoop releases provides

additional data processing using a new resource engine (YARN) and a new data processing

framework, Apache Tez (Lublinsky et al., 2013, pp. 435-455).

Source: Doulkeridis and Norvag (2014)

Figure no. 2 – HDFS architecture

The main characteristics of HDFS are sequential writing, lack of support for random

reads and the fact it cannot update the content of a file (White, 2015, pp. 73-99). In HDFS a

file is split between multiple blocks and distributed across multiple commodity machines in

a Hadoop cluster. These nodes are called data nodes, and the information about blocks

(name, size, path, permissions) – the metadata, are stored on a name node. Data nodes keep

data in blocks. Each data node runs a background process which keeps tracks of the blocks

and talks to the name node about status and health. The metadata on the name node keeps

track of the block stored on each slave node.

A Map Reduce job is a piece of code (written in Java, Python etc.) that runs on each

data node in a cluster containing two main functions/interfaces: (1) Map which processes the

input in parallel, produces key value pairs which become input to a (2) Reduce function

which produces the final result – see Figure no. 3.

Performance Analysis of Two Big Data Technologies on a Cloud Distributed Architecture… 25

Source: Doulkeridis and Norvag (2014)

Figure no. 3 – Map-Reduce dataflow

The first step in the flow is a logical input split based on the number of data nodes in

the cluster and the number of data blocks. After setting the number of mappers, the

processing starts in memory (for performance reasons) until the buffer is filled, and from

this point on, the buffer will be spilled to the disk. The result of each mapper is then

shuffled –this is when the data from each task tracker is sent through the network, and this

can be a performance penalty, depending on the network latency. The result of the shuffle

is the actual input to the reducer which applies the code logic to produce the final result

and persist it in HDFS.

As Li et al. (2014) pointed out, MapReduce adopted a loosely coupled design, where the

processing engine is independent of the underlying storage system, allowing the system to

scale its processing and storage both up and down as needed. Another advantage is the fact

that the distribute execution of the program, the resource allocation, block identification and

monitoring of the execution is done by the framework itself. Hence there are some common

patterns in which Map Reduce works best: summarization, filtering, grouping and joining.

The main problem with Map-Reduce is a consequence of its tightness to the input data.

Programmer must know in detail the data structure and has to design and implement all the

logic of both Map and Reduce phase. Changes in the input data are not only about changes

in data the structure (new keys, new attributes, etc.) but also changes in data volume scale

which can affect the logic used by a client application to process the data. This kind of logic

and decisions are automatically taken by an optimizer in the case of a RDBMS, but for Map

Reduce, it is the programmer’s responsibility to implement it. In contrast to relational/SQL

DBMSs, Map-Reduce lost the logical data independence (Hrubaru and Fotache, 2015).

It is difficult for inexperienced users (non-programmers) to write Map-reduce jobs to

solve even the simplest of queries, which were a trivial task in high-level languages such as

SQL (Stonebraker, 2015). Consequently, a large number of Big Data projects focused on

building frameworks that implement high-level query languages (SQL-like) hiding to the

users all the details of Map-Reduce tasks. Hive has been created by the Facebook Data

Infrastructure Team as an open-source data warehousing solution built on top of the Hadoop

environment (Sakr et al., 2013; Thusoo et al., 2009).

Hive projects structure into the data stored in HDFS by storing the metadata in system

catalog file called metastore – see Figure no. 4. The query lifecycle in Hive is similar to that in

a relational database server (Hrubaru and Fotache, 2015) - parsing (syntactic and semantic),

execution plan generation (using an optimizer which can be a rule based one or in the latest

versions a cost based one), generating the steps (Map Reduce jobs) and executing them.

26 Marin FOTACHE, Ionuț HRUBARU

Source: Li et al. (2014)

Figure no. 4 – Hive basic architecture

Hive works with well-known concepts from relational databases such as tables,

columns, rows and data types. Data types, there are primitive (string, integer, timestamp,

date, etc.) and collections data types (struct, array, and map) but custom types can be

created, all implemented in Java and inheriting the underlying behaviour. Besides tables,

from a logical perspective there are partitions also. Tables in Hive can be partitioned, just

like in a classical RDBMS, using different columns as criteria to horizontally split the data.

Hive Query Language (HiveQL) is a SQL like declarative language which is used for

both DDL and DML operations in Hive (Hrubaru and Fotache, 2015; Sakr et al., 2013).

Since Hive is in fact another layer over Map Reduce, all the HiveQL commands will be

translated in Map Reduce jobs executed against HDFS. This has the advantage of hiding

the Map Reduce implementation from the end user and tells hive what the user wants not

how to process it.

Apparently Hive provides what Map-Reduce could not, i.e. data logical independence.

But logical data independence in Hive is incomplete. HiveQL provides features for directly

interacting with the physical layer. There are clauses for serialization and de-serialization,

file formats etc. Hive operates based on schema on read principle. The logical data model is

available only for projecting structure over a physical file and data block.

3. TPC-H BENCHMARK

A large number of benchmarks have been proposed for assessing data processing

performance for data stored/servers deployed in centralized or distributes architectures

implemented in house or in cloud. Currently Yahoo! Cloud Serving Benchmark (YCSB) and

Transaction Processing Performance Council (TPC) are the most prominent. As the interest

was in relating query execution duration to various query parameters, the latter was preferred.

TPC is a non-profit corporation established for defining transaction processing and

database benchmarks and to disseminate objective, verifiable benchmarks for data

performance in one of the following four categories:

 OLTP: TPC-C and TPC-E;

 Decision support: TPC-H, TPC-DS and TPC-DI;

Performance Analysis of Two Big Data Technologies on a Cloud Distributed Architecture… 27

 Virtualization: TPC-WMS;

 Big Data: TPCx-HS.

Considering the batch processing nature of Hadoop and the objective of comparing it

with other systems, specifically a classical RDBMS, TPC-H was chosen as the benchmark

for this paper. TPC Benchmark H (Transaction Processing Performance Council - TPC,

2014) is a decision support benchmark that comes with both a logical database design (a

schema structured in a set of predefined tables) – see Figure no. 5 – and a set of predefined

queries (templates) that are executed against the schema.

Source: Transaction Processing Performance Council - TPC (2014)

Figure no. 5 – TPC-H database schema

The standard implementation provides two tools, DBGen for generating the schema

and populate the database, and QGen that generates queries based on values for specific

input parameters in the templates (Kejser, 2014). The volume of data generated is set

through a scale factor parameter (SF) for which the minimum is the estimated business data

of 10000 suppliers (almost 10 million rows) with approximately 1 GB of storage data.

There are two performance metrics reported by TPC-H:

 Query – per – Hour Performance metric (QphH@Size) which takes into account

the database size (Scale Factor), the query processing power for a single stream and query

throughput for multiple concurrent users;

 Price/Performance metric which takes into account Price/QphH@Size

The components of the TPC-H database consist of eight individual tables (the Base

Tables) as seen in Figure no. 5. Inside the parenthesis there is the prefix of each table. The

28 Marin FOTACHE, Ionuț HRUBARU

record count is either fixed (tables NATION and REGION) or dynamic based on the scale

factor (SF). The arrows point to one-to-many relationship between parent and child table

(primary and foreign keys).

TPC-H proposed twenty-two decision support queries and two database refresh

functions which must be executed as part of the TPC-H benchmark. Queries generated by

QGen module are guaranteed to be compliant with the standard. However, adjustments and

changes can be made to the queries from a syntactical point of view to guarantee executions

on specific DBMS. There are two performance metrics suggested by the TPC-H benchmark:

(1) Query power which measures the time in seconds taken to execute all 22 queries by one

user/session only (one query stream) and (2) Query throughput which accounts for a

variable number of users.

4. METHOD AND TOOLS

The experimental design proposed in this paper questioned the generally

acknowledged idea that, in distributed architectures, Big Data/Hadoop technologies perform

better than traditional SQL/relational technologies in data processing (database query).

Gradually increasing the database size, a couple of models were built and tested for

predicting system performance based on various query parameters and the database loading.

4.1 Design

A module was devised (in R language) for generating random non-aggregate queries to

be executed on various subschema of TPC-H database. Each subschema was created and

populated for a specific scale factor (data loading) – see Table no. 1 – and have distinct,

randomly generated records.

Table no. 1 – Number of records for each table and scale factor

Table in TPC-H schema SF = 0.5 SF = 1 SF = 2 SF = 5

REGION 5 5 5 5

NATION 25 25 25 25

CUSTOMER 75,000 150,000 300,000 750,000

SUPPLIER 5,000 10,000 20,000 50,000

PART 100,000 200,000 400,000 1,000,000

PARTSUPP 400,000 800,000 1,600,000 4,000,000

ORDERS 750,000 1,500,000 3,000,000 7,500,000

LINEITEM 2,999,671 6,001,215 11,997,996 29,999,795

Each generated query had a random numbers of attributes in SELECT and WHERE

query clauses. Then attributes in both clauses were also selected randomly. Based on the

attributes, FROM clause was automatically built so that the query can extract and filter the

attributes. Filter predicate (WHERE clause) was also randomly generated using connectors

such as AND and OR, and various operators (BETWEEN, IN, >, >=, etc.). Queries were

meant to be operational, so every query was targeted for a specific scale factor subschema

(100 queries were created and launched for each scale factor subschema).

Performance Analysis of Two Big Data Technologies on a Cloud Distributed Architecture… 29

4.2 Variables

The variable of most interest was the duration of the query (the interval required for each

system for completing a query) codified as duration. Average number of processed rows

within a query was preferred to the scale factor variable and coded avg_n_of_rows. Nominal

variable dbserver qualify the system (Hive or Postgres) where each query was executed and

query duration was recorded. Other variables refer to various query parameters:

 n_of_attribs_select – number of attributes in SELECT clause;

 n_of_attribs_where – number of attributes in WHERE clause;

 length_attrib_string__select – sum of string (CHAR and VARCHAR) attributes

length in SELECT clause;

 length_attrib_string__where – sum of string attributes length in WHERE clause;

 n_of_and__where – number of AND connectors in WHERE clause;

 n_of_between__where – number of BETWEEN operators in WHERE clause;

 n_of_oper_eq_where – number of equality (=) operators in WHERE clause;

 n_of_oper_other_than_eq_where – number of comparison operators, other that the

equality operator (>, >=, <, <=, <>) in WHERE clause;

 n_of_in__where – number of IN operators in WHERE clause;

 n_of_in_values__where – total number of values included as arguments for IN

operators in WHERE clause;

 n_of_joins – number of table joins;

 n_of_pku_int__select – number of integer and primary key attributes in SELECT;

 n_of_pku_int__where – number of integer and primary key attributes in WHERE.

Some of the parameters, such as n_of_and__where, n_of_between__where,

n_of_in__where, n_of_joins, are basic, “raw” operators whereas parameters like n_of_at-

tribs_select, length_attrib_string__where, n_of_oper_other_than_eq_where, are pre-

aggregated (e.g n_of_attribs_select is the sum of integer, number/real, char, varchar and

date attributes included in SELECT clause). Additional details about variables are provided

in section 5.1.

4.3 Platforms

The system under testing was a five-node cluster running Oracle Linux Server version

7.2 and deployed into AWS cloud using c4.2xlarge instances which have 8 vcpu, 15GB of

RAM and 1000 mbps dedicated EBS bandwidth. Expected throughput is 128 MB/s and

8000 IOPS 16 KB size. Disks were standard EBS volumes each node having 70GB which at

some point was increased by 100GB because Hive map reduce jobs were exhausting all the

space when running with 5 GB scale factor. Special private IPs, hostnames, firewall rules

and opened ports were applied to solve connectivity issues so that nodes could communicate

between themselves.

All nodes in the cluster were configured using public key authentication for password

less SSH login. Putty was used to SSH on the machines. On each node Hadoop was installed

using Cloudera Distribution CDH 5.7.1. This distribution contains Hadoop 2.6 and Hive

1.1.0. Java 1.7 was used to run Hadoop. One node was configured as the name node while

the remaining four were configured as data nodes. For the Hadoop cluster setup,

administration and monitoring, Cloudera Manager was used. Apache Hue was used for Hive

30 Marin FOTACHE, Ionuț HRUBARU

to create databases and load data into the TPCH tables together with the hive command line

interface (CLI).

Data has been loaded from the Linux file system into HDFS using LOAD command

which made data accessible for Hive. Tables have been created in HIVE with CREATE

TABLE command and the data was automatically distributed on each node’s HDFS.

Jobs have been monitored for resource utilization: memory, disk space and CPU.

After tests were run on Hive, the Hadoop cluster was stopped and uninstalled and the

data has been cleared. Then Postgres XL version 9.5 was installed in the cluster using

pgxc_ctl utility. Using the tarball from their official site did not work and the problem was

solved by cloning the latest Git repository from 9.5 STABLE branch, manual building the

installer with make and then deploying it in the cluster using one GTM node, 4 coordinators

and 4 data nodes with pgxc_ctl utility. WAL (write ahead log) had to be moved to a mount

disk with more free space (/var). Pgxc_ctl utility was used to administer (start/stop) and

monitor the cluster.

Tables can be created either as distributed tables on each node or replicated ones. It

makes sense to distribute large tables and to replicate small ones. One important thing in a

distributed system is data locality – when joins are involved they should happen locally by

collocating data with same keys.

In Postgres XL tables LINEITEM and ORDERS were distributed by HASH using

ORDERKEY and tables PART and PARTSUPP were distributed by HASH using

PARTKEY as the column. Also CREATE TABLE AS command used keyword

ROUNDROBIN for distributing the created table on all the nodes, otherwise the table would

have been replicated and performance would suffer especially from large result sets.

In Hive, the distribution of the tables is done automatically by HDFS and not

accessible to the user. The Hive clause CLUSTERED BY/DISTRIBUTE BY distributes the

table in buckets inside each data node, but the data blocks location is controlled by HDFS,

and not Hive. HDFS evenly distributes data across data nodes.

Results were gathered with JMeter. Each query uses a CREATE TABLE AS statement

to eliminate the network traffic and possible JMeter crashes because of memory exhaustion

due to the result set size. After each query the table would be dropped to clear the disk space.

Data was generated on each scale factor using DBGen (Kejser, 2014). The query

generator was devised in R. The data analysis platform was open-source, R/RStudio with

various packages (libraries) presented in the subsequent sections. Other R modules for data

processing and analysis were created as well. All of the figures in sections 5.1 and 5.2 were

created with ggplot2 package (Wickham, 2016).

4.4 Methods

First an Exploratory Data Analysis was conducted for describing the distribution of

value for all the variables and also for comparing the overall performance of the two data

stores. A number of questions were considered in performance comparison, as they could

generate testable hypotheses.

 Is overall Hive/Hadoop performance better than PostgreSQL?

 Which factor loading (database size) seems more appropriate for relational/SQL

technologies (Postgres XL) and which are more appropriate for Big Data (Hadoop/Hive)

technologies?

Performance Analysis of Two Big Data Technologies on a Cloud Distributed Architecture… 31

 Which is the database size threshold when Big Data technology have to replace

SQL data stores?

Exploratory data analysis for overall and each scale factor results were accompanied

by a set of non-parametric tests for assessing the statistical significance of the results. As

shown in next section (5), non-parameter tests were necessary, as normality and variance

homoscedasticity requirements were not fulfilled. In order to confirm the statistical

significance of differences previously identified using graphics and descriptive statistics, the

following hypotheses were tested:

H1: Overall non-aggregate query performance is better for Postgres than Hive

H2: Non-aggregate query performance is better for Postgres than Hive for scale factor 0.5

H3: Non-aggregate query performance is better for Postgres than Hive for scale factor 1

H4: Non-aggregate query performance is better for Postgres than Hive for scale factor 2

H5: Non-aggregate query performance is better for Postgres than Hive for scale factor 5.

Performance drivers were analysed building regression models. For each query the

result (duration) of just one of the tested systems was used in the regression models

(randomized/blocked design). Regression models were expected to provide reliable answers

to questions such as:

 are the performance differences between Postgres XL and Hive constant or varies

on different levels of some of the predictors?

 which are the most important predictors in explaining variation of the outcome

(duration)?

 is predictors interaction significant?

As the requirements for OLS (Ordinary Least Square) regression were not met, the

OLS models were subsequently tested using techniques such as Generalized Least Squares,

Robust Regression (Huber M-Estimation) and Non-parametric, rank-based regression.

5. RESULTS

This section is organized as follows. First, the main parameters of generated non-

aggregate queries are presented. Second, results (duration of query execution) are compared

for the tested systems, overall and on each scale factor. Third, performance drivers are

identified and assessed through a series of regression models.

5.1 Main parameters of generated non-aggregate queries

In section 4.2 main variables of interest were explained. Distribution for variable

duration will be described in the next section. This section will detail the values of the main

query parameters and also variables associated to the database size.

On average, the SELECT clause of the query contained about 19 attributes and the

WHERE clause contained 14 attributes (see Figure no. 6). Median number of attributes was

19 for SELECT and 13 for WHERE.

32 Marin FOTACHE, Ionuț HRUBARU

Figure no. 6 – Distribution of the values for number of attributes in SELECT

and WHERE clauses

Charts in Figure no. 7 compare the frequency of attributes in the SELECT clause by

data type. As query attributes were randomly included in the queries, TPC-H database

structure was pivotal in the results. The most frequent attributes in the SELECT clause are

of type INTEGER (with both mean and median around 6), as the primary keys (surrogate

keys) for most tables are of this type. Then come CHAR (mean=5.38, median=5) and

VARCHAR (mean=4.57, median=4) followed by the NUMERIC - decimal or real

(mean=3.5, median=3). As expected the least frequent is the DATE data type (mean=1.84,

median=2). All distributions are skewed to the right.

Figure no. 7 – Frequency the attributes data type in the SELECT clause

Frequency of data type attributes in the WHERE clause is displayed in Figure no. 8. As

in the case to the SELECT clause, the most frequent attributes in the SELECT clause were

of type INTEGER (mean=4.71, median=4), followed by CHAR (mean and median of 4) and

VARCHAR (mean=4.57, median=4).

Performance Analysis of Two Big Data Technologies on a Cloud Distributed Architecture… 33

Figure no. 8 – Frequency the attributes data type in the WHERE clause

The left side of the Figure no. 9 depicts the distribution of string attributes length in

the SELECT clause, by data type (CHAR vs VARCHAR). The scales are different for the

two panels, so the aggregated length of CHAR attributes in SELECT clause varied

between 1 and 253 whereas for VARCHAR attributes it varied between 23 and 1052.

Distribution of CHAR attributes length is skewed to the right (mean=85, median=77) and

for the VARCHAR attributes is bimodal (mean = 366, median= 308), with peaks around

values of 175 and 1050. Figures and shapes were not radically different for the WHERE

clause.

Figure no. 9 – Frequency of attributes length for string attributes in SELECT (left)

and WHERE (right) clauses

It is generally expected that the duration of query execution to be less influenced by

the frequency and length of various attributes in the SELECT clause, but predominantly

by the structure of WHERE clause (apart from the type and length of attributes presented

above).

Figure no. 10 shows the number of the comparison operators in the WHERE clause by

type. The most frequent operator is BETWEEN followed by IN. The figure depicts also the

number of values in the IN clause showing that there are queries with more than 250 values

in the list.

char varchar

0

5

10

15

0.0

2.5

5.0

7.5

10.0

0 50 100 150 200 250 0 250 500 750 1000

Attribute Length

F
re

q
u

e
n

c
y

char varchar

0

5

10

15

20

0

5

10

15

0 50 100 150 200 0 200 400 600 800

Attribute Length

F
re

q
u
e
n

c
y

34 Marin FOTACHE, Ionuț HRUBARU

Figure no. 10 – Frequency of operators for comparison

Figure no. 11 on the left shows the distribution of the number of tables and joins in the

queries. The two parameters are perfectly correlated so one of them must be removed for

avoiding collinearity in further regression models. Perfect correlation indicates that

generated queries did not contain self joins (when simple, non-aggregate and not subqueried

queries contain self-joins, the number of joins could exceed the number of tables). By far the

most frequent number of tables included in queries was 8. Even if the query attributes were

included randomly, apparently it was necessary to include most or all of the tables in order

to make the queries operational (by building a proper JOIN chain).

Figure no. 11 – Frequency of the number of tables and the number of joins (left) and the

frequency of connectors AND and OR in WHERE clause (right)

Another important factor that can influence query performance could be the number of

AND and OR operators in the WHERE clause. The right side of Figure no. 11 depicts their

distribution. Skewness of their distributions is related to the number of attributes (randomly)

included the clause WHERE.

between eq gt gte in

in_values lt lte neq

0

20

40

60

0

25

50

75

100

0

30

60

90

120

0

50

100

0

25

50

75

0.0

2.5

5.0

7.5

10.0

0

30

60

90

120

0

30

60

90

0

50

100

0.02.55.07.510.012.5 2 4 6 2 4 6 8 2 4 6 2.5 5.0 7.5

0 100 200 2 4 6 2 4 6 2 4 6

Number of occurences in WHERE clause

F
re

q
u
e

n
c
y

n_of_joins n_of_tables

0

100

200

300

0

100

200

300

3 4 5 6 7 4 5 6 7 8

Number of occurences

F
re

q
u
e

n
c
y

and or

0

20

40

0

10

20

30

0 5 10 15 0 5 10 15 20

Number of occurences in WHERE clause

F
re

q
u
e

n
c
y

Performance Analysis of Two Big Data Technologies on a Cloud Distributed Architecture… 35

Naturally one of the most important divers of query execution duration was the size of

the processed data. Instead of the scale factor variable interest was initially on four other

parameters related to the data size: the minimum number of processed rows in a query

(min_n_of_rows), the maximum number of processed rows in a query (max_n_of_rows), the

average number of processed rows in a query (avg_n_of_rows) and the median number of

processed rows in a query (median_n_of_rows).

Figure no. 12 – Summaries about the number of processed rows in a query

Figure no. 12 shows that the distribution of all four parameters is not continuous (a

consequence of including in the data set the results of only four scale factors). Variable

min_n_of_rows id highly concentrated on value 1. Also variable max_n_of_rows has a small

number of values. Finally of four variables only avg_n_of_rows was kept in the analysis, as

it seems to present the larger variability.

5.2 Query duration on two data servers for the five-node cluster

This section investigates one of the main topic of interest for the thesis, i.e. big data

technologies performance compared to traditional SQL/relational counterpart when processing

medium-sized data.

Particularly, the main questions were:

 Is overall Big Data (Hive/Hadoop) system performance better than the relational/

SQL (PostgreSQL) performance?

 Which factor loading (database size) seems more appropriate for relational/SQL

technology and which are more appropriate for Big Data technology?

 Which is the database size when Hadoop/Hive will clearly be a better option than

Postgres XL?

Exploratory data analysis for overall and each scale factor results were accompanied

by a set of non-parametric tests for assessing the statistical significance of the results. As

avg_n_of_rows max_n_of_rows

median_n_of_rows min_n_of_rows

0

25

50

75

0

25

50

75

100

0

50

100

150

0

100

200

300

400

0 2500 5000 7500 10000 20000 30000

0 1000 2000 3000 4000 0 200 400 600 800

Number of processed rows (thousands)

F
re

q
u
e

n
c
y

36 Marin FOTACHE, Ionuț HRUBARU

will be seen, non-parameter tests were necessary, as normality and variance

homoscedasticity requirements were not fulfilled (so t-tests were not appropriate).

Figure no. 13 presents an overview of overall (all scale factors) distribution of query

duration in Hive and PostgreSQL. Both the superimposed density curves (left side of the

figure) and the boxplot of duration for the tested systems (right) provide a proper glimpse of

overall performance.

Figure no. 13 – Overlapping density curves (left) and boxplot (right) for the distribution of

duration (all scale factors)

Next investigated question was if there are significant differences in performance

between Hive and PostgreSQL among different scale factors (loadings) of the database – see

Figure no. 14. Specifically, it was expected that, with the increase of database size, Hive

will catch-up and eventually outperform PostgreSQL.

Figure no. 14 – Comparison of duration median, quartiles and outliers, by each scale factor

0.000

0.002

0.004

0

2
5
0

5
0
0

7
5
0

1
0

0
0

1
2

5
0

1
5

0
0

1
7

5
0

2
0

0
0

2
2

5
0

2
5

0
0

2
7

5
0

3
0

0
0

3
2

5
0

3
5

0
0

3
7

5
0

4
0

0
0

4
2

5
0

4
5

0
0

4
7

5
0

5
0

0
0

Query Duration (seconds)

D
e

n
s
it
y

dbserver

Hive

PostgreSQL

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●
●
●

●

●

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Hive PostgreSQL

Server

Q
u

e
ry

 D
u
ra

ti
o
n
 (

s
e
c
o

n
d
s
)

●●●●

●

●

●●●●●●●
●
●

●
●

●●●●

●

●
●

●

●
●●

●
●●
●

●
●●
●

●

●

●

●
●

●●●●●●
●

●
●
●
●●
●

●●
●
●●

●
●●
●
●

●

scale: 0.5 scale: 1

scale: 2 scale: 5

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Hive PostgreSQL Hive PostgreSQL

Server

Q
u

e
ry

 D
u
ra

ti
o

n
 (

s
e
c
o

n
d
s
)

Performance Analysis of Two Big Data Technologies on a Cloud Distributed Architecture… 37

Figure no. 14 shows that, contrary to what was expected, with the increase of the

database size, the performance gap between PostgreSQL and Hadoop/Hive did not shrink al

all, but on the contrary. Table no. 2 provides the values of medians, differences of medians

and ratio of median for the duration of queries in each of the two tested systems, overall and

for each scale factor.

PostgreSQL performed better than Hive overall and for each scale factor. The highest

gap was recorded for scale factor of 2. With the increase of database size from scale factor 2

to 5 the gap ration narrows spectacularly, and one can speculate about the gap in the case of

higher scale factors (10, 50, and 100).

Table no. 2 – Basic figures about PostgreSQL-Hive performance gap

Scale

factor

Median

hive

Median

pg

Diff

median

hive-pg

Ratio

median

hive/pg

0.5 203.891 14.338 189.553 14.22

1 363.749 41.798 321.951 8.703

2 879.909 77.059 802.85 11.419

5 1671.336 267.746 1403.59 6.242

Overall 513.832 61.657 452.175 8.334

In order to confirm the statistical significance of differences previously identified using

graphics and descriptive statistics, the following hypothesis will be tested:

H1: Overall non-aggregate query performance is better for PostgreSQL than Hive

H2: Non-aggregate query performance is better for PostgreSQL than Hive for scale

factor 0.5

H3: Non-aggregate query performance is better for PostgreSQL than Hive for scale

factor 1

H4: Non-aggregate query performance is better for PostgreSQL than Hive for scale

factor 2

H5: Non-aggregate query performance is better for PostgreSQL than Hive for scale

factor 0.5

Classical parametric test for comparing performances of two data servers would be the

t-test for paired data. This test requires that data to be normally distributed and to have equal

variance. In R there is a plethora of functions for normality, such as shapiro.test (base R) for

Shapiro-Wilk normality test, ks.gof in package pgirmess (Giraudoux, 2016) for Kolmogorof-

Smirnov goodness of fit test to normal distribution and ad.test in package nortest (Gross and

Ligges, 2015) for Anderson-Darling test for normality. In each case the null hypothesis was

H0: the distribution of duration is normal and the alternative hypothesis was Ha: the

duration does NOT follow a normal distribution. Non-normality was reported by all the

functions (W = 0.624144359, p-value = 1.76E-38).

As the normality assumption was not met for the technical score, a non-parametric

“paired” Wilcoxon Signed-Rank test (Kloke and McKean, 2015, pp. 16-22) was performed

using function wilcox.test implemented in base R and wilcox.exact implemented in package

exactRankTests (Hothorn and Hornik, 2015), overall and for each scale factor.

38 Marin FOTACHE, Ionuț HRUBARU

The tested null and alternative hypotheses for the Wilcoxon Signed-Rank test were

stated as follows (see column alternative which shows the current setting of the alternative

hypothesis):

 H0: The median difference between paired samples is 0 (median of query duration

in Hive – median of query duration in PostgreSQL); alternative hypothesis Ha: The median

difference between paired samples is different from 0 – this is the case when alternative is

set on “two.sided” value.

 H0: The median difference between paired samples is equal or less than zero;

alternative hypothesis Ha: The median difference between paired samples is larger than 0 –

this is the case when alternative is set on “greater” value.

 H0: The median difference between paired samples is equal or greater than zero;

alternative hypothesis Ha: The median difference between paired samples less than 0 – this

is the case when alternative is set on “less” value.

The groups correspond to query execution duration in Hive and PostgreSQL. The

medians of the two groups were 513.832 (Hive) and 61.657 (PostgreSQL), respectively.

The paired Wilcoxon Signed-rank test shows in Table no. 3, that there is a significant

effect of group (V = 79283, p-value < 2.493E-64). Reported difference between median of

query duration in Hive and that of PostgreSQL was 624.76, 95% CI [530.92, 704.87].

Table no. 3 – Results of paired Wilcoxon Signed-rank tests

scale function
V-sta-

tistic

p-

value

alter-

native
method 95% CI

median

(Hive-Pg)

estimate

overall wilcox.test 79283 2.49*

E-64

two.sided WSRTCC [530.9,

704.9]

624.76

overall wilcox.test 79283 1.25*

E-64

greater WSRTCC [543.7,

Inf]

624.76

overall wilcox.test 79283 1 less WSRTCC [-Inf,

 692.7]

624.76

overall wilcox.exact 79283 0 greater AWSRT [543.7,

Inf]

624.76

0.5 wilcox.test 4894 3.83*

E-16

two.sided WSRTCC [175.4,

191.4]

183.76

0.5 wilcox.test 4894 1.92*

E-16

greater WSRTCC [176.9,

Inf]

183.75

0.5 wilcox.test 4894 1 less WSRTCC [-Inf,

190.1]

183.75

0.5 wilcox.exact 4894 2.22*

E-16

greater AWSRT [176.9,

Inf]

183.75

1 wilcox.test 4920 1.82*

E-16

two.sided WSRTCC [383.2,

595.0]

466.48

1 wilcox.test 4920 9.12*

E-17

greater WSRTCC [400.0,

Inf]

466.48

1 wilcox.test 4920 1 less WSRTCC [-Inf,

577.7]

466.48

1 wilcox.exact 4920 1.11*

E-16

greater AWSRT [400.0,

Inf]

466.17

2 wilcox.test 5050 3.96*

E-18

two.sided WSRTCC [730.3,

922.2]

823.89

Performance Analysis of Two Big Data Technologies on a Cloud Distributed Architecture… 39

scale function
V-sta-

tistic

p-

value

alter-

native
method 95% CI

median

(Hive-Pg)

estimate

2 wilcox.test 5050 1.98*

E-18

greater WSRTCC [741.9,

Inf]

823.89

2 wilcox.test 5050 1 less WSRTCC [-Inf,

909.2]

823.89

2 wilcox.exact 5050 0 greater AWSRT [741.9,

Inf]

823.93

5 wilcox.test 5041 5.19*

E-18

two.sided WSRTCC [1415.2,

1958.5]

1703.28

5 wilcox.test 5041 2.60*

E-18

greater WSRTCC [1484.9,

Inf]

1703.28

5 wilcox.test 5041 1 less WSRTCC [-Inf,

1919.8]

1703.28

5 wilcox.exact 5041 0 greater AWSRT [1484.9,

Inf]

1703.32

WSRTCC - Wilcoxon signed rank test with continuity correction

AWSRT - Asymptotic Wilcoxon signed rank test

As the database size increased so was the case of the median of Hive – PostgreSQL

difference.

5.3 Main drivers of non-aggregate query performance for the five-node cluster

hostes in (Amazon) cloud

Previous section suggested that in the case of non-aggregate queries executed on a

five-node distributed cloud architecture, Postgres performs better than Hadoop/Hive, overall

and on each scale factor. This section investigates the relationship between the outcome

(query duration) and various query parameters as predictors in a series of regression models.

An R module was devised for selecting the appropriate regression model

incrementally. Starting linear regression models included the outcome (duration) and all the

predictors described in section 4.2. As shown in section 5.2, the distribution of variable

duration was skewed. Consequently, the regression model outcome was transformed without

compromising the model clarity, from duration to the cube root of duration (√

).

Table no. 4 – The most non-significant attribute of each iteration model

Iter. Removed predictor Estimate Std. Err. t-value p-value

1 n_of_attribs_select -0.0036 0.0159 -0.2239 0.8229

2 n_of_pku_int__select 0.0224 0.0389 0.5759 0.5650

3 length_attrib_string__where 0.0004 0.0005 0.8040 0.4219

4 n_of_pku_int__where -0.0873 0.0579 -1.5065 0.1327

5 n_of_in_values__where 0.0040 0.0024 1.6616 0.0974

6 n_of_in__where -0.7971 0.4841 -1.6467 0.1004

7 n_of_oper_eq_where -0.0570 0.0531 -1.0740 0.2835

8 n_of_oper_other_than_eq_where -0.0445 0.0411 -1.0836 0.2792

9 n_of_between__where -0.0384 0.0415 -0.9248 0.3556

10 n_of_and__where -0.0554 0.0386 -1.4352 0.1520

40 Marin FOTACHE, Ionuț HRUBARU

Using a step-wise procedure, in each iteration the most non-significant attribute (the

attribute with the largest/non-significant p-value) was removed – see Table no. 4. The

process stopped when current linear model contained no attributes whose p-value was less

than 0.05. This was the reference model, labelled as model B.

Figure no. 15 – Correlation plot for variables in model B

Next model variables correlations were checked for detecting collinearity. Spearman

correlation coefficients were preferred as the distribution of predictor was not normal.

Figure no. 15 presents the correlation plot produced by R function corrplot of package

corrplot (Wei and Simko, 2016). Correlation coefficients did not exceed 0.64 which was

adequate for model validity.

From model B, model A (which serves as a null model) was derived by removing the

categorical factor (dbserver). Model C resulted by adding interactions in the model B

(initially, all interactions were tested but gradually the least significant interactions were

removed until the model contained only significant interactions). Table no. 5 contains key

information about the competing models A, B and C: formula, R
2
 (r-squared), adjusted R

2
,

p-value describing the overall significance of the model and AIC (Akaike's Information

Criterion) with the degrees of freedom.

As the models are nested, an ANOVA test was performed to check for model

improvement. Tested null hypotheses were H0a: model B does not improve the prediction of

the outcome relative to model A and H0b: model C does not improve the prediction of the

outcome relative to model B. In both cases, function anova (base R) suggested the test

results were significant. For H0a F (df=1) = 885.89, p-value < 2.2E-16, whereas for H0b F

(df=5) = 90.69, p-value < 6.8E-12.

Performance Analysis of Two Big Data Technologies on a Cloud Distributed Architecture… 41

Table no. 5 – Summaries of main three regression models for randomized data

Model Formula R2 Adj.R2 p-value
AIC

(df)

A

duration ^ .3 ~ 1.0983

+ 0.6839 * avg_n_of_rows

+ 0.0143 * n_of_attribs_where

+ 0.0017 * length_attrib_string__select

+ 0.2517 * n_of_joins

0.30 0.29 1.27e-29
1758

(6)

B

duration ^ .3 ~ 1.2489

- 3.5143 * dbserverPostgreSQL

+ 0.6953 * avg_n_of_rows

+ 0.0284 * n_of_attribs_where

+ 0.0016 * length_attrib_string__select

+ 0.4680 * n_of_joins

0.76 0.76 1.89e-120
1327

(7)

C

duration ^ .3 ~ 2.26981

 - 2.3951 * dbserverPostgreSQL

 + 0.3394 * avg_n_of_rows

 - 0.0386 * n_of_attribs_where

 + 0.0008 * length_attrib_string__select

 + 0.4198 * n_of_joins

 - 0.1826 * dbserverPostgreSQL:avg_n_of_rows

 - 0.0016 * dbserverPostgreSQL:

 length_attrib_string__select

+ 0.0194 * avg_n_of_rows:n_of_attribs_where

+ 0.0005 * avg_n_of_rows:

 length_attrib_string__select

+ 0.0001 * n_of_attribs_where:

 length_attrib_string__select

0.80 0.79 7.12e-128
1274

(12)

Figure no. 16 contains the two plots of the statistically significant interaction effects of

predictor dbserver with predictors avg_n_of_rows (left) anf length_string__select (right).

The plots were generated with package effects (Fox, 2003). In both cases the slopes differ

between the panels corresponding to the server levels, suggesting that interaction between

predictors is important in explaining the variation of the outcome.

Figure no 16 – Visualize interaction effects with package effects

42 Marin FOTACHE, Ionuț HRUBARU

Another way to visualize the interaction between predictors is provided by package

interplot (Solt et al., 2016). It represents the conditional coefficients (“marginal effects”) of

variables included in multiplicative interaction terms. Function interplot plots the changes in

the coefficient of one variable in a two-way interaction term conditional on the value of the

other included variable, including a simulated 95% confidential intervals of these

coefficients. Notably interplot plots the changes in the conditional coefficient of one

variable in the interaction, rather than changes in the dependent variable itself. The chart in

the left side of Figure no. 17 shows how the database server affected the coefficient for the

predictor avg_n_of_rows on the outcome (duration ^ .3), whereas that in the right side of the

figure shows how the database server affected the coefficient for the predictor

length_attrib_string__select on the outcome (duration ^ .3),

Figure no 17 – Visualize interaction effects with package interplot

Next the models A, B and C were tested for conformity with the Ordinary Least

Square assumptions. Error independence of the models was questionable since function

durbinWatsonTest in package car (Fox and Weisberg, 2011) reported autocorrelation (p-

value = 0) in all the cases. Function dwtest in package lmtest (Zeileis and Hothorn, 2002)

reported similar results. Also constant error variance (homoscedasticity) was not met by

any of the models since the null hypothesis of homoscedasticity was rejected by function

ncvTest of package car with p-values below 0.001. Results was confirmed with the

studentized Breusch-Pagan test. Function bptest in package lmtest reported also p-values

below 0.001.

Error normality was not met, both graphically (function qqPlot in package car) – see

Figure no. 18 and with function shapiro.test (base R). Nevertheless, error departure from

normality is not huge for all three models.

Figure no 18 – Error normality with qq-Plots for models A, B and C

Performance Analysis of Two Big Data Technologies on a Cloud Distributed Architecture… 43

Also models linearity is questionable in all three cases as the component plus residual

plots show (see Figure no. 19).

Figure no 19 – Residual vs. fitted plots for checking models linearity

There were some issues related to outliers, high leverage points and influential

observations as seen in the graph of Figure no. 20 generated with function influencePlot in

package car.

Figure no. 20 – Outliers, high leverage points and influential observations

Variance Inflation Factor (function vif in package car) did not report collinearity in

models A and B. Multicollinearity manifested in model C can be explained by the

interaction terms.

As the Ordinary Least Squares assumptions were not met, alternative regression

methods were put in use in order to confirm or reject OLS findings. These methods were

applied to model C as seemingly the most appropriate of the three models.

Whenever linear regression models incorporate error dependence it was suggested to

use Generalized Least Squares GLS (Faraway, 2015, p. 113; Fox, 2016, pp. 474-495).

Package nlme (Pinheiro et al., 2016) is one option for building GLS models (function gls).

GLS model C reported identical residual standard error and estimates for predictor

coefficients.

As model C contained outliers, high leverage points and unusual observations which

determined the non-normality of errors (residuals), robust regression (Fox, 2016, pp. 586-

601) was applied for testing original OLS model C for significance. As the extreme erorrs

were not numerous (see Figure no. 20), M-Estimation type of robust regression was

preferred (Huber method). The mode was built with function rlm of package MASS

(Venables and Ripley, 2002). Table no. 6 presents predictor estimated values, standard

errors and t-values for “original” OLS model C and “Huber” model C.

44 Marin FOTACHE, Ionuț HRUBARU

Table no. 6 – Model C – Ordinary Least Squares vs. Huber (Robust, M-Estimation) Regression

Predictor

Model C - OLS Model C - Huber

Coeff Std.Err t-value Coeff Std.Err t-value

(Intercept) 2.2698 0.6938 3.2714 2.2972 0.6078 3.7797

dbserverPostgreSQL -2.3951 0.2678 -8.9431 -2.1784 0.2346 -9.2852

avg_n_of_rows 0.3394 0.0773 4.3888 0.4127 0.0678 6.0910

n_of_attribs_where -0.0386 0.0157 -2.4577 -0.0308 0.0138 -2.2389

length_attrib_string__select 0.0008 0.0005 1.6488 0.0008 0.0004 2.0072

n_of_joins 0.4198 0.1107 3.7930 0.3737 0.0969 3.8543

dbserverPostgreSQL:

avg_n_of_rows
-0.1826 0.0602 -3.0311 -0.2566 0.0528 -4.8635

dbserverPostgreSQL:

length_attrib_string__select
-0.0016 0.0004 -3.9811 -0.0019 0.0003 -5.6335

avg_n_of_rows:

n_of_attribs_where
0.0194 0.0036 5.3714 0.0174 0.0032 5.5189

avg_n_of_rows:

length_attrib_string__select
0.0005 0.0001 3.7442 0.0006 0.0001 5.9852

n_of_attribs_where:

length_attrib_string__select
0.0001 0.0000 2.3600 0.0000 0.0000 2.2427

Another technique applied when OLS models expose problems is the non-parametric

rank-based regression (Kloke and McKean, 2015, pp. 83-116). One of the available

packages is Rfit (Kloke and McKean, 2012). Function rfit applied for model C found that the

model is significant (Overall Wald Test = 2584.451, p-value=0) and produced predictor

coefficients shown in Table no. 7.

Table no. 7 – Model C predictors when applying non-parametric, rank-based regression

Predictor

Model C - OLS Model C – Rank-based

Coeff p-value Coeff p-value

(Intercept) 2.2698 0.0012 2.5217 0.0000

dbserverPostgreSQL -2.3951 0.0000 -2.1984 0.0000

avg_n_of_rows 0.3394 0.0000 0.3784 0.0000

n_of_attribs_where -0.0386 0.0144 -0.0307 0.0153

length_attrib_string__select 0.0008 0.1000 0.0010 0.0101

n_of_joins 0.4198 0.0002 0.3363 0.0002

dbserverPostgreSQL:

avg_n_of_rows -0.1826 0.0026 -0.2223 0.0000

dbserverPostgreSQL:

length_attrib_string__select -0.0016 0.0001 -0.0019 0.0000

avg_n_of_rows:

n_of_attribs_where 0.0194 0.0000 0.0184 0.0000

avg_n_of_rows:

length_attrib_string__select 0.0005 0.0002 0.0006 0.0000

n_of_attribs_where:

length_attrib_string__select 0.0001 0.0188 0.0000 0.0292

Differences in coefficient size for the predictors are minor. All of the models built

using alternative techniques (other than OLS) displayed similar sign, scale and statistical

Performance Analysis of Two Big Data Technologies on a Cloud Distributed Architecture… 45

significance for predictor coefficients. Consequently, even if model C did not fit the OLS

assumptions, it seems appropriate for the given the data set.

6. DISCUSSION

Big Data umbrella covers a large range of technologies for storing and processing large

amounts of data produces at great speed (velocity) in a variety of formats (section 1). This

paper compared two of the most popular products of “traditional” RDBMS’s and “in vogue”

Hadoop systems. Postgres XL (as PostgreSQL fork) was chose instead of standard

PostgreSQL distribution, as it is natively a distributed RDBMS and (almost) fully

compatible with the SQL dialect implemented in PostgreSQL (section 2.1).

Hive was preferred as Hadoop platform for testing, as it implements, as it provides a

decent level of data independence and SQL-like query language – HiveQL (section 2.2).

Both systems were installed and deployed on a five-node Amazon cluster (main

features are described in section 4.3) so that the results are fully comparable.

Relative to the current benchmarks for comparing data stores performance, this paper

focused on testing queries generated randomly so that statistical tools could be (more)

relevant. Currently the TPC-H benchmark provides 22 queries to be executed on different

scale factors (section 3). Data about query execution (mainly query completion duration) is

recorded for each tested data store and then compared. The 22-query set makes the results

prone to be compared as this is the main goal of a benchmark. But is this 22-query set

representative for the population of all of queries executed on a transactional (sales)

database for a “typical” company/organization? The answer to this questions largely

depends on each organizations information landscape (data structure, reporting

requirements, data analysis etc.).

As the query set was nominated (supposedly based on authors’ expertise) by TPC-H,

the lack of queries randomness and their low variability makes the results less appropriate

for statistical analysis. Moreover, generally papers on data stores performance have dealt

mainly with basic operations (database load, update, or query) relating the results to just

basic parameters, such as database size, number of concurrent used, etc.

This paper tested the performance of Postgres XL versus Hadoop/Hive on randomly

generated 100 query set for each scale factor (section 4.1) with a total of 400 executes

queries. Data was generated for four scale factors of TPC-H database schema using DBGen

utility (section 3). As the record sets of each scale factor is independent of the other scale

factors), each query targeted a specific scale factor subschema (section 4.1).

The finer-grained analysis of results was devised by recording not only the general

information about query execution (duration, scale factor, data store), but also a variety of

parameters about each query (section 4.2). As queries were randomly generated, most

variables have a positive skewed distribution (section 5.1). Values for variables number of

joins and number of tables (these two parameters are highly correlation since generated

queries did not contain self-joins) are highly concentrated on value 7 (8), since even for

queries with a small number of attributes an entire join chain was necessary to ensure query

validity (functionality).

For expressing the data size, four parameters were available: the minimum, maximum,

average and median number of processed rows by the query. Of four, only avg_n_of_rows

was kept in the analysis since it has the largest variability of four (section 5.1).

46 Marin FOTACHE, Ionuț HRUBARU

Overall results of query execution duration contradicted what was initially expected (al

least by the authors), as seen in Figure no. 13. Duration range was quite large in Hive, from

0 to about 6000 seconds with an average around 1000 seconds and a median about 500. The

distribution was skewed to the right as further normality tests would confirm. By contrast,

the distribution of overall query duration was more concentrated in PostgreSQL. The range

varied between 0 and 1300, the average was placed around 150 seconds and the median was

about 60 seconds. As with Hive, PostgreSQL distribution was skewed to the right.

Overlapping density curves suggested differences in the concentration of values for two data

servers. That came as a surprise, as it was expected that, when data size increases,

Hadoop/Hive will eventually surpass PostgreSQL in a distributed architecture. Statistical

tests confirmed the significance of performance gap suggested visually.

Also in section 5.2, Figure no. 14 and Table no. 2 shows that with the increase of the

database size, the performance gap between PostgreSQL and Hadoop/Hive did not shrink at

all. Ratio of medians (of query duration) between Hive and PostgreSQL, overall and for each

scale factor shown in Table no. 2 exposes a “low” for Hive at factor scale of 2 followed by a

notable performance improvement for scale factor of 5. Statistical significance of the gap for

each scale factor was confirmed by the tests deployed in section 5.2 (see also Table no. 3).

One can only speculate that with further increase of the scale factor, Hive will

eventually outperform Postgres XL. But for the available data set and deployed testing

platform, it is obvious that Hadoop/Hive performed poorly.

In section 5.3 the relationship between the outcome (query duration) and various query

parameters as predictors was analysed with a series of regression models. As the distribution

of the outcome variable was positively skewed, it was transformed (in subsequent regression

models), from duration into duration ^ .3 (the cube root of duration or √

). That

does not alter models interpretability.

Using a step-wise procedure, in each iteration the most non-significant attribute (the

attribute with the largest/non-significant p-value) was removed (Table no. 4). The process

stopped when current linear model contained no attributes whose p-value was less than 0.05.

Resulted model was the baseline (model B). Model B predictors was tested for collinearity

(Figure no. 15) and results did not display high correlation among predictors.

For assessing the importance of nominal predictor dbserver a simpler model (model A)

was drawn from the baseline model by simply removing the predictor. Predictor dbserver

proved to be pivotal, since by adding it from model A to model B, model adjusted R
2

increased from 0.30 to 0.76 (Table no. 5). Also Akaike's Information Criterion (AIC)

decreased from 1758 to 1327 and ANOVA test for nested models (F (1) = 885.89, p-value <

2.2E-16) suggested that model B (incorporating dbserver variable) models better the

outcome variability as a function of predictors for the given dataset. That confirmed the

results in section 5.2.

Interactions were introduced in model C because it was expected that the performance

differences could vary in each data system on different levels on certain predictors. Two

predictors are said to interact in determining the outcome when the partial effect on one

depends on the value of the other. Interaction refers to the manner in which predictors

combine to affect the outcome, not the relationship between predictor themselves (Fox,

2016, p. 141). Model C conformed to the principle of marginality that specifies that a model

including interactions should normally include the main effects that “compose” the

interactions (Fox, 2016, p. 144). This is referred also as the hierarchical principal (James et

Performance Analysis of Two Big Data Technologies on a Cloud Distributed Architecture… 47

al., 2014, p. 89). But generally the main effect of predictors that interact are neither tested

nor interpreted (Fox, 2016, p. 144).

Five interactions proved to be significant (see Table no. 5):

 Between dbserver and avg_n_of_rows

 Between dbserver and length_attrib_string__select

 Between avg_n_of_rows and n_of_attribs_where

 Between avg_n_of_rows and length_attrib_string__select

 Between n_of_attribs_where and length_attrib_string__select

By adding interactions, from model B to model C, model adjusted R
2
 increased from

0.76 to 0.79 (Table no. 5) which was quite spectacular, but notable. Model Akaike's

Information Criterion (AIC) decreased from 1327 to 1274 and ANOVA test for nested

models (F(5) = 90.69, p-value < 6.8E-12) also suggested that model C (incorporating above

interactions) models better than model B the outcome variability.

As this paper targeted mainly performance comparison between Hive and Postgres XL

first two interaction terms were particularly important. On the two plots in Figure no. 16 the

slopes differ slightly between the panels corresponding to the server levels, suggesting that

interaction between predictors dbserver and avg_n_of_rows (left) and between predictors

dbserver and length_string__select (right) are relatively important in explaining the

variation of the outcome. Also in the interaction plot on the left side of Figure no. 17 shows

that with the "increase" of the data server (from 0 for Hive to 1 for Postgres) along the x

axis, the magnitude of the coefficient of predictor avg_n_of_rows decreases (along the y

axis). Plot on the right side of Figure no. 17 suggests that with the “increase” of the data

server (from Hive to PostgreSQL) along the x axis, the magnitude of the coefficient of

length_at-trib_string__select decreases along the y axis.

Model C seemed the best (among the three) in explaining the duration main drivers. It

makes sense in terms of sign and size of predictor coefficients. Following the

hierarchical/marginality principle, individual predictors occurring in interaction terms are

not interpreted. It is the case of dbserver, avg_n_of_rows, length_attrib_string__select, and

n_of_attribs_where. Regression coefficient of predictor n_of_joins is considerable. Every

additional join in a query seemed to increase the cube root of duration (√

) with .4.

The size of coefficient for this predictor is explained by its narrow range of values (from 0

to 7). Coefficients of interaction terms dbserverPostgreSQL:avg_n_of_rows and

dbserverPostgreSQL:length_attrib_string__select were negative. As already suggested by

the interaction plots, performance in Hadoop/Hive worsened (compared to Postgres XL)

when database size increased and also when the query contains longer attributes of type

string (CHAR and VARCHAR).

Since OLS assumption on error independence, error normality (Figure no. 18), model

linearity (Figure no. 19) and outliers, high leverage points and influential observations

(Figure no. 20) were not checked, three alternative methods were put in use for confirming

or rejecting OLS results for model C:

 Generalized Least Squares GLS

 M-Estimation (Huber method) robust regression (Table no. 6)

 Non-parametric rank-based regression (Table no. 7)

Results of applying all these three methods were in line with OLS model C (in terms of

model significance, parameter size, sign and significance).

48 Marin FOTACHE, Ionuț HRUBARU

7. CONCLUSIONS AND FURTHER RESEARCH

This paper results suggest that on a five-node distributed architecture deployed in

cloud, for an average size of the database, Hadoop/Hive (as one of flagship Big Data

technologies) failed to outperform the RDBMS contender (Postgres XL). Results validity

is supported by the randomness of the tested queries, the variability of the database size

and the non-parametric tests deployed accompanied by the regression models built and

tested for explaining the main drivers of query duration (the key measure of data

processing performance).

The results must be reported strictly to the volume of processed data (0.5-5 GB which

is quite typical for many companies), to the nature of tested queries (basically filtering, non-

aggregate) and also the transactional nature of the database (TPC-H databases is actually a

sales database). Tests must be further deployed on database schemas with larger scale

factors, on more powerful architectures (more numerous nodes), and using also aggregate

queries which are the main ingredient of data processing in business information systems.

As the default settings were used in testing the systems, another direction could refer to

system tuning (i.e. indexes which would eliminate the costly full table scans) for both

Postgres XL and Hadoop/Hive.

Also data analysis for explaining and predicting system performance can be improved by

using mixed regression levels. Since for larger scale factors, Postgres XL – Hive performance

gap is expected to narrow and eventually to be reversed, classical OLS and robust, non-

parametric regression used in this paper could prove inadequate. Non-parametric regression

models dealing better with non-linearity and correlation among predictors, such as MARS

(Multivariate Adaptive Regression Splines), could be preferred instead.

References

Buhl, H. U., Röglinger, M., Moser, F., and Heidemann, J., 2013. Big Data. Business & Information

Systems Engineering, 5(2), 65-69. doi: http://dx.doi.org/10.1007/s12599-013-0249-5

Cattell, R., 2010. Scalable SQL and NoSQL Data Stores. SIGMOD Record, 39(4), 12-27. doi:

http://dx.doi.org/10.1145/1978915.1978919

Cogean, D. I., Fotache, M., and Greavu-Serban, V., 2013. NoSQL in Higher Education. A Case Study.

In C. Boja, L. Batagan, M. Doinea, C. Ciurea, P. Pocatilu, A. Ion, R. Magos, L. Cotfas, A.

Velicanu, C. Amancei, M. Andreica and A. Zamfiroiu (Eds.), International Conference on

Informatics in Economy (pp. 352-360). Bucharest: Bucharest Univ Economic Studies-Ase.

Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., and Sears, R., 2010. Benchmarking cloud

serving systems with YCSB. Paper presented at the 1st ACM symposium on Cloud computing

(published in the Proceedings), Indianapolis, Indiana, USA. doi: http://dx.doi.org/

10.1145/1807128.1807152

Doulkeridis, C., and Norvag, K., 2014. A survey of large-scale analytical query processing in

MapReduce. The VLDB Journal, 23(3), 355-380. doi: http://dx.doi.org/10.1007/s00778-013-

0319-9

Faraway, J., 2015. Linear Models with R (2nd ed. ed.). Boca Raton, FL: CRC Press.

Fotache, M., and Hrubaru, I., 2016. Big Data Technology on Medium-Sized Data. Preliminary Results

for Non-Aggregate Queries. In C. Boja, M. Doinea, C. Ciurea, P. Pocatilu, L. Batagan, A.

Velicanu, M. E. Popescu, I. Manafi, A. Zamfiroiu and M. Zurini (Eds.), International

Conference on Informatics in Economy, Ie 2016: Education, Research & Business Technologies

(pp. 273-278). Bucharest: Bucharest Univ Economic Studies-Ase.

http://dx.doi.org/10.1007/s12599-013-0249-5
http://dx.doi.org/10.1145/1978915.1978919
http://dx.doi.org/10.1145/1807128.1807152
http://dx.doi.org/10.1145/1807128.1807152
http://dx.doi.org/10.1007/s00778-013-0319-9
http://dx.doi.org/10.1007/s00778-013-0319-9

Performance Analysis of Two Big Data Technologies on a Cloud Distributed Architecture… 49

Fotache, M., Strimbei, C., Hrubaru, I., and Cogean, D. I., 2014. Scratching Big Data Surface:

Comparing Simple Queries in PostgreSQL and MongoDB. Paper presented at the 13th

International Conference on Informatics in Economy - IE 2014 (published in the Proceedings),

Bucharest, Romania.

Fox, J., 2003. Effect Displays in R for Generalised Linear Models. Journal of Statistical Software,

8(15), 1-27. doi: http://dx.doi.org/10.18637/jss.v008.i15

Fox, J., 2016. Applied Regression Analysis and Generalized Linear Models (3rd ed. ed.). Thousand

Oaks, CA: Sage.

Fox, J., and Weisberg, S., 2011. An R Companion to Applied Regression (2nd ed. ed.). Thousand

Oaks, CA: Sage.

Giraudoux, P., 2016. pgirmess: Data Analysis in Ecology. R package version 1.6.5. Retrieved from

https://CRAN.R-project.org/package=pgirmess

Gross, J., and Ligges, U., 2015. nortest: Tests for Normality. R package version 1.0-4. Retrieved from

https://CRAN.R-project.org/package=nortest

Hothorn, T., and Hornik, K., 2015. exactRankTests: Exact Distributions for Rank and Permutation

Tests. R package version 0.8-28. Retrieved from https://cran.r-project.org/package=

exactRankTests

Hrubaru, I., and Fotache, M., 2015. On a Hadoop Cliche: Physical and Logical Models Separation. In

C. Boja, M. Doinea, C. Ciurea, P. Pocatilu, L. Batagan, A. Ion, V. Diaconita, M. Andreica, C.

Delcea, A. Zamfiroiu, M. Zurini and O. Popescu (Eds.), Proceedings of the 14th International

Conference on Informatics in Economy (pp. 357-363). Bucharest: Bucharest Univ Economic

Studies-Ase.

Jacobs, A., 2009. The pathologies of big data. Communications of the ACM, 52(8), 36-44. doi:

http://dx.doi.org/10.1145/1536616.1536632

James, G., Witten, D., Hastie, T., and Tibshirani, R., 2014. An Introduction to Statistical Learning

With Applications in R. New York, NY: Springer.

Kejser, T., 2014. TPC-H: Data And Query Generation. from http://kejser.org/tpc-h-data-and-query-

generation/

Kloke, J., and McKean, J. W., 2012. Rfit: Rank-based estimation for linear models. The R Journal,

4(2), 57-64.

Kloke, J., and McKean, J. W., 2015. Nonparametric Statistical Methods Using R. Boca Raton, FL:

CRC Press.

Kowalczyk, M., and Buxmann, P., 2014. Big Data and Information Processing in Organizational

Decision Processes. Business & Information Systems Engineering, 6(5), 267-278. doi:

http://dx.doi.org/10.1007/s12599-014-0341-5

Li, F., Ooi, B. C., Ozsu, M. T., and Wu, S., 2014. Distributed data management using MapReduce.

ACM Computing Surveys, 46(3), 1-42. doi: http://dx.doi.org/10.1145/2503009

Lublinsky, B., Smith, K., and Yabukovich, A., 2013. Professional Hadoop Solutions. Indianapolis, IN:

John Wiley & Sons.

Lungu, I., and Tudorica, B. G., 2013. The Development of a Benchmark Tool for NoSQL Databases.

4(2), 13-20.

Pavlo, A., and Aslett, M., 2016. What's Really New with NewSQL? SIGMOD Record, 45(2), 45-55.

doi: http://dx.doi.org/10.1145/3003665.3003674

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., EISPACK authors, Heisterkamp, S., . . . R-core team,

2016. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-128. Retrieved

from http://CRAN.R-project.org/package=nlme

PostgresXL, 2016. Postgres XL Overview. Retrieved 10 September 2016, from http://www.postgres-

xl.org/overview/

Sakr, S., Liu, A., and Fayoumi, A. G., 2013. The family of mapreduce and large-scale data processing

systems. ACM Computing Surveys, 46(1), 1-44. doi: http://dx.doi.org/10.1145/2522968.2522979

Solt, F., Hu, Y., and Kenke, B., 2016. interplot: Plot the Effects of Variables in Interaction Terms. R

package version 0.1.5. Retrieved from http://CRAN.R-project.org/package=interplot

http://dx.doi.org/10.18637/jss.v008.i15
http://dx.doi.org/10.1145/1536616.1536632
http://kejser.org/tpc-h-data-and-query-generation/
http://kejser.org/tpc-h-data-and-query-generation/
http://dx.doi.org/10.1007/s12599-014-0341-5
http://dx.doi.org/10.1145/2503009
http://dx.doi.org/10.1145/3003665.3003674
http://cran.r-project.org/package=nlme
http://www.postgres-xl.org/overview/
http://www.postgres-xl.org/overview/
http://dx.doi.org/10.1145/2522968.2522979
http://cran.r-project.org/package=interplot

50 Marin FOTACHE, Ionuț HRUBARU

Stonebraker, M., 2012a. New opportunities for New SQL. Communications of the ACM, 55(11), 10-

11. doi: http://dx.doi.org/10.1145/2366316.2366319

Stonebraker, M., 2012b. What Does 'Big Data' Mean? . Communications of the ACM

(BLOG@CACM).Retrieved 20 March 2016, from http://cacm.acm.org/blogs/blog-cacm/155468-

what-does-big-data-mean/fulltext

Stonebraker, M., 2015. Hadoop at a Crossroads. Communications of the ACM, 58(1), 18-19. doi:

http://dx.doi.org/10.1145/2686591

Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka, P., Anthony, S., . . . Murthy, R., 2009. Hive: a

warehousing solution over a map-reduce framework. Proc. VLDB Endow., 2(2), 1626-1629. doi:

http://dx.doi.org/10.14778/1687553.1687609

Trancoso, P., 2015. Moving to memoryland: in-memory computation for existing applications. Paper

presented at the Proceedings of the 12th ACM International Conference on Computing Frontiers,

Ischia, Italy. doi: http://dx.doi.org/10.1145/2742854.2742874

Transaction Processing Performance Council - TPC, 2014. TPC Benchmark H Standard Specification

Revision 2.17.1. 1-136. http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-

h_v2.17.1.pdf

Venables, W. N., and Ripley, B. D., 2002. Modern Applied Statistics with S (4th ed. ed.). New York:

Springer. doi: http://dx.doi.org/10.1007/978-0-387-21706-2

Wei, T., and Simko, V., 2016. corrplot: Visualization of a Correlation Matrix. R package version 0.77.

Retrieved from http://cran.r-project.org/web/packages/corrplot/index.html

White, T., 2015. Hadoop - The Definitive Guide (4th ed.). Sebastopol, CA: O'Reilly Media.

Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis. New York: Springer.

doi:http://dx.doi.org/10.1007/978-3-319-24277-4

Ylijoki, O., and Porras, J., 2016. Perspectives to Definition of Big Data: A Mapping Study and

Discussion. 4(1), 69-91.

Zeileis, A., and Hothorn, T., 2002. Diagnostic Checking in Regression Relationships. R News, 2(3), 7-10.

http://dx.doi.org/10.1145/2366316.2366319
http://cacm.acm.org/blogs/blog-cacm/155468-what-does-big-data-mean/fulltext
http://cacm.acm.org/blogs/blog-cacm/155468-what-does-big-data-mean/fulltext
http://dx.doi.org/10.1145/2686591
http://dx.doi.org/10.14778/1687553.1687609
http://dx.doi.org/10.1145/2742854.2742874
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf
http://dx.doi.org/10.1007/978-0-387-21706-2
http://dx.doi.org/10.1007/978-3-319-24277-4

