

Load Balancing in Cloud Computing Empowered with Dynamic Divisible

Load Scheduling Method

Sohaib Ahmad1, Maryam Nafees2, Ayesha Atta3

1,2,3 Department of Computer Science, GC University Lahore

Email: mughal.sohaib9014@gmail.com

(Received: 08 August 2021; Accepted:03 Sep 2021; Issue Published: 12 Sep 2021)

ABSTRACT

The need to process and dealing with a vast amount of data is increasing with the developing technology. One of

the leading promising technology is Cloud Computing, enabling one to accomplish desired goals, leading to

performance enhancement. Cloud Computing comes into play with the debate on the growing requirements of data

capabilities and storage capacities. Not every organization has the financial resources, infrastructure & human

capital, but Cloud Computing offers an affordable infrastructure based on availability, scalability, and cost-

efficiency. The Cloud can provide services to clients on-demand, making it the most adapted system for virtual

storage, but still, it has some issues not adequately addressed and resolved. One of those issues is that load

balancing is a primary challenge, and it is required to balance the traffic on every peer adequately rather than

overloading an individual node. This paper provides an intelligent workload management algorithm, which

systematically balances traffic and homogeneously allocates the load on every node & prevents overloading, and

increases the response time for maximum performance enhancement.

KEYWORDS: Load balancing, Load scheduling, Dynamic methods, Network topologies, Divisible Scheduling.

1. INTRODUCTION

Cloud computing is an on-demand service in which

shared resources, information, software and other

devices are provided according to the client's

requirement at a specific time [6]. Cloud computing

provides different services such as IAAS

(Infrastructure as a Service), PAAS (Platform as a

Service), SAAS (Software as a Service), for which

users pay a different amount as per their requirement

[13]. The demand for cloud computing and its services

increased with the developing world. Cloud

computing's primary purpose is to share resources and

provide personal storage over the internet with

minimum effort. The main advantages of cloud

computing are low cost, improved performance,

infinite storage space Etc [5].

The major challenge which we are going to discuss in

this paper is "Load balancing." As the number of users

increases day-by-day in cloud environments, load

balancing has become a challenging problem for cloud

service providers.

Load balancing means distributing the load on all the

servers and nodes equally. This problem arises when

the users' requests become high, and some

servers become overload, and some underload. To

overcome this problem and divide the requests equally

on the servers according to the algorithms' capacity.

This paper considers and reviews some of the

algorithms defined by other authors in their research

papers.

The main objective is to reduce this load, minimize the

makes pan time and maximize resource utilization. No

request has to wait for an extended period and be stuck

until the server gets free.

In this paper, the algorithm we propose is "Divisible

Load Scheduling" in this, we divide our tasks into

subtasks and assign those subtasks to different nodes.

In this way, we can reduce the processing time of the

job. This algorithm works as a post-order traversal of

a tree. The subtasks distributed network used different

topologies (tree, star, ring, etc.).

All these topologies are connected through gateways

and communicate through them. Nowadays, cloud

computing is the heart favourite topic of many

researchers, and It will become more prevalent in the

coming years as the reach of the internet increases day

by day [5].

GATEWAY

GATEWAY

GATEWAY

Clients in Ring

Topology

Mobile client in Star

Topology Network

Thin Client in

Hybrid Topology

Network

Figure1: Different topologies existing within a cloud

Nodes have different data centers that keep track of all

the parameters and performance. The central computer

server divides the task into subtasks and assigns them

to the corresponding slave computers. We use

different algorithms in these topologies to give the task

according to the capacities and performances. After

completing the tasks, the master computer collects the

results and completion times of slaves and calculates

them accordingly. In this way, we keep track of and

reduce our load balancing issue.

S4
S3

S1

S2

S5 S6 S7 S9 S11S10 S12 S13

S14 S15 S16 S17 S18

S19

S21

S20

S8

Stage 0

Stage I

Stage II

Stage III

Stage IV

Stage V

Figure 2: State Diagram of the proposed work

In the initial phase, the execution starts with S0 and

parallel S2, S3 & S4, respectively. The task is

alienated into segments. S14, S16 & S17 are reliant on

S5, S6 & S9, S10 & S11, S12 respectively. S15 and

S18 are dependent on S7 & S13, correspondingly. The

final results are assessed and collected by the last node,

S21.

2. LITERATURE REVIEW

The algorithms of load balancing problems discussed

in some research papers are listed below. In [1], they

discussed the load balancing problem. They proposed

an algorithm whose fundamental concern is dividing

the load between all servers equally, not overburden a

single server with all requests. This algorithm put a

counter at each node (server) to check the request's

count and track which node has more requests. This

algorithm works by checking all the counter values at

each node, the node with the minimum number of

submissions is selected and allot the application

request to that server(node). Then allocate the client

request to its data centre. In this way, the requests are

assigned at nodes to do load balancing and increase

work efficiency. In the last, we increment the counter

of the designated node (server) by 1. Furthermore,

after completing the application request, decrement

the counter of the server by 1. In this way, we keep the

count and manages requests equally.

In [2], the author minimizes the tasks' makespan time

and maximizes resource utilization. He proposed

another algorithm, "Task migration," for the load

balancing problem in cloud computing. This algorithm

takes various virtual machines and different arrays for

these VM's to calculate the underloaded, overloaded,

and balanced VM's. Firstly, they arranged the number

of tasks in descending order and VM's according to

their power. They then assigned the functions to VM's

on FCFS (first come, first serve) basis. Find the

capacity and load of the VM's. Suppose the load is less

than the ability. In that case, we apply the load

balancing operation by checking which machine is

overloaded, underloaded, or balanced and keeping a

record of all the machine tasks. Arrange the

overloaded machine tasks id in descending order and

underloaded in ascending order. Then move the jobs

from overloaded to underloaded until the underloaded

ones reach the threshold value. In this way, we can

maintain a balance between virtual machines.

In [3] for the load balancing problem, the author

proposed an algorithm inspired by the "firefly

algorithm." The characteristics of the firefly approach

are. All fireflies are attracted towards each other no

matter what their attributes are (unisex nature).

Initially, they calculate The light intensities of all

fireflies, and the firefly with less power moves towards

the brightest one. Brightness has an inverse relation

with the distance; an objective function also

determines the brightness. The algorithm proposed by

the author in the paper is similar to this. In his

algorithm, first, the population is formed. The requests

that come on a specific server are assigned to a free

node. All these make a scheduling list, which is known

as the population. Then find the scheduling index; as

the firefly algorithm says, there is an attraction

between fireflies.

Similarly, there is an attraction between the nodes and

the requests, which depend on the proposed system's

attributes. Find the interest by given formulas, find the

scheduling index, and update the list, so the queue with

a high scheduling index is on top. In the last, find the

node with minimum load and transfer the task to that

node.

In [4], the author uses the " Genetic algorithm " to

reduce the load balance problem and decreases the

makespan time using the "Genetic algorithm." This

algorithm works on fixed lengths. Therefore, all the

solutions are converted in binary form to initialize a

population and find the paper's equation's fitness

value. After this, the algorithm moves to the selection

step, where we remove the highest fitness value

chromosomes and deal with the lowest value to make

a mating pool. Then do the crossover by randomly

selecting a point to form an offspring. After crossover,

mutates them using probability 0.5. Take these new

offspring as a unique population and do iterations by

taking them. Test that the obtained solution is optimal

or not. If not, then continue doing iterations. This

algorithm uses the CloudAnalyst tool, which is GUI-

based and shows everything in a graph. At the end of

this paper, the author does simulation analysis and

gives us the result, which shows that this algorithm

works better than other techniques like FCFS, RR, and

SHC.

In [5], the author discusses the load balancing

algorithm with an efficient version of the "throttled

algorithm." The author tries to combine three

algorithms into a single algorithm to increase

efficiency and reduce load balancing. In his proposed

algorithm, he used a hash map that keeps track of all

the virtual machines. The hash map contains the

current status and the expected response time. When

the request comes to the data centre, it is handed to the

throttled balancer, whose duty is to transfer it to a

suitable VM. So, he checks the hashmap, and if it

found the VM with less load and less response time,

then throttled send the request to that VM, and updated

the hashmap. If throttled does not find the VM, then

he sends the message to the datacenter of

unavailability. The proposal has to wait until the VM

gets free. When VM becomes

free, the data centre sends a message to throttle, and

then again, the balancer finds the suitable VM for the

request. In this way, this algorithm works. This

algorithm works far better than others.

In [6], the paper discusses load balancing algorithms

& projects the idea of sub-division. Conventional tasks

are divided into sub-tasks. Each sub-task is assigned

an incredibly particular job, e.g., A task "T" is divided

into T1, T2, T3…Tn (where n is a possible natural

number of subsets).

 Some of these tasks are sequentially completed rest

are executed parallelly, which reduces the execution

time of a job comparatively, as each subtask's

implementation period is reduced. The system gets a

massive performance boost.

In [7], the research paper debates the use of various

algorithms in cloud computing. It provides the

advantages and disadvantages of the algorithms. It

also delivers a comparison of each one with others on

immobile parameters and attributes. Each time Particle

Swarm Optimization (PSO) algorithm outnumbers

others. Bird & Fish flocks are the main inspiration for

this algorithm. The swarm population works by the

protocol of divide and conquer, and they form groups

with a particular task and scatter around in search of

their desired goal. They rejoin when they have

achieved their target.

Similarly, In PSO, each task has several particles, and

they move in random directions with vector velocity

to find the particular space. Each particle adjusts its

path based on Velocity, Pbest, Gbest. Performance is

measured on the attributes of the fitness function.

In [8], A stochastic hill-climbing approach is used

based on Round Robin Theorem and FCFS (First

Come First Serve) to balance load distribution on the

Cloud. The proposed algorithm is non-distributed

(Centralized). With the following tactics, the

performance boost is significant, and outcomes are

reasonably encouraging. Still, the technique needs

other software for improvements—an experiment

conducted via Coanalytic with hypothetic generated

configuration. The settings were created, keeping in

mind random e-auction & social sites, e.g., Facebook,

Google+, etc.

In [9], an algorithm is proposed that minimizes the

server and request load concerning priorities. Cloud

manager takes the request from the user and stores

them in a stack, and then prioritizes. It develops a

request table based on time allocation, task priority,

job size & resources. The rest of the scheduling and

resource allocation is executed with the Bee-Colony

Algorithm. This algorithm helps to balance incoming

traffic & QoS for Cloud Environment. The algorithm

also results in a less execution period. The algorithm

can further be improved with the addition of VM,

specifically for comprehensive simulation.

In [10] this paper, a heuristic algorithm grounded Ant-

based control system is used to resolve load

management. Every node in the Cloud has a

configuration dependent on Accommodation

Capacities, Destination Probability & Pheromone

table. Ant is thrown from a node to an arbitrary

destination. Incoming ants apprise the pheromone

table according to the entries. E.g., an ant will travel

from source to destination and inform the

corresponding entities. The model is a symmetric

algorithm system for an asymmetric network that may

differ. Thus, it is only efficient for symmetric routing

networks. This algorithm can optimize the maximum

performance and minimize declining parameters

efficiency as CPU Circulation & Memory volume and

network load for the Cloud. The paper does not discuss

fault tolerance, which can be explored in the future.

 In [11], The Author defines the New Scheduling

Algorithm for Load-balancing "Max-Min Algorithm."

This algorithm's primary purpose is to reduce the

turnaround time of all the incoming requests and

increase the VM's processing time by providing the

best possible schedule for the tasks. In this algorithm,

the tasks Ti are provided to Resources Rj. For all the

tasks, Calculate the completion time concerning the

Execution time of the task on Resource Rj. The tasks

with the highest completion time are assigned to the

slower available machine. This algorithm gives higher

priority to the tasks with maximum execution time.

Huge tasks have higher priority. The hugs tasks are

assigned to slower machines, and smaller tasks are

assigned to the fastest machines to increase the tasks'

average execution time.

In [12], the author defines the "Fuzzy logic-based

Load Balancing" technique. The paper focuses on the

two main attributes, "processor speed" and "load of

VM." The article presents the Fuzzy logic approach as

an improved version of Round Robin to upgrade the

utilization of the resources and accessibility of the

cloud environment. The projected algorithmic rule

starts with the request an association with Resource. It

tests for accessibility of Resource. Calculate the

association strength if the Resource is found. It then

chooses the association employed to access The

Resource as per processor speed and load in the virtual

machine by applying mathematical logic (fuzzy logic).

In [13], the paper proposed the Load balancing

algorithm to increase Cloud computing's

productiveness using a priority queue. The purpose of

the priority queue Is to prioritize their affluent users.

If the user requests services from the server.

Furthermore, its waiting queue is full. Later, it is

transferred to the priority queue that the Request

Manager handles. And from there, it is sent to the

required and available server according to the

percentages. This technique is beneficial for cloud

providers who want to supply higher services to their

affluent users.

In [14], the author proposed the "Enhanced Min-Min

Algorithm". This algorithm uses the simple Min-Min

algorithm along with the rescheduling technique. This

algorithm has two phases. It works as a simple Min-

Min algorithm in one phase, where the completion

time of tasks is calculated and minimum completion

time tasks are assigned to the slowest machine. It does

not provide the appropriate results sometimes. That is

why the author defines the second phase, where the

rescheduling of tasks occurs, and the tasks with

maximum completion time are assigned to their

appropriate resources. The paper results proved that

this Enhanced version works better and speeds up the

processing time and utilization of resources compared

to the LBMM.

In [15], The Author defines the main objective of

Cloud Computing to provide its services effectively to

the clients. He proposed an algorithm for load

balancing called "Migration of Virtual Machines."

This algorithm migrates the VM if the resource

utilization becomes maximum (above 90%) towards

the Resource having minimum CPU utilization. There

are chances of having minimum migrations and

maximum utilization of resources by using this

algorithm.

In [16], the author proposed a load balancing solution

on multi-core processing, which prevents shared

memory from using other multiprocessing load

balancing solutions. The solution maintains a lock on

the user session. The solution requires a modified

Linux kernel. The solution improves multi-core

environment performance while handling multi load-

balancing processes in a single load balancer.

In [17] author introduced a load balancing policy for

web servers. The proposed model was

intended to be used all over the world. The model

reduces the number of requests to the closest

 remote server, which eventually helps reducing

response time with overloading web servers.

Middleware refers to implement these protocols. It is

also a handy tool in enduring web-server overload.

In [18] Author investigates a self-aggregation

algorithm that connects similar services by local re-

wiring, which optimizes job scheduling. It

accomplishes local balancing through mapping tasks

throughout local server actions. The algorithm boosted

the system performance significantly, but throughput

decreased with the increase in the system size. With

this policy, the system becomes more diverse. Thus

the protocol is only suitable for diverse population

servers.

In [19], the author proposed VectorDot, a load

balancing algorithm that deals with the hierarhical

complexity of the servers' data center & resource

allocation, and storage that integrated servers and

storage virtualization technologies. The principle of

the dot product is the primary factor in determining

item requirements and system workload on servers,

storage and switches nodes.

In [20], the authors proposed a load balancing

algorithm for Virtual Machines called Central Load

Balancing Policy (CLBVM). It divides workload

evenly across the distributed VMs or cloud

environment. Except for the fault-tolerant system, this

policy overall increases system performance.

Master

Computer 1

Master

Computer 2

Master

Computer 3

Master

Computer M

Slave

Computer

Slave

Computer

Slave

Computer

Slave

Computer

Slave

Computer

Slave

Computer

Slave

Computer

Slave

Computer

Slave

Computer

Slave

Computer

Figure 3: M is the number of total master computers on the system, each connected with Several slave computers in a star

topology tree network

𝐵𝑚𝑖
 Load assigned by master computer "m" to

slave "i."

𝑎𝑚𝑖
 We designed a constant contrarywise

proportional to the measured speed of slave

"i" of the Cloud.

𝑏𝑚𝑖
 We designed a constant inversely

proportional to the communication speed of

connection "i" of the Cloud.

𝑇𝑚𝑠 The time is taken by the"𝑖𝑡ℎ"slave in the

entire load measurement, momently when the

constant speed of the slave is 1. It is

commonly known as the Measurement of

Intensity constant.

𝑇𝑐𝑚 Time to transmit all the measured load over

the connection when the load assigned to the

slave is 1—generally known as

Communication intensity of constant.

𝑇𝑚𝑖
 The total time a slave takes from the

beginning of the scheduling time, i.e., t = 0.

The time in which the slave completes its task

reports back. This time includes execution,

waiting, reporting, and transmitting time.

𝑇𝑓𝑚 is when the last slave completes the task and

reports back to the master "m."

𝑇𝑓𝑚 = 𝑚𝑎𝑥(𝑇𝑚1
, 𝑇𝑚2

, 𝑇𝑚3
, …………… , 𝑇𝑚𝑁

)

𝑇𝑓 is the time at preceding master node receives

the outcomes from the slaves.

𝑇𝑓 = 𝑚𝑎𝑥(𝑇𝑓1 , 𝑇𝑓2 , 𝑇𝑓3 , …………… , 𝑇𝑓𝑁)

4. PROPOSED ALGORITHM FOR

MEASUREMENT AND REPORTING TIME

Initially, at the time, i.e. (t = 0), all the slaves were idle.

Moreover, formerly master computers start to

communicate with their first slave computer as the

task arrives in the Cloud. By t = t_1 time, the master

computer dispatches the instruction to corresponding

slaves. Furthermore, the slave computers receive their

instructions, as shown in fig 4. The assumption is that

the calculations are made. Only one slave returns the

call to the root master computer. The slaves will

receive their load subsequently, and computation will

begin when all the slave have acknowledged their load

share.

Shared Assignment Measurements Reporting Time

Figure 4: Reporting time graph for a single tree network with a master computer and "N" number of salves executing

subsequentially

Considering the first root, master computer along with

its slaves. By the definition of 𝑇𝑚𝑖
, we can address as:

𝑇11 = 𝑡1 + 𝐵11 𝑎11 𝑇𝑚𝑠 +𝐵11𝑏11𝑇𝑐𝑚 (1)

𝑇12 = 𝑡1 + 𝐵12 𝑎12 𝑇𝑚𝑠 +𝐵12𝑏12𝑇𝑐𝑚 (2)

 .

 .

 .

𝑇1𝑁 = 𝑡1 + 𝐵1𝑁 𝑎1𝑁 𝑇𝑚𝑠 +𝐵1𝑁𝑏1𝑁 𝑇𝑐𝑚 (3)

By the equations, we can assume that the total

measurement load originated at every master

computer with the efficiency of normalizing to unit

load. Thus, each master computer we handle the unit

load as
1

𝑀
 Load. So,

𝐵11 + 𝐵12 + 𝐵13 +⋯+ 𝐵1𝑁−1 + 𝐵1𝑁 =
1

𝑀
 (4)

 As from the diagram, we can relate that:

𝐵11 𝑎11 𝑇𝑚𝑠 = 𝐵12𝑎12𝑇𝑚𝑠 + 𝐵12 𝑏12𝑇𝑐𝑚 (5)

𝐵12 𝑎12 𝑇𝑚𝑠 = 𝐵13𝑎13𝑇𝑚𝑠 + 𝐵13 𝑏13𝑇𝑐𝑚 (6)

 .

 .

 .

𝐵1𝑁−2 𝑎1𝑁−2 𝑇𝑚𝑠 = 𝐵1𝑁−1 𝑎1𝑁−1 𝑇𝑚𝑠 +

𝐵1𝑁−1 𝑏1𝑁−1𝑇𝑐𝑚 (7)

𝐵1𝑁−1 𝑎1𝑁−1 𝑇𝑚𝑠 = 𝐵1𝑁 𝑎1𝑁 𝑇𝑚𝑠 + 𝐵1𝑁 𝑏1𝑁 𝑇𝑐𝑚

 (8)

By this evaluation, we get a general expression:

𝑩𝟏𝒊 = 𝒔𝟏𝒊𝑩𝟏𝒊−𝟏 (9)

We can define"𝑠1𝑖"as:

𝑠1𝑖 =
𝑎1𝑖−1𝑇𝑚𝑠

𝑎1𝑖𝑇𝑚𝑠 + 𝑏1𝑖𝑇𝑚𝑠

And I can be related as, i = 2, 3….N.

the above recursive equation for 𝐵1𝑖 can be created as:

𝐵1𝑖 = ∏ 𝑠1𝑗
𝑖
𝑗=2 𝐵11 (10)

By using the above equation, we can relate to 𝐵11 , as

𝐵11 + ∑ ∏ 𝑠1𝑗
𝑖
𝑗=2 𝐵11

𝑁
𝑖=2 =

1

𝑀
 (11)

In other ways:

𝐵11 =
1

𝑀(1+∑ ∏ 𝑠1𝑗
𝑖
𝑗=2

𝑁
𝑖=2

 (12)

By putting in the equation-(10)

𝐵11 =
∏ 𝑠1𝑗
𝑖
𝑗=2

𝑀(1+∑ ∏ 𝑠1𝑗)
𝑖
𝑗=2

𝑁
𝑖=2

Where i = 2,3,4,…….N.

Now the minimum measuring & reporting time on the

cloud network shall be calculated by:

𝑇𝑓1 = 𝑡1 +
𝑎11 𝑇𝑚𝑠+𝐵11 𝑏11 𝑇𝑐𝑚

𝑀(1+∑ ∏ 𝑠1𝑗)
𝑖
𝑗=2

𝑁
𝑖=2

 (13)

Similarly, a generalized equation for master computer

"r" can is derived as:

𝑇𝑓𝑟 = 𝑡1 +
𝑎𝑟1 𝑇𝑚𝑠+𝐵11 𝑏𝑟1 𝑇𝑐𝑚

𝑀(1+∑ ∏ 𝑠𝑟𝑗)
𝑖
𝑗=2

𝑁
𝑖=2

 (14)

The case I: if the network has the same measurement

size & connection speed).

If this case, we can relate as:

𝑠11 = 𝑠12 = 𝑠13 = ⋯ = ⋯ = 𝑠1

𝑎11 = 𝑎12 = 𝑎13 = ⋯ = ⋯ = 𝑎1

𝑏11 = 𝑏12 = 𝑏13 = ⋯ = ⋯ = 𝑏1

By eq-(5):

𝐵11 (1 + 𝑠1 + 𝑠1
2 +⋯+ 𝑠1

𝑛−1) =
1

𝑀

Here"𝑠1"is:

𝑠1 =
𝑎1𝑇𝑚𝑠

𝑎1𝑇𝑚𝑠+𝑏1𝑇𝑐𝑚
 (15)

Abridging the overhead equation:

𝐵11 =
1−𝑠1

𝑀(1−𝑠1
𝑁)

 (16)

By this equation, the first master computer will

contract the measured amount of data from the slaves

N-1 by using the value of 𝐵11 .

𝐵1𝑖 = 𝐵11𝑠1
𝑖−1 (17)

Here and now, the least measuring and reporting

period of a homogenous system will be prearranged

as:

𝑇𝑓1 = 𝑡1 +
(1−𝑠1)(𝑎1𝑇𝑚𝑠+𝑏1𝑇𝑐𝑚)

𝑀(1−𝑠1
𝑁)

 (18)

When "N" approaches infinity, the measurement &

reporting period of the network method become 𝑡1 +
𝑏1𝑇𝑐𝑚/𝑀. When the number of corresponding slaves

of a master approach infinity, reporting time exceeds

the measurement period.

5. PERFORMANCE ANALYSIS

In figure 5, measurement & report time are graphically

articulated against the homogeneous slave's equivalent

to their master, in the case of communication

bandwidth "b" varying within the range of 0 and 1,

with a variable interval & measurement speed is static

at 1.5. for T_cm=1 & T_ms=1.

We can conclude from the graph that faster

communication speed outcomes in smaller report

period and report time catches up with

communication speed after a certain number of slaves.

The number of master computers brings a neglectable

effect on the Cloud's performance compared to a

single master computer cloud.

In figure 6, the inverse measuring speed "a" varies in

the range of 1 and 2 with a variable interval & the

inverse speed link static at 0.2. The outcome

authorizes the measurement time b_1 T_cm That is,

in particular case 0.2, while "N" methods to infinity.

Figure 5: This graph indicated the report time with

admiration to the particular slaves working corresponded

by the master computer that acquires the task with

variable link speed "b" and single tree network.

Figure 6: This graph indicated the report time with

admiration to the particular slaves working corresponded

by the master computer that acquires the task with

variable link speed "a" and single tree network.

 6. CONCLUSION

Till now, we have discussed cloud computing, its

concepts and load balancing. Load balancing can

become the bottleneck for performance. We have

discussed several possible optimized algorithms for

the solution of load balancing. This paper has

described the complications, drawbacks &

performance deteriorating factors of a cloud that

suffers from a heavy workload. We have proposed a

dynamic divisible load theory across nodes to balance

the load and applied it to the Cloud for performance

and productivity boost. This approach includes various

topologies used across multiple thin and thick clients

connected via network topology. Nodes have

gateways, master computer, and their particular slave

nodes. This paper gives various notation and

measurement parameters used in the examination and

the load balancing analysis of the Cloud. Our study

shows that implementing our proposed work and the

Cloud gets a significant amount of recital

enhancement.

7. FUTURE WORK

Cloud Computing is a diverse field of concept and

research. Load balancing plays a vital role in

implementation of cloud computing. There is a

tremendous extent of progress in this area. We have

only discussed dynamic scheduling algorithms in

cloud implementation. The given algorithm can also

improve over time with the development of some

parameters.

REFERENCES

[1] Haryani, N. and Jagli, D., 2014. Dynamic

method for load balancing in cloud

computing. IOSR Journal of Computer

Engineering, vol 16, issue 4, pp.23-28, 2014.

[2] Kumar, Mohit, and S. C. Sharma. "Dynamic

load balancing algorithm for balancing the

workload among virtual machine in cloud

computing." Procedia computer science 115,

pp.322-329, 2017.

[3] P. Florence and V. Shanthi, " A Load

Balancing Model Using Firefly Algorithm In

Cloud Computing," Journal of Computer

Science, vol. 10, no. 7, pp. 1156-1165, 2014.

[4] K. Dasgupta, B. Mandal, P. Dutta, J. Mandal

and S. Dam, "A Genetic Algorithm (GA)

based Load Balancing Strategy for Cloud

Computing", Procedia Technology, vol. 10,

pp. 340-347, 2013.

[5] Patel, D. and Rajawat, A.S.,” Efficient

throttled load balancing algorithm in cloud

environment”. International Journal of

Modern Trends in Engineering and

Research, Vol 2, Issue 03, pp.463-480, 2015.

[6] Ram Prasad Padhy (107CS046), P Goutam

Prasad Rao (107CS039), "Load Balancing In

Cloud Computing System", Department of

Computer Science and Engineering National

Institute of Technology, Rourkela Rourkela-

769 008, Orissa, India May 2011.

2.3

1.5

1.2
1.1

0.95 0.91
0.83

2

1.3

1
0.9 0.8 0.75 0.68

0

0.5

1

1.5

2

2.5

0 2 4 6 8

R
EP

O
R

T/
M

EA
SU

R
EM

EN
T

 T
IM

E

NUMBER OF PROCESSORS.

2.3

1.5

1.2
1.1

0.95 0.91
0.83

2

1.3

1
0.9 0.8 0.75 0.68

0

0.5

1

1.5

2

2.5

0 2 4 6 8

R
EP

O
R

T/
M

EA
SU

R
EM

EN
T

 T
IM

E

NUMBER OF PROCESSORS.

[7] Bharti, Mohali, Punjab, India. "International

Journal of Computer Applications" Volume

92 – No.9, pp. 0975 – 8887, 2014

[8] Mondal, Brototi, Kousik Dasgupta, and

Paramartha Dutta. "Load balancing in cloud

computing using stochastic hill climbing-a

soft computing approach." Procedia

Technology 4, pp. 783-789, 2012.

[9] Soni, Ashish & Vishwakarma, Gagan & Jain,

Yogendra. "A Bee Colony based Multi-

Objective Load Balancing Technique for

Cloud Computing Environment".

International Journal of Computer

Applications.114.,pp. 19-25, 10.5120/19967-

1825, 2015.

[10] Ratan Mishra1 and Anant Jaiswal, "Ant

Colony Optimization: A Solution of Load

balancing in Cloud." International Journal of

Web & Semantic Technology (IJWesT),

Vol.3, No.2, April 2012,

DOI:10.5121/ijwest.2012.320333

[11] Mao Y., Chen X., Li X. |Max–Min Task

Scheduling Algorithm for Load Balance in

Cloud Computing". In: Patnaik S., Li X. (eds)

Proceedings of International Conference on

Computer Science and Information

Technology. Advances in Intelligent Systems

and Computing, vol 255. Springer, New

Delhi, 2014.

[12] S. Sethi, "Efficient Load Balancing in Cloud

Computing using Fuzzy Logic", IOSR

Journal of Engineering, vol. 02, no. 07, pp.

65-71, 2012.

[13] Rahul Rathore, Bhumika Gupta, Vaibhav

Sharma, Kamal Kumar Gola, "A New

Approach For Load Balancing In Cloud

Computing". ISSN 2277-3061, 2014.

[14] Patel, G., Mehta, R., & Bhoi, U. Enhanced

Load Balanced Min-min Algorithm for Static

Meta Task Scheduling in Cloud Computing.

Procedia Computer Science, vol 57, pp. 545–

553, 2015.

[15] Razali, Rabiatul & ab rahman, Ruhani &

Zaini, Norliza & Samad, Mustaffa. Virtual

machine migration implementation in load

balancing for Cloud computing. pp. 1-4.

10.1109/ICIAS.2014.6869540, 2014.

 [16] Liu Xi., Pan Lei., Wang Chong-Jun. and Xie

Jun-Yuan. 3rd International Workshop on

Intelligent Systems and Applications, 2011.

[17] Nakai A.M., Madeira E. and Buzato L.E. 5th

Latin- American Symposium on Dependable

Computing, pp. 156-165, 2011.

[18] Randles M., Lamb D. and Taleb-Bendiab A.

24th International Conference on Advanced

Information Networking and Applications

Workshops, pp.551-556, 2010.

[19] Singh, Aameek, Madhukar Korupolu, and

Dushmanta Mohapatra. "Server-storage

virtualization: integration and load balancing

in data centers." In SC'08: Proceedings of the

2008 ACM/IEEE conference on

Supercomputing, pp. 1-12. IEEE, 2008.

[20] Bhadani, Abhay, and Sanjay Chaudhary.

"Performance evaluation of web servers

using central load balancing policy over

virtual machines on cloud." In Proceedings

of the Third Annual ACM Bangalore

Conference, pp. 1-4. 2010.

.

