
LGURJCSIT

Volume No. 1, Issue No. 1 (Jan-March 2017) pp. 22-36

Algorithm and Technique for Animation
Syeda Binish Zahra

1

Abstract: - Fluids simulation particularly water courses such as rivers are an important element

to achieve realistic simulations in real-time applications like video games. This work presents a

new approach called SiViFlow that simulates watercourses in real-time. The algorithm is flexible

enough to be used in any type of environment and allows a river to be dynamically generated

given any riverbed. The component that manages the flow is responsible for the water animation

and allows the use of various techniques to simulate visual features. As all the information is

dynamically generated, SiViFlow also reacts to dynamic objects that come in contact with the

river, properly adjusting the course of the flow. This work helps accelerate and improve the

methods of creating realistic rivers so that they can be used in video games.

—————————— ——————————

1. INTRODUCITON
SiViFlow is composed by two main elements: The Simulation Engine and the Visualization

Engine. The Simulation Engine is where all the calculations related with physics of the river take

place. This engine is divided in three main modules: The River Surface Generator, the River

Particle Generator and the Flow Texture Mapper. From the programming point of view, the

River Particle Generator and the Flow Texture Mapper make up a larger block called the River

Particle Processor which will be described later in detail. The Visualization Engine is responsible

for receiving the simulation data from the Simulation Engine and to output a graphical

representation. This engine is divided in two main modules: The Flow Renderer and the

Reflection. The description of VisiFlow is depicted in Figure 1 with all of its elements.

In the River Surface Generator, we start by generating the river surface mesh that will be used to

apply the material and where the water animation algorithm will be rendered. At this stage, we

have to calculate several features that will be needed in later stages such as river width, which

vertices define the shore, the flow in each vertex, amongst others. The next stages are River

Particle Generator and the filling of the flow and auxiliary textures in the Flow Texture Mapper.

These two stages make up the application loop that runs in the CPU. In this loop we generate

randomly distributed points that cover as much as possible of our domain in screen space and

from those points we create a concept called river particles. These textures are lled with river

particles so we can send their features to the GPU, which in turn allows us to update these river

particles every frame. In the end of SiViFlow we have the rendering of the material which uses

the textures that were sent from the CPU. At this stage we use the Visualization Engine to render

all visual and physical effects such as flow and reflections.

Syeda Binish Zahra

Department of Computer Science,
Lahore Garrison University Lahore.
binishzahra@lgu.edu.pk

LGURJCSIT

Volume No. 1, Issue No. 1 (Jan-March 2017) pp. 22-36

2. RIVER SURFACE GENERATOR

The first stage of all is the River Surface Generator. At this stage a river surface mesh needs to

be created, which can either be done using an external modeling application or generated in real-

time. Both options are viable and don't interfere with the next phase as long as we have access to

the river mesh vertices. In both cases all we require is a mesh which will describe the river

surface. The meshes we used assumed that the first vertex was one of the corner vertices of the

river surface mesh.

At the beginning we don't know how many vertices go from one shore to the other in one single

section of the river, so we start by calculating the river width and fag which vertices can be

considered shore vertices. A river section is a set of vertices that are placed between two shore

vertices and form a line that is perpendicular with both river shores. In order to find out which

Figure 1: CPU Verses GPU

LGURJCSIT

Volume No. 1, Issue No. 1 (Jan-March 2017) pp. 22-36

vertices are shore vertices, we start by identifying the first vertex from the river mesh and

calculate differences in distance between this vertex and all the other vertices that follow. When

we reach the end of the river section we're processing, the difference stops increasing and it

means we've reached the vertex which is on the same shore as our first vertex (the shore vertex

right next to the one we're processing). This means the last vertex we processed belongs to the

opposite shore. This idea is very similar to the one we used in Algorithm 1 to calculate the river

width and works in a similar way.

We didn't consider different widths across the river sections as they don't affect any of the other

modules of the algorithm and it only means that if one wants to introduce them, all that's

required is to create a more sophisticated way to calculate the river width for each section in

order to find out the amount of vertices of the mesh that go from one shore to the other. These

ways later stage of the algorithm will know for each section what the correct width of the river

is.

Algorithm 1 sums up all the steps taken during this pre-processing phase. The only input

information required is the river mesh vertices. The algorithm starts looping from the first vertex

which we know it's a shore vertex as it's located in a corner of the river mesh. We compare the

width between this first vertex and the following vertices, making sure to always store a new

width if the value is larger than what was previously stored. When the section of the river ends

and we're processing the shore vertex which is on the same shore and right next to the first one,

the distance between both vertices will be smaller than the full width of the river. We store the

current width value and the amount of vertices that go from one shore to the other. As we've

mentioned before, if different river widths were a requirement, all that would be needed to do

was to create a more sophisticated algorithm that would be able to know when a certain river

section had ended and use that information to store for each river section its width. At this stage

we know the river width at each section as looped through all the river sections that compose the

river surface. We also know the amount of vertices that go from one shore to another, allowing

us to flag the vertices that belong to the river shore. These vertices need to be handled differently

because they'll be used for calculating the flow. Now for each vertex in the river mesh,

we store its distances to each of the river shore vertices at their river section. This

information will later be used to calculate the flow velocity. Lastly we calculate the river flow at

each river section, storing the information in every vertex. Both the flow velocity and flow

generation will be described in more detail in the following sections.

2.1 Flow Generation

At this stage all shore vertices are identified and we need to generate the flow vectors that later

will be passed to the river material. In order to calculate the flow, we pick two shore vertices in

the same river section, and then we calculate their midpoint and translate in the positive up axis,

as shown in Figure 3 where the up vector used is aligned with the y axis. With these three points

we can create a vector that is perpendicular with the river section being processed. As the flow is

constant for each river section and is parallel to the margins, the normal vector of the plane

describes correctly the flow direction of that section as shown in Figure 3. As the plane

generated has two possible normal vectors, the normal generation procedure must take into

account this direction and return the correct normal vector. In the end we have a flow field that is

LGURJCSIT

Volume No. 1, Issue No. 1 (Jan-March 2017) pp. 22-36

as detailed as the mesh of the river surface and where each vertex contains its own flow vector

stored as shown in Figure 4. One advantage of generating the flow this way is related with its

edibility to dynamically recalculate the flow when an object interacts with the river. In case a

dynamic object alters the course of the flow, the boundaries of the object will be used to

recalculate the new flow and will substitute the shore vertices that were previously used. As the

values are tied to the river mesh, as long as we know the collision vertices, SiViFlow is able to

recomputed the flow of the river and immediately reflect the changes.

Algorithm 1: River surface generation algorithm

Input: Set of control vertices that define the river surface mesh1

RiverSurfaceGeneration(ControlVerticesSet)

 vertices ControlV erticesSet

 forall the vertices do

 if vertex is a shore vertex then

 Flag it

 RiverDistance (vertices) // For each vertex store river width

 DistanceToMargins (vertices) // For each vertex store distance to each margin

 CalculateFlow (vertices) // For each vertex calculate and store flow

 RiverDistance(Vertices)

 iterator 0 // iterator

 maxV ertices V ertices:length // length of the Vertices vector

 dist 0 // value to hold the maximum distance obtained

 while iterator < maxVertices do

 distCmp = distance(Vertices [0], Vertices[iterator])

 if distCmp < dist then

 dist = distCmp

iterator = iterator + 1

DistanceToMargins (Vertices)

 iterator 0 // iterator

 maxV ertices V ertices:length // length of the Vertices vector

while iterator < maxVertices do

if Vertices[iterator] not a shore vertex then

Calculate and store distance to left shore

Calculate and store distance to right shore

iterator = iterator + 1

CalculateFlow(ShoreVertices)

forall the Pair of shore vertices do

midpoint CalculateMidpoint(lShoreV ertex; rShoreV ertex)

flowV ector CalculateP laneNormal(lShoreV ertex; rShoreV ertex; midpoint)

forall the vertices in this river section do

 Store flowVector

2.2 Flow Velocity

2.2.1. Stream Function

In order to calculate the interpolated value of the stream function (), we use an

interpolation scheme suggested by [2][3]. At this stage we have all the information required to

LGURJCSIT

Volume No. 1, Issue No. 1 (Jan-March 2017) pp. 22-36

calculate the following equations. We run for each vertex all the Equations 2.1 2.2 2.3 and store

their values.

With P being the position of each river surface vertex, di the distance from point P to the each

ofthe boundaries and the weighting factor is ω:

Where s is the radius used to search for boundaries, p is a positive real number and f is defined

as:

As we didn't change the interpolated stream function method created by [4], we must guarantee

that at least two boundaries are inside every vertex search radius. This guarantee is very

important as the initial premise that the flow rate between any two points in a flow field is equal

to the numerical difference in boundary values of that channel would be false in case only one

boundary was found, invalidating this scheme and returning undefined values.

2.2.2. River Particle Processor

In this section we'll introduce the concept of river particles. These river particles are used as way

to sample information from our domain and retrieve its values. As we want to be able to handle

large watercourses, it's not feasible to rely on loading all the river surface information to VRAM

every frame. In our case we're interested in getting only the visible river mesh values so we can

retrieve and send them to be rendered on the GPU. One of the main features of the river particles

is that they're created in screen space in order to guarantee a uniform distribution of the particles

over the visible domain at each frame. The reason for generating these points in screen space is

that as each particle contains a defined radius to make sure no two particles are too close to each

other, analyzing this problem in screen space guarantees that these radius disks maintain a

uniform radius, something that would not happen if they were projected in world space. Another

advantage of this scheme is that we only process visible information as we eliminate all non-

visible particles which minimizes the waste of resources. There are some similar approaches to

ours such as texture sprites and wave sprites which present an analogous solution adapted to the

2.1

2.3

2.2

LGURJCSIT

Volume No. 1, Issue No. 1 (Jan-March 2017) pp. 22-36

context of those works. The following sections present how we generate river particles, how we

store their information and how we prepare these particles to be efficiently sent to the GPU

2.2.3. RIVER PARTICLE GENERATOR

We start by generating several randomly distributed points, generating a Poisson-disk pattern

using a modified boundary sampling algorithm.

In the end of running this algorithm, we end up with a set of points that we'll convert to river

particles. In order to generate a 3D world position for each of these points (after being generated

we only have their 2D coordinates) we proceed. A ray is cast for each particle and we store the

collision point between the ray and the 3D world. Using this method, we can compute at each

frame, for each point, its 3D world position. Besides calculating the world position, we also

calculate other features such as global identifiers, velocity and flow.

Unlike other algorithms, we don't advent our particles during our CPU update loop. The reason

for this is due to the fact that our particles aren't concerned with the fluid's motion, they're simply

a way to sample the necessary information in screen space and send it from the CPU to the GPU.

An inherent advantage of not having to advent particles during the update loop is that it allows us

to load the work from the CPU to the GPU.

All of this information will allow us to find out in the next stage; what's the nearest flow data to

load into the flow texture. We just search inside a radius r for the closest vertex and assign that

flow information to the river particle. This step differs from as they first render the river surface

to a buffer inside the GPU, find out which particles are inside the river surface and then query

each individual pixel to find out which particle sits inside. Our approach despite being a bit more

computationally intensive doesn't have the inherent problems that might arise from relying in

performing constant transfers between the CPU and GPU.

3.2 Flow Texture Mapper

In order to feed the GPU with the information required to render the flow, we used a flow texture

and an auxiliary texture. Similar ideas have been explored by other authors to achieve similar

objectives. We store all the information we need inside each color channel and read it back when

it reaches the GPU. This approach of using an auxiliary texture to carry data into the GPU allows

us to update every frame the contents of these two textures, refreshing the particles and their

respective values. One of the disadvantages is how their flow texture size must be as close as

possible to the
Figure 2: Flow vectors

LGURJCSIT

Volume No. 1, Issue No. 1 (Jan-March 2017) pp. 22-36

application resolution being used and with that the radius of the Poisson-disk needs be larger too.

The increment in both these elements prevents their approach from being executed in high screen

resolutions that are so common today. In our case, our flow texture and Poisson-disk may be

much smaller than the screen size as we don't need a description of the domain. The reason

behind this is due to the fact that both our river flow and speed don't change dramatically from

one vertex to the next, meaning that if we want we can keep a much smaller copy of the flow

texture when compared with the screen size.

Figure 3: Texture at screen

These textures will store the river particles previously generated using each of the color channels

of the texture. In the flow texture we'll store for every entry data such as the global identifier of

the river particle and its respective flow. The identifier in this texture will be used as a way to

look-up the remaining data from the auxiliary texture. For each entry of the flow texture, we

store the flow information that covers that pixel. The auxiliary texture will have other parameters

such as velocity, river bed slope and river depth. In Figure 3 we can see how each river particle

is stored in a smaller sized version of the flow texture and how the global identifier for each

particle will be used to address the auxiliary texture.

In Algorithm 2 we can see that the whole update process is performed at every frame update.

First we start by having to delete the particles that are not visible as they are wasting resources

and won't a

etc. the final result. Then we need to delete the particles that are too close to one another

LGURJCSIT

Volume No. 1, Issue No. 1 (Jan-March 2017) pp. 22-36

violating the initial

Poisson-disk requirement that all particles must be no closer to each other more than a specified

radius distances. In order to keep a reasonable number of particles in screen, after deleting all the

unnecessary particles we generate new ones using the previously mentioned algorithm. After

this, for all new particles, we have to convert them to river particles by calculating all their

features. To end the algorithm, we fill the flow and auxiliary textures with the current data from

that frame and get them ready to be sent to the GPU.

3. VISUALIZATION ENGINE

The Visualization Engine is the last stage of SiViFlow and consists of mapping a material to the

river surface mesh. This stage is divided in two main elements: The Flow Renderer and the

Reflection algorithm. We start by accessing the flow texture and consult the river particle

identifier of this pixel. In order to optimize the texture look-up, the flow information is also

saved during this operation. Now we can use the river particle identifier to look-up the rest of the

parameters contained inside the auxiliary texture.

We use the flow information to generate a new normal vector using the Tiled Directional Flow

algorithm and use this new normal to compute the scene's reflection. In the end all the elements

are blended together. All the steps of the algorithm are summed up in Algorithm 3.

4. FLOW RENDERER

The flow algorithm used is based in the approach proposed called "Tiled Directional Flow". Our

approach uses a similar concept to render the flow. One of the main differences is that all the

flow information being fed to the algorithm isn't based on a fixed flow map but comes from our

flow and auxiliary textures. This allows us to work with a much smaller amount of information

at each render cycle because our flow texture only contains information that's visible during that

frame. The fact that our flow texture is updated every frame, means that we can change the flow

if any dynamic object changes river flow.

4.1 Tiling of the water

The way the Tiled Directional Flow works is by dividing a river channel in tiles, similar to a

chess board. We show this division where we painted some tiles with black color in order to

make it easier to visualize what happens. Each tile is independent from its peers and it's

composed by several normal maps. This tiling allows this algorithm to have several normal maps

combined per region, that when seen as a whole don't resemble the usual texture scrolling seen in

LGURJCSIT

Volume No. 1, Issue No. 1 (Jan-March 2017) pp. 22-36

most video games implementation. This visual advantage combined with an adaptive flow

system as ours, allow the river to behave in a realistic way and react to any interactions.

4.2 Normal maps composition

Normal mapping is a technique which modifies the per-pixel shading routine of a mesh in

order to fake the lighting of bumps and dents [6][10]. Usually a normal map is created from a

highly detailed mesh and used to fake details in a simplified mesh with much less polygons. In

order to get a more convincing look, we used for each tile four normal maps that are combined

and blended together. First the regular normal map is loaded for the tile being processed. After

that we sample a normal map with half a tile shift in the x direction and we rotate it in order to

have independent features from the previous normal map. These two tiles are blended together

using a blending factor. The next two normal maps follow the same idea, the first one is sampled

with a shift in the y direction and the second is shifted in the x and y direction. Both these normal

maps are rotated and combined together using the same blending factor. To get the final normal

value, both normal maps that were combined using the blending factor are blended once more.

To conclude this final blending step of normal maps a scaling operation has to be performed.

This scaling operation avoids the problem of having a resulting normal closer to the actual

average normal, which is common when several normal vectors are added together.

4.3 Reflection

In order to simulate dynamic reflections of objects on our river surface we used a method

commonly called planar reflections. This approach has been widely used since the

introduction of the programmable pipelines because of its ease of use and how inexpensive it is

in terms of resources. This technique is based on the use of a texture called a reflection map,

which is an inverted version of what it's visible above the water level and that we want to reflect.

To obtain a reflection map, we start by defining a clipping plan, which has to be about the same

height as the river surface. This clipping plane will be useful to cut all the geometry below the

river surface that we're not interested in having rendered. If we didn't clip the contents below the

river surface, we would reflect also the contents of the river which would break all illusion of

reflection. After that we save an inverted copy of this clipped scene to a texture.

5. CONCLUSION

This Document presented a new flow visualization algorithm called SiViFlow and explained

each of its components. We start by generating a river surface mesh and calculate several

attributes that will be useful for the next stages of the algorithm. These attributes include river

width, width of each vertex to both margins and the flow of each vertex. We start the update loop

of the algorithm where we first update the state of our river particles by creating, deleting and

updating river particles and then we fill the flow and auxiliary textures with data. These textures

are sent to the GPU where it reads them inside our Visualization Engine and outputs the

appearance of a river flowing.

LGURJCSIT

Volume No. 1, Issue No. 1 (Jan-March 2017) pp. 22-36

6. REFERENCES

[1]. Tomas Akenine-MUoller, Eric Haines, and Natty Ho

man. Real-Time Rendering 3rd Edition, chapter Reections, pages 386{391. A. K. Peters, Ltd.,

Natick, MA, USA, 2008.

[2]. Robert Bridson. Fast poisson disk sampling in arbitrary dimensions. In ACM SIGGRAPH

2007 sketches, SIGGRAPH '07, New York, USA, 2007. ACM.

[3]. Robert Bridson, Ronald Fedkiw, and Matthias Muller-Fischer. Fluid simulation: Siggraph

2006 course notes. In ACM SIGGRAPH 2006 Courses, SIGGRAPH '06, pages 1{87, New York,

USA, 2006. ACM.

[4]. Yuanzhang Chang, Kai Bao, Youquan Liu, Jian Zhu, and Enhua Wu. Particle importance

based uid simulation. In Proceedings of the 2009 Sixth International Conference on Computer

Graphics, Imaging and Visualization, CGIV '09, pages 38{43, Washington, DC, USA, 2009.

IEEE Computer Society.

[5]. Nuttapong Chentanez and Matthias Muller. Real-time simulation of large bodies of water

with small scale details. In Proceedings of the 2010 ACM SIGGRAPH/Euro graphics

Symposium on Computer Animation, SCA '10, pages 197{206, Aire-la-Ville, Switzerland, 2010.

Euro graphics Association.

[6]. Jonathan Cohen, Marc Olano, and Dinesh Manocha. Appearance-preserving implication. In

Proceedings of the 25th annual conference on Computer graphics and interactive techniques,

SIGGRAPH '98, pages 115{122, New York, USA, 1998. ACM.

[7]. Jonathan M. Cohen, Sarah Tariq, and Simon Green. Interactive uid-particle simulation using

translating eulerian grids. In SI3D, pages 15{22. ACM, 2010.

[8]. Mathieu Desbrun and Marie-Paule Gascuel. Smoothed particles: a new paradigm for

animating highly deformable bodies. In Proceedings of the Euro graphics workshop on

Computer animation and simulation '96, pages 61{76, New York, USA, 1996. Springer-Verlag

New York, Inc.

[9]. Daniel Dunbar and Greg Humphreys. A spatial data structure for fast poisson-disk sample

generation. ACM Transactions on Graphics, 25(3):503{508, 2006.

[10]. Wolfgang Engel. ShaderX Shader Programming Tips and Tricks With DirectX 9, chapter

Rippling Reective and Refractive Water, pages 357{362. Wordware Publishing, 2003

