
Hashing Based Software Watermarking for Source Code Files
1 2 3Shazia Saqib , Asad Raza Kazmi , Saleh Alrashed

1Department of Computer Science, GCU, Lahore Pakistan, Lahore Garrison University, Pakistan,
shaziasaqib@lgu.edu.pk

2Department of Computer Science, GCU, Lahore, Pakistan, arkazmi@gcu.edu.pk
3University of Dammam, Dammam, KSA, saalrashed@uod.edu.sa

LGURJCSIT
ISSN: 2519-7991

Saqib et al LGURJCSIT 2018

LGU Research Jounral for
Computer Sciences & IT

Vol. 2 Issue 4, October - December 2018

LGU Research Jounral for Computer Sciences & IT 2(4) LGURJCSIT

1. INTRODUCTION

 Software piracy has always been around
as a big blow to the software industry. Disk or
CD has long been used to deliver software to the
place required. This controlled illegal software
distribution to some extent. However, as high
speed Internet is getting available to everyone,
physical media based piracy has been reduced a
lot. Delivering software in platform independent
form makes its reverse engineering quite easy.
Even if we detect that the software has been
rated, its hard to detect the culprits.
 There are organizations like Business
Software Alliance (BSA)[21]. These use audits
to verify legality of software. Even audit cannot
trace the person behind piracy. There are many
techniques to discourage software piracy. These
techniques have been implemented both in
hardware and software. Softwarebased solutions
that include code obfuscation, software tamper-
proofing, and software watermarking are
cheaper but the security provided by them is not
that powerful[1].
 Although hardware based solutions give
more reliable security against piracy but they are
more convenient to be used by the software

vendor however end-user is not comfortable
with hardware.
 There are Software-based Methods
available as well [1].

 Software pirates attack software in three
ways. These attacks (additive, subtractive,
distortive) are handled by technical defenses.
One such solution is Code obfuscation. This
approach prevents reverse engineering
implementation. In this technique source code is
changed to a very difficult form without
changing its actual output. This makes the
software very hard to reverse engineer[2-4] .

Abstract:

 Software is developed and delivered to clients as a routine part of software engineering life
cycle . Software is quite an expensive entity. However various attacks are possible on software to make
its illegal use. Different solutions are there to prevent piracy. Software watermarking embeds a
watermark in the source code so that it is undetectable yet it proves the ownership of the developer. The
technique has been tested for C++ source code files, however, it can be applicable on any other language.
The proposed techniques scans the code for all possible constants, forms a hash sequence using MD5
algorithm that calculates the watermark and stores in Date & Watermark Value Repository (DWVR).

Key Words: Watermarks, Piracy, Attack, Embedding, Extraction

Figure 1: Software Units by Category

1

of the device[14].
 The work by Collberg et al. differentiates
between obfuscation, watermarking and tamper
proofing. A defense against reverse engineering
is obfuscation[7].
 The watermarks are added in such a way
that even minor changes to the software or flow
graph have no chance of elude detection by a
probabilistic algorithm[18]. A novel dynamic
software watermarking design based on Return-
O r i e n t e d P r o g r a m m i n g (R O P) a d d s
watermarking code into data and is variant to the
attacks based on code analysis[13].
 Version Based Software Watermark is
used to the LOC attack and Version attack of
abstract software watermarking[12]. The
research by HämmerleUhl et al. uses the static
analysis-based approach which is helpful to
identify the watermark even in the presence of
few lines of program code without executing it .
We illustrate the technique by a simple abstract
watermarking protocol for methods of JavaTM
classes[9].
 Another eff ic ient watermarking
technique is based on the dynamic branching
behavior of programs. The technique uses
tamper-proofing and error correcting algorithms
to make path-based watermarks invariant to a
wide variety of attacks[3].
 Constant String Static Watermarking
A l g o r i t h m , B o g u s I n i t i a l i z e r S t a t i c
Watermarking Algorithm, Bogus Initializer
Static Watermarking Algorithm , Bogus
Expression Static Watermarking Algorithm, The
Davidson-Myhrvold Watermarking Algorithm,
Robust Object Watermarking Algorithm,
Monden Watermarking Algorithm, Venkatesan's
Graph Theoretic Watermarking Algorithm,
Execution Path Watermark Algorithm and
Thumbprinting .Net Application are also some
o f t h e p o p u l a r a l g o r i t h m s u s e d f o r
watermarking[13-17].

3. WATERMARK EMBEDDING AND
EXTRACTION

 The watermarking process uses the
following algorithm:
1. Add Watermark in the source program
2. Watermark Extraction/Recognition in case
doubt of piracy arises Given a program SC, a
watermark w, and a key k, a software
watermarking system consists of two functions:
Add watermark (SC,w, k) → SC’
Extract watermark (SC’, k) → w[18].

 Software tamper-proofing is another
way to control piracy. This technique works in
such a way that it prevents program execution in
case someone tries to change it[3].
 A very popular technique to control
software piracy is software watermarking. It
stops a user to stop illegal distribution of copies
of the software. In addition to software
watermarking, media watermarking uses
intentional errors of images, audio, or videos
which are undetectable by the human auditory
system. Same way a software watermark is
added to the software which results in adding the
proof of ownership in source code[21-27].
 Software watermarking applies different
techniques. It may scan identifiers in the
program. It may form a graph of program
statement. Sometimes a unique programming
style is adopted. Program Flow can also help
determine watermark value[3].

2. LITERATURE REVIEW

 Many algorithms have been developed in
past few years to stop the software piracy. Preda
had proposed a Robust data hiding algorithm
that adds watermark in random coefficients of
Discrete Wavelet Transform. The input image is
transformed for increasing efficiency of the
watermark [15].
 Puncturable pseudo-random functions
(PPRF), assume the indistinguishability
obfuscation and injective one-way functions[6].
 The algorithm uses The codec system for
encoding watermark numbers uses reducible
permutation flow-graphs. The algorithm uses
the self-inverting permutation and the reducible
permutation graph[5].
 In another research the General Chinese
Remainder Theorem helps in dividing the
watermark represented as a huge figure into
pieces to increase stealth [16]. Zhang et al. uses
satisfied parameters to calculate the watermark.
Some of the program’s constants are replaced by
specific level hash function. will lead to the
application’s undefined behavior[19]. Abstract
software watermarking, hides the watermark in
the program code and it can be extracted only by
an abstract interpretation of the concrete
semantics of this code[9].
 The survey by Nagra and Thomborson
explains the validation mark, licensing mark,
authorship mark and fingerprinting mark
etc.[12]. In another technique, watermarking
mechanism was added at the assembly level and
hides the watermark in the power consumption

LGU Research Jounral for Computer Sciences & IT 2(4) LGURJCSIT 2

function.

Figure 2: Watermark embedding

3.2 Watermark Extraction

 Scan the program, check all function
calls, find the candidate functions. If they
contain a dummy
parameter whose contents match the contents of
a flag , replace the function call with the its
returning value. Scan the program for constants,
apply encryption algorithm. Compare the result
with the watermark stored in the time stamping
file.

Figure 3: Watermark Extraction

3.2.1. Threat Analysis

Subtractive Attack

 As the watermark is not stored anywhere
in the program it cannot be removed.

Distortive Attack

 It is very hard to distort the watermark as
it is very hard to change function result.
However replacing the constants with function
calls may increase program execution time.

Additive Attack

 One solution to additive attack is time
stamping with a third party which is an
expensive solution.

or
• Watermark Embedding and Extraction
– Program + Secret key -> Watermarked
Program
– Watermarked Program + Secret key->
Program

3.1. Watermarking Algorithm

 This paper is inspired by the work done
by Xuesong Zhang, Fengling He, Wanli Zuo.
Their work indicates that it is a better technique
to hide watermark as a part of the source code as
it is quite challenging to separate code and the
software watermark even with compiler tools
and tampering with them would affect the
program correctness and/or performance [11-
12] .
 To apply this algorithm the following are
the conditions to be fulfilled:
a. The program should not have watermark
stored in program anywhere.
b. Watermark should be calculated using the
program contents so that if source code faces any
attack, the response of program will be different
from what was predicted.
c. Every program must have a unique
watermark.

3.1.1. Design

 Our algorithm works the following way:
a. Scan the program for all possible constants.
b. Record all possible constants, if needed new
constants can be generated.
c. Using these constants form the sequence
C1C2…Cn
d. Apply any encryption algorithm like MD5
or SHA. Generate watermark and store in
Time Stamping file DWVR. It contains two
things: date of watermark stamping and value
of the water mark. When the program has been
compiled and tested, After completion of a
code, it is time stamped initially with
1/1/2999) thus the file will always contain the
date and time on which the program was first
time time-stamped. Once the program is
scanned for all the constants, the sequence of
constants is passed to the encryption
algorithm.

3.1.2 Watermark Embedding:

 Replace all constants with function calls.
No attack can change the value returned by a

LGU Research Jounral for Computer Sciences & IT 2(4) LGURJCSIT 3

SourceSource
ProgramProgram
Source

Program

Scan ForScan For
ConstantsConstants
Scan For

Constants
Function Function
Mapping Mapping
Function
Mapping

MDSMDS
EncryptionEncryption

MDS
Encryption

DWVRDWVRDWVR

Watermarked Watermarked
ProgramProgram

Watermarked
Program

CandidateCandidate
FunctionFunction

Candidate
Function

MD 5 EncryptionMD 5 EncryptionMD 5 Encryption
Mapping toMapping to
ConstantsConstants

Mapping to
Constants

SourceSource
ProgramProgram
Source

Program

DWVRDWVRDWVR

4.3 Embedding Overhead in terms of Size of
Program

 The effect of the watermarking
technique was also determined in terms of the
source code size. The size ws determined before
applying the watermark and after applying the
watermark. For the sake of accuracy we repeated
the process again and again. However the code is
least affected by the size of the code. In case of
too many repetitions or too many constants there
is slight increase in code size but still ignorable.

 Moreover Third party facility may not be
available especially in underdeveloped
countries. One solution which we have used in
this algorithm is to timestamp using a external
file. The program right at the beginning searches
for a particular file, if it finds it, It takes the
system time & Date, encrypts it and compare
with the encrypted time stored in that file. It
stored the older time there, even a history of
execution can be maintained.

4. RESULTS

4.1 Data Rate

 The algorithm has been tested with
different programs for programs having
different size. The proposed scheme uses
encryption algorithm there are several inbuilt
algorithms like RSA, Blowfish etc. however we
selected MD-5 checksum for calculation of
watermark value. We give input text of any size
resulting in same size output from these
encryption algorithms i.e. 128 bits or 16 bytes.

4.2 Embedding Overhead on Execution Time
of Program:

 To find the effect of watermark on source
code, the watermark was added to the program.
The time required to completely run the program
with and without watermarking was calculated a
number of times with same code. The table and
graph give us actual picture of before and after
the application of watermark. However results
show that there was very little impact of the
watermark on the program execution speed.
This shows that the technique used in this paper
adds a high quality watermark to the source
code. However if the source code has huge
collection of many constants too many
iterations/repetitions then performance of
watermarked program might degrade.

Table 1: Impact on Execution Time

:

LGU Research Jounral for Computer Sciences & IT 2(4) LGURJCSIT 4

4.4 Stealth

 When we measure efficiency of this
technique , Stealth is a key deciding factor. This
theory of software watermarking says that the
watermark should be very carefully embedded
in program so that it is not visible and it does not
change the end product of our source code at all.
The watermark calculated by our technique can
not be removed by the attacker as it is not stored
anywhere in the program and is calculated at
runtime. The kind of watermark used in the
program makes it hard to locate the watermark
within the program.

5. CONCLUSION

 The algorithm represented here is a very
safe way to watermark the code, it is resilient to
all types of attacks. In addition watermark can be
easily extracted from the source code. Use of
algorithm like MD-5 ensure that every program
has a unique watermark. Another added benefit
is to concatenate user information along with the
program constants. So this algorithm is resistant
to various forms of transformation attacks.

6. FUTURE DIRECTIONS

 Many improvements can be made to this
approach. One such initiative would be to store
watermark and time stamping information
somewhere in the operating system However,
this makes this technique operating system
structure dependent. Another improvement
would be to include all type of constant (String
constants, Character Constants, floating point
constants etc.) in addition to numeric constants.

References

[1] D.Seetha Mahalaxmi, D. S. (n.d.).
Arboit, G. (2002). A method for watermarking
java programs via opaque predicates. The Fifth
International Conference on Electronic
Commerce Research (ICECR-5).

[2] Becker, G. T., Burleson, W., Paar, C., &
Horst, G. (2011). Side-Channel Watermarks for
Embedded Software, 478–481.

[3] C. Collberg, E.Carter, S.Derbray, A.
huntwork. (2013). Dynamic Path-Based
Software Watermarking. Journal of Chemical
Information and Modeling, 53(9), 1689–1699.
https://doi.org/10.1017/CBO9781107415324.0
04

[4] Chroni, M., & Nikolopoulos, S. D.
(2012). An Embedding Graph-based Model for
SoftwareWatermarking.
https://doi.org/10.1109/IIH-MSP.2012.69

[5] C o h e n , A . , H o l m g r e n , J . , &
Vaikuntanathan, V. (2015). Publicly Verifiable
Software Watermarking. Cryptology ePrint
Archive, Report 201, 1–38. Retrieved from
https://eprint.iacr.org/2015/373.pdf

[6] Col lberg , C. S . , Socie ty, I . C. ,
Thomborson, C., & Member, S. (2002).
Obfuscation Tools for Software Protection.

[7] Cousot, P., & Cousot, R. (2004). An
Abstract Interpretation-Based Framework for
Software Watermarking. Principles of
Programming Languages, 31, 173–185.
https://doi.org/10.1145/982962.964016

[8] Dalla Preda, M., & Pasqua, M. (2017).
Software Watermarking: A Semantics-based
Approach. Electronic Notes in Theoretical
Computer Science, 331, 71–85.
https://doi.org/10.1016/j.entcs.2017.02.005

[9] Hämmerle-Uhl, J., Raab, K., & Uhl, A.
(2011). Robust watermarking in iris recognition:
application scenarios and impact on recognition
p e r f o r m a n c e . A C M S I G A P P A p p l i e d
C o m p u t i n g R e v i e w , 1 1 (3) , 6 – 1 8 .
https://doi.org/10.1145/2034594.2034595

[10] “Fourth Annual Global Software Piracy
Study”, w3.bsa.org/globalstudy//upload/2007-

:

LGU Research Jounral for Computer Sciences & IT 2(4) LGURJCSIT 5

Piracy-study-Findings.pdf, – May 2007.

[11] Ma, H., Zhang, H., Lu, K., Ma, X., Jia,
C., & Gao, D. (2015). Software Watermarking
using Return-Oriented Programming. Asian
ACM Symposium on Information, Computer
and Communications Security, 369–380.
https://doi.org/10.1145/2714576.2714582

[12] Nagra, J., Thomborson, C., & Collberg,
C. (2002). A functional taxonomy for software
watermarking. Aust. Comput. Sci. Commun.,
24(1), 177–186.
https://doi.org/10.1145/563857.563822

[13] Singh, S., Singh, H. V., & Mohan, A.
(2015). Secure and Robust Watermarking Using
Wavelet Transform and Student t-distribution.
Procedia Computer Science, 70, 442–447.
https://doi.org/10.1016/j.procs.2015.10.071

[14] T a n g , Z . (2 0 1 1) . A T a m p e r -
proofSoftware Watermark using Code
Encryption, (61070176), 12 | P a g e
156–160.

[15] Tyagi, S., Singh, H. V., Agarwal, R., &
Gangwar, S. K. (2016). Digital watermarking
techniques for security applications. 2016
International Conference on Emerging Trends in
Electrical Electronics & Sustainable Energy
Systems (ICETEESES), 379–382.
https://doi.org/10.1109/ICETEESES.2016.758
1413

[16] Venkatesan, R., Vazirani, V., & Sinha, S.
(2001). A graph theoretic approach to software
watermarking. Information Hiding, 157–168.
Retrieved from
http://link.springer.com/chapter/10.1007/3-
540-45496-9_12

[17] Zhang, X., He, F., & Zuo, W. (2008).
Hash Function Based Software Watermarking.
2008 Advanced Software Engineering and Its
Applications, (20070533), 95–98.
https://doi.org/10.1109/ASEA.2008.57

[18] Danicic, J. H. (2011). A Survey of Static
SoftwareWatermarking. IEEE.
[19] Lucila Maria Souza Bento, D. B. (2013).
Towards a provably resilient scheme for.

[20] Sukriti Bhattacharya, A. C. (2010). Zero-
knowledge SoftwareWatermarking. IEEE.

[21] ACT Accountancy Policy - Software
http://www.treasury.act.gov.au/accounting/dow
nload/AP_05.pdf, – February 2002.

[22] Christian S. Collberg and Clark
Thomborson “Watermarking, Tamper-Proofing
and Objuscation- Tool for Software Protection”.
In IEEE Transaction on Software Engineering
Vol 28 in August 2002.

[23] William Zhu, Clark Thomborson, and
Fei-Yue Wang “A Survey of Software
Watermarking”. In Springer-VerlagBerlin ISI
2005, LNCE 3495, pp. 454 - 458 2005.

[24] Monden, A., Iida, H., Matsumoto, K.,
Torii, K., and Inoue, K. 2000. A Practical
Method for Watermarking Java Programs. In
24th International Computer Software and
Applications Conference (October 25 - 28,
2000). COMPSAC. IEEE Computer Society,
Washington, DC, 191-197. 13 | P a g e

[25] D. Curran,N. J. Hurley,M. ´O Cinn´eide,
2001, Securing Java through Software
Watermarking

[26] Genevi`eve Arboit, “A Method for
Watermarking Java Programs via Opaque
Predicates”

[27] Hash Func t ion Based Sof tware
Watermarking, Xuesong Zhang, Fengling He,
WanliZuo, College of Computer Science and
Technology, JilinUniversity, Changchun,
130012, P.R.China xs_zhang@126.com,
Hefl@jlu.edu.cn, wanli@jlu.edu.cn

LGU Research Jounral for Computer Sciences & IT 2(4) LGURJCSIT 6

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6

