

Feature-Based Comparison of Language Transformation Tools

1Muhammad Ilyas, 2Saad Razzaq, 3Fahad Maqbool, 4Qaiser Abbas, 5Wakeel Ahmad, 6Syed M Adnan

1,2,3,4Department of Computer Science and IT, University of Sargodha, Sargodha, Pakistan

5,6Department of Computer Science, University of Wah, Wah Cantt, Pakistan

1Muhammad.Ilyas@uos.edu.pk,

Abstract

 Code transformation is the best option while switching from farmer to next technology. Our paper

presents a comparative analysis of code transformation tools based on 18 different factors. These

factors are Classes, pointers, Access Specifiers, Functions and Exceptions, etc. For this purpose, we

have selected varyCode, Telerik, Multi-online converter, and InstantVB. Source Language

considered for this purpose is C sharp (C#) and the target language is Visual Basics (VB). Results

show that VaryCode is best among the four tools as its converted programs throw fewer errors and

require minor changes while running the program.

Key words: Code transformation, Multiconverter, Stylistic Feature, Code Smell, Author style.

1. INTRODUCTION

Source to source compilation is a process of

converting source code written in one high-

level language to itself or other high-level

languages [1]. It is a refactoring process that

is helpful when programs that have to

refactor are outside the control of the

original implementer. The purpose of

transpilation is to convert legacy code to a

newer version of a particular language. Such

as converting a program from one dialect to

another in the same programming language

[2, 25]. Translation of code from one to

another language is also necessary for

understanding code according to expertise in

a particular language. This makes code much

more readable for the developer. Due to the

rapid improvement in programming

languages, companies want to migrate their

software to new updated/upgraded code.

Developing code from scratch each time is

difficult because it is a complex and

cumbersome activity. The automatic

transformation of the code is always very

favorable and speeds up the work.

Several techniques have been used for

this purpose such that automatic source to

source error compensation of floating-point

programs [17], generating database access

code from domain models [18], and

generating pseudo-code from source code

[19], etc.

The objectives of feature-based comparison

are to help in making newer versions of tools

efficient and more accurate as well as to

highlight the areas where a particular tool is

lagging. For this purpose, we have selected

four source to source compilers: Telerik

[20], VaryCode [21], Multi-online Converter

[22], and Instant VB [23]. We have chosen

C# as the source language and Visual Basic

(VB) has the target language. We have

focused on eighteen different features for

comparison, some of these features are

Classes, Functions, Access Specifiers and

Exceptions, etc. The paper is organized as

follows: related work is described in Section

2, feature-based comparison of language

transformation tools are presented in Section

3, and the conclusion is described in Section

4.

2. RELATED WORK

A source to source compilation is a process

of translating a high-level programming

language to itself or another high-level

programming language [1]. One of the

purposes of the source-to-source compilation

is translating legacy code to use the

upcoming version of the underlying

programming language. It is a refactoring

process that is helpful when the programs to

refactor are outside the control of the

original implementer such as to convert a

program from legacy API to the new API, or

when the program size makes it impossible

to refactor it by hand.

Malton [2] defines three conversion tasks:

First is Dialect Conversion which converts a

program from one dialect to another in the

same programming language. This is used

when a new version of the compiler is used.

The second is API Migration used to convert

the program into a new set of APIs. The

third is Language Conversion that converts

from one programming language into

another.

There are many purposes for code

transformation such as performance

improvements [11], memory optimization

[12], parallelization, and vectorization. Due

to the rapid growth of the Internet, one of the

main reasons for code transformation is the

migration of a legacy system into a web-

enabled environment [3]. Code

transformation [13] also helps advisory tools

that guide the developers to parallelize the

real-world problems. These tools have faced

problems due to the large size of programs

and high code complexity. That’s why these

tools are unable to provide meaningful

parallelization hint to the developers. Then

code transformation overcomes this problem

by simplifying the code.

Cfir Aguston et al. Proposed the approach to

overcome the complexity of code issue

called Skeletonization which automatically

transforms the complex code into a much

simpler structure. The proposed algorithm

transforms the constructs such as covers

pointers, nested conditional statements,

nested loops, etc. This algorithm transforms

pointers into integer indexes and replaces C

struct references with references to arrays.

Source level compiler performs analysis on

skeletonized code for parallelizing the code.

The generated code is not equivalent to the

original code, it suggests possible

parallelization patterns to the developers.

Another tool that is concerned with

performance improvements is GPU S2S

which automatically transforms the C

sequential code into CUDA (Compute

Unified Device Architecture) code [11]. This

contains three modules: Directive

recognition, Parsing module, and CUDA

code generation. GPU S2S takes C code

with directives as input and translates it into

the CUDA code. Experiments showed that

generated code has significant improvements

as compared to C original code, which leads

to performance enhancement.

G. Dimitroulakos and C. Lezos et al.

presented a source to source compiler

MEMSCOPT for Dynamic code analysis

and loop transformations and assisting the

optimization of the memory hierarchy of a

digital hardware system. MEMSCOPT is a

command-line application and is extended

by providing a Graphical User Interface

(GUI) in C#. It takes a C code file as input

and performs an analysis such that

monitoring the loop. It also performs a

dynamic code translation. MEMSCOPT

applies 7 types of transformations such that

loop extends, loop shift, loop reversal, loop

interchange, loop fusion, loop fission, loop

normalization, loop reorder, loop switching,

loop scope move forward and loop scope

move backward [12].

J. Cronsioe et al proposed another source to

source compiler that performs automatic

transformations such that optimization of

loop structures on multi-core platforms. The

proposed research is concerned with a

scientific application written in FORTRAN

named BigDFT (Density Functional

Theory). BigDFT is defined by its heavy use

of convolution operators on large arrays.

PIPs and BOAST the two S2S applications

have been used with MagicFilter to optimize

BigDFT. It is found that PIP’s generic

transformation logic is not always suitable

for adapted optimizations there is another

technique BOAST for more suitable

transformations over multi-core platforms

[15].

The concept of source-to-source Translator

can be viewed as a generation of Database

Access code from Domain Models. N. Y.

Khelifi et al. presented his Idea on Database

Access code generation from Domain

Models. As a source, they used RSL

(Requirements Specification Language). The

process of code generation consists of two

main steps. The first step is related to

transformation rules having translational

semantics for domain vocabulary constructs

of RSL. The second step constitutes of

MOLA (Model Transformation Language)

algorithms for implementing

transformations. The validity of results is

assured by using the framework of the

ReDSeeDS (Requirements-Driven Software

Development System) tool suite. The

resultant transformations produced

consistent and quality code that can be

utilized directly for the implementation of

the data access layer [18].

A Pseudogene is a tool for converting

pseudo code from Source code using SMT

(Statistical Machine Translation), worked on

by H. Fudaba et al. The tool performs the

transformation of Python code to English or

Japanese. The proposed tool uses T2SMT

(Tree-to-String machine translation) method.

Input to this method is a parse tree through

which Tokenization and parsing are

performed. The tree is broken up for

translation using translation patterns for

conversion into pseudo-code. Proposed

techniques are one of the best application of

SMT for translating the code into natural

language [19].

B. S. K. Vorobyov et al worked on source to

source Translator from Datalog to SQL for

Static Program Analysis. The process starts

with the processing of facts and rules by a

lexer and parser. An intermediate

representation of the Datalog program is

constructed. The intermediate representation

is translated to SQL queries by using simple

syntactic translation schemes. The proposed

work cannot be matched with the

performance of industrial-strength tools [16].

L. Thévenoux et al presented his work on

automatic source to source Error

compensation of floating-point programs.

Numerical programs may suffer inaccuracies

as finite precision arithmetics is an

approximation of real arithmetic. The

research considers IEEE 754 floating-point

arithmetic and used Error Free

Transformations that are lossless of basic

floating-point operations. The proposed

approach resulted in many accurate values;

moreover, it is the first step to automatic

generation of multi-criteria program

optimizations [17].

C2J [7] is a C to Java translator that

translates large volumes of C code correctly

to Java. The translated code is difficult to

read which circumvents run-time checking

system and Java types which make it hard to

interface with mainstream Java programs. It

requires a lot of modifications in the

translated code to be run correctly. Java

Backend for GCC also translates C code to

Java and has the same disadvantages as

C2J[8]. Some translators only focus on the

extension of original language like migration

from legacy code into object-oriented

languages, such as C to C++ language [3].

Ephedra [4] is a tool that translates the

legacy C code to Java. It does not translate

fully C code but supports a heavy subset of

C. Ephedra [9] defines three steps to

conversion C/C++ code into Java code. In

step 1, conversion of K&R style C code

which doesn’t contain function prototypes. It

limits the capability of the compiler to

perform checking. All function prototypes

are inserted in this step. In step 2 type

conversion and data types are analyzed, as a

result, Java incompatible types are removed.

In step 3 C/C++ code is translated into Java

code, compiled with any Java compiler, and

verified. Also, it doesn’t support many

features such as external libraries, assembly

code, and goto statements. Experiments have

shown that Ephedra demands source code

need to be manually altered for processable

[5]. C2Eiff [14], [10] is a tool that performs

automatic translation of complete C code

into Eiffel, an object-oriented programming

language. It supports the complete entire C

language such that (Function pointers,

pointer arithmetic, unrestricted branch

instructions). It compiles GNU C compiler

extensions and ANSI with the help of CIL

(C Intermediate Language) framework, also

support native libraries. The generated code

is functionally equivalent to the C code. The

completeness of code is evaluated by an

attested set of programs to which translation

was performed. C2Eif automatically fully

translated over 900,000 lines of C code to

functionally equivalent 2 Eiffel code. This

translation introduces contracts that help in

detecting errors such that null pointer

referencing etc. This will improve the

readability of the code. There are two

methods to reuse the source code written in a

foreign language into the host language:

First is wrapping foreign code that uses the

foreign language implementation by API of

bridge libraries. The second is Translating

foreign code. C2Eiff uses a wrapping foreign

code approach to translate only assembly

code and external functions.

Martin et al. Presented automatic source

code transformation between octave and R

fourth-generation languages [6]. The main

goal is to convert octave algorithms into R

for scientists to use in their applications.

TXL programming language was used for

analysis and transformation. TXL was

created for the transformation of source and

target languages that somehow similar. TXL

does not give conversion code into the

correct format, for this purpose authors used

PERL scripts for correcting the format of

code. As a result, the author evaluated its

effect on the performance and readability of

converted code.

There are numerous online and offline tools

available for performing source to source

transformation. These tools transform source

code of different languages into different

target languages such that C++ to C#

converter, C# to VB and VB to java, etc.

[23]. We have taken C# as a source language

and VB (Visual Basic) as the target language

to have a comparative study of different

tools. The tools we have selected for this

purpose are Telerik [20], VaryCode [21],

Multi-online Converter [22] and Instant VB

[23]. Blanker, another tool that searches and

unifies equivalent statements available in the

language before feeding the source to an

existing code clone detector limited to type-

2 clones. Gabriel Sebastián has explained A

comprehensive approach to Model Driven

Architecture (MDA), from the definition of

the computational independent model (CIM

layer) to the implementation-specific model

(ISM layer) and the process of

transformations required for automatic

source code generation (in HTML and

JavaScript) from Language Learning Apps

[26].

3. METHODOLOGY

Our proposed methodology is presented in

figure 1. We took a dataset of 50 C#

programs from [1] and tested their auto-

conversion into Visual Basic on Telerik,

Varycode, Multi-online converter, and

InstantVB. These tools transform C# code

into visual basic code automatically. We

have taken a list of features (as given in table

1) on which we have tested auto-

transformation of code from C# to visual

basic. Later on, we have checked the code

manually and alter it accordingly. We also

checked for the areas that are not covered by

any of these tools as well as the validity of

programs converted.

We have presented the result of our testing

in Table 1 considering 18 different features.

Some of the features are covered by all of

these tools such that Loops, Data Types,

Conditions, Access Specifiers, Modifiers

and Read and Write methods but the other

features vary. These tools do not produce a

full running code as we need to amend some

of the factors such that placement of

Namespaces and Libraries etc. A common

problem in all of these tools is that the

converted code contains a shared main

function within the class that is not

supported by the VB compiler so we need to

add another main function outside the class

and place the main code over there.

4. CONCLUSION

Figure 1: Source Code Language Transformation Model

Due to rapid improvement in the

programming languages, organizations want

to shift their software to the new

updated/upgraded code. Every time, it’s hard

to develop code from scratch because it’s a

complex, time-taking activity. So automatic

code transformation always very supportive

and expedite the work.

In this paper, we have performed a

feature-based comparison of four different

tools that can transform code automatically

from C# to VB. Results of comparative

analysis conclude that VaryCode is best

among the four tools as its converted

programs throw fewer errors and require

minor changes while running the program.

Moreover, it also exhibits that none of the

tested tools support all features and

appropriate modifications need to be

performed in our converted code to take full

benefit.

As future work, our comparative analysis

could guide the developers to improve the

transformation tools by covering the features

that are not supported yet. Also, a mature

practice for such transformation could

support the shifting of legacy code into the

code of modern language. Such

transformation will also support software

refactoring with better reusability also.

Along with all such options, we will extend

this work to find out its financial impact

REFERENCES

[1] "Types of compilers". Compilers.net.

1997–2005. Retrieved 28 October 2010.

[2] A. J. Malton, "The software migration

barbell." ASERC Workshop on

Software Architecture. 2001.

[3] Z. Ying and K. Kontogiannis, "A

framework for migrating procedural

code to object-oriented platforms."

Software Engineering Conference,

2001. APSEC 2001. Eighth Asia-

Pacific. IEEE, 2001.

[4] J. Martin and H. A. Muller, "Strategies

for migration from C to Java." Software

Maintenance and Reengineering, 2001.

Fifth European Conference on. IEEE,

2001.

[5] T. Marco, et al., "C to OO translation:

Beyond the easy stuff." Reverse

Engineering (WCRE), 2012 19th

Working Conference on. IEEE, 2012.

[6] J. Martin and J. Gutenberg, "Automated

source code transformations on fourth-

generation languages." Software

Maintenance and Reengineering, 2004.

CSMR 2004. Proceedings. Eighth

European Conference on. IEEE, 2004.

[7] J. Martin and H. A. Muller, "C to java

migration experiences." Software

Maintenance and Reengineering, 2002.

Proceedings. Sixth European

Conference on. IEEE, 2002.

[8] T. Waddington, Java Backend for GCC.

http://archive.csee.uq.edu.au/ ̃csmweb/u

qbt.html#gcc- jvm, November 2000.

[9] K. Cashion, S. Ravindran, N. Powar and

J. Gold, "IOT device code translators

using LSTM networks," 2017 IEEE

National Aerospace and Electronics

Conference (NAECON), Dayton, OH,

2017, pp. 88-90.

[10] M. Trudel, C. A. Furia, and M.

Nordio, "Automatic C to OO translation

with C2Eiffel." Reverse Engineering

(WCRE), 2012 19th Working

Conference on. IEEE, 2012.

[11] Li, Dan, et al., "Gpu-s2s: a compiler

for source-to-source translation on gpu."

Parallel Architectures, Algorithms and

Programming (PAAP), 2010 Third

http://www.compilers.net/paedia/compiler/index.htm
http://archive.csee.uq.edu.au/

International Symposium on. IEEE,

2010.

[12] D. Grigoris, C. Lezos, and K.

Masselos, "MEMSCOPT: A source-to-

source compiler for dynamic code

analysis and loop transformations."

Design and Architectures for Signal and

Image Processing (DASIP), 2012

Conference on. IEEE, 2012.

[13] A. Cfir, Y. B. Asher, and G. Haber,

"Parallelization Hints via Code

Skeletonization." IEEE Transactions on

Parallel and Distributed Systems 26.11

(2015): 3099-3107.

[14] S. Ribic, "Concept and

implementation of the programming

language and translator, for embedded

systems, based on machine code

decompilation and equivalence between

source and executable code," 2006 13th

Working Conference on Reverse

Engineering, Benevento, 2006, pp. 307-

308.

[15] C. Johan, B. Videau, and V.

Marangozova-Martin, "BOAST:

Bringing optimization through

automatic source-to-source

transformations." Embedded Multicore

Socs (MCSoC), 2013 IEEE 7th

international symposium on, IEEE,

2013

[16] S. Bernhard, et al., "A datalog

source-to-source translator for static

program analysis: an experience report."

Software Engineering Conference

(ASWEC), 2015 24th Australasian.

IEEE, 2015.

[17] T. Laurent, P. Langlois, and

M.Martel, "Automatic source‐to‐source

error compensation of floating‐point

programs: code synthesis to optimize

accuracy and time." Concurrency and

Computation: Practice and Experience

29.7 (2017).

[18] Khelifi, N. Yamouni, M. Śmiałek, and

R. Mekki, "Generating database access

code from domain models." Computer

Science and Information Systems

(FedCSIS), 2015 Federated Conference

on. IEEE, 2015.

[19] F. Hiroyuki, et al., "Pseudogen: A

Tool to Automatically Generate

Pseudo-Code from Source Code."

Automated Software Engineering (ASE),

2015 30th IEEE/ACM International

Conference on. IEEE, 2015.

[20] “Code Converter”. Telerik Code

Converter by

progress.Converter.telerik.com/. Web.

Accessed 10 Jan 2018.

[21] “Online Code Converter: C#, VB,

JAVA, C++, Ruby, Python, Boo”.

VARYCODE. www.varycode.com/.

Web. Accessed. 18 Jan 2018.

[22] ”code Translator: Code Translation

from VB.NET <-> C# <->TypeScript <-

> Java”. Carlosag.net.

www.carlosag.net/tools/codetranslator/.

Accessed. 21 Jan 2018.

[23] “Source Code Converter”. Tangible

Software Solutions.

www.tangiblesoftwaresolutions.com/pr

oduct_details/csharp-to-vb-

converter.html. Web. Accessed. 25 Jan

2018.

[24] “1000 C# Programs with Example

Code and output-Sanfoundry”.

Sanfoundry Technology Education

Blog.

www.sanfoundry.com/csharp-

programming-examples/. Web.

Accessed. 12 Jan 2020.

http://www.varycode.com/
http://www.varycode.com/
http://www.carlosag.net/tools/codetranslator/
http://www.carlosag.net/tools/codetranslator/
http://www.tangiblesoftwaresolutions.com/product_details/csharp-to-vb-converter.html
http://www.tangiblesoftwaresolutions.com/product_details/csharp-to-vb-converter.html
http://www.tangiblesoftwaresolutions.com/product_details/csharp-to-vb-converter.html
http://www.tangiblesoftwaresolutions.com/product_details/csharp-to-vb-converter.html
http://www.sanfoundry.com/csharp-programming-examples/
http://www.sanfoundry.com/csharp-programming-examples/

[25] G. Sebastián, R. Tesoriero and J. A.

Gallud, "Automatic Code Generation for

Language-Learning Applications," in

IEEE Latin America Transactions, vol.

18, no. 08, pp. 1433-1440, August 2020,

doi: 10.1109/TLA.2020.9111679.

[26] D. Pizzolotto and K. Inoue, "Blanker:

A Refactor-Oriented Cloned Source

Code Normalizer," 2020 IEEE 14th

International Workshop on Software

Clones (IWSC), London, ON, Canada,

2020, pp. 22-25.

Table 1. Feature based Comparison

Features: Telerik Varycode Multi online

converter

Instant VB

Comments: Do not convert

comments

Convert comments Do not convert

comments

Convert comments

Namespaces

+

Libraries:

Predefined

Name

Spaces:(Error)

in converted

code user-

defined Name

Spaces: Do not convert

Predefined

Name

Spaces:(Error)

in converted

code user-

defined name

Spaces: Do not

convert

Predefined

Name Spaces:

Converted user-

defined

NameSpaces:

Do not

convert

Predefined

Name Spaces:

Converted

user-defined

NameSpaces:

Converted

Loops: Supporting loops Supporting loops Supporting loops Supporting loops

Data type: Primitive Data

Types (Converted:

Int, Date, Unsigned

int, char, Double,

String, Nullable

datatypes)

User-Defined

DataTypes

Converted

Primitive Data

Types (Converted:

Int, Date, Unsigned

int, char, Double,

String, Nullable

datatypes)

User-Defined

Datatypes

Converted

Primitive

DataTypes

(Converted: Int,

Date, char,

Double, Arrays,

Strings, Nullable

datatypes)

User-Defined

Datatypes

Converted

Built-in Data Types

(Converted: Int, Date,

char, Double, Arrays,

Strings, Nullable

datatypes)

User-Defined Data

Types

Converted

Conditional

Statements:

Supports conditions

if+ switch

Supports conditions

if+ switch

Supports

if+ switch

Supports

if+ switch

Access specifier: Converted Converted Converted Converted

Modifiers: Converted Converted Converted Converted

Shift

Operation:

Not supported Supports Shift

Operation

Not supported Converts but throws

Exception

Read and

write Input:

Converted Converted Converted Converted

Classes: Multilevel

inheritance

converted

Single level

inheritance

converted

Abstract class

Inherited classes

require Must Inherit in

VB but not

available in

converted code

Multilevel

inheritance

converted

Single level

inheritance

converted

Abstract

classes

(Converted

)

Multilevel

inheritance

converted

Single level

inheritance

converted

Abstract

classes

(Converted

)

Multilevel

inheritance

converted

Single level

inheritance

converted

Abstract

classes

(Converted)

Macros: Handles i.e. By

making functions

Takes macros in

converted code as they

are in

original program so

error

Takes macros in

converted code as they

are in

original program so

error

Macros Converted

Exceptions: Converted

(IndexedOutOfRange,

DividingbyZero(datatype

conflict),

InvalidTypeCasting

Converted

(IndexedOutOfRange

(no proper syntax),

DividingbyZero(dividec

on

flict) ,

InvalidTypeCasting,

Converted

(IndexedOutOfRange,

DividingbyZero(dividec

on

flict),invalidTypeCasti

ng,

nullReference)

Converted

(IndexedOutOfRa

nge,

DividingbyZero,

invalidTypeCastin

g,

StackOverflow(Error),

 , MultipleException,

StackOverflow

(converted but not

working due to

specifier with main

function),

nullReference)

StackOverflow,

nullReference)

 null reference)

Typecasting: Typecasting in VB

converted but do not

follow syntax in some

programs.

i.e. case of alphabets in

statement

Typecasting in VB

converted but do not

follow syntax in some

programs.

i.e. case of alphabets

in statement

Typecasting in VB

converted but do not

follow syntax in some

programs.

i.e. case of alphabets

in statement

Typecasting in VB

converted.

Functions: Built-in functions

converted (toString,

GetType, Copy, Sort,

Split,

Concat,Substring,Index

O F,Replace,Reverse,

BinarySearch,Trim)

User-defined functions

converted

Function return type

conversion

Virtual function

converted Method

Hiding (Converted)

Static method Pass by

reference

(public/private shared

main error)

Built-in functions

converted (toString,

GetType, Copy, Sort,

Split, Reverse,

IndexOf,

BinarySearch, Trim,

Concat, SubString)

User-defined

functions

converted

Function return type

conversion

Virtual function

converted Method

Hiding converted

(Error:

overriding demands

over-ridable function

that is not in

conversion)

Static method

pass by reference not

converted

Built-in functions

converted (toString,

GetType, Copy, Sort,

Split, Reverse,

Concat, substring,

IndexOf, Replace

, BinarySearch, Trim)

User-defined

functions

converted

Function return type

conversion

Virtual function

converted Method

Hiding (Converted)

Static method Pass by

reference

(public/private shared

main error)

Built-in functions

converted

(toString, Copy,

Sort, Split,

Reverse, Concat,

substring, Trim,

IndexOf, Replace,

BinarySearch)

User-defined

functions Virtual

function converted

Method Hiding

(Converted) Static

method Pass by

reference

(public/private

shared main error)

Online/

Downloadable

Online Online Online Downloadable

Syntax Sometimes do not

follow the syntax

Sometimes do not

follow the syntax

Sometimes do not

follow the syntax

Follows the

syntax

Pointers Not Converted Converted but error as

not able to create a

pointer class (No

pointers in VB)

Converted Converted but

error as not able to

create a

pointer class (No

pointers in VB)

Jump

statements:

Converted (goto) Converted (goto) Converted (goto)

but do not follow the

syntax

Converted (goto)

