
Propagation of cracks and dislocations in 2D quasicrystals  
 
Enrico Radi1, Paolo Maria Mariano2 
 
1DiSMI, University of Modena and Reggio Emilia, Italy 
E-mail: enrico.radi@unimore.it 
2DICeA, University of Florence, Italy 
E-mail: paolo.mariano@unifi.it 
 
Keywords: Dynamic Fracture, Dislocation, Quasicrystals, Stroh formalism. 
 
 
ABSTRACT. A closed-form solution is provided for the stress, strain and velocity fields due to a 
planar crack steadily propagating in an elastic quasicrystal with fivefold symmetry at speed lower 
than the bulk wave-speeds. The cases of a semi-infinite rectilinear crack and a Griffith crack which 
propagates maintaining a constant length, according to the Yoffe model, are considered. Crack 
face loading and remote loading conditions are taken into consideration. The dynamic theory of 
quasicrystal with inertia forces, but neglecting dissipative phonon activity, is assumed to govern 
the motion of the medium. The phonon and phason stress fields turn out to be square-root singular 
at crack tip. The energy release rate is positive for subsonic and subRayleigh crack propagation. 

1 INTRODUCTION 
 Quasicrystals (QC), namely a particular class of metal alloys displaying intrinsic structure 
defects, attracted wide interests in the past two decades for their promising applications in many 
engineering fields. Their atomic structure displays symmetries forbidden by the standard 
classification of crystallographic groups, which are not compatible with a periodic arrangement of 
atoms in a cell. They indeed possess a quasi periodic structure, resulting from a continuous atomic 
rearrangement of the crystalline phase. In this process, the non commensurate phase, whose 
symmetry differs from the prevailing one, is continuously destroyed and rearranged in agreement 
with the prevailing atomic structure. From the point of view of mechanical modeling, the local 
rearrangement of atoms in a cell can be described by a phason activity, whereas the macroscopic 
deformation of the lattice is modeled by the phonon field as in classical elasticity. Similar 
structures are frequently found in aluminium alloys (Al-Cu-Fe, etc).  
 Dislocations play a key role as regards the mechanical properties of crystalline materials, since 
they influence the ductility and strength as well as the work hardening behavior. Similarly to 
crystals, dislocations in QCs are important for their mechanical properties. However, dislocations 
in QCs are special in that they are accompanied by both phonon and phason strain fields. Based on 
the existence of this phason strain, the characteristic features of dislocations in QC are somewhat 
different from those in crystals. In QC materials, the high-energy phason faults make the 
dislocations immobile in the low temperature range where atomic diffusion is not allowed, leading 
to brittle fracture occurring by an intergranular process [1,2]. QCs behave, consequently, like any 
intermetallic compound at room temperature and intermediate temperatures, being very brittle. 
However, at elevated temperatures QC materials become plastic. Dislocation motion is proposed 
to be one important mechanism for the high-temperature plastic deformation of Al–Cu–Fe QCs 
 In the present work, we investigate steady crack and dislocation propagation in an elastic QC 
with fivefold symmetry within the infinitesimal deformation setting, occurring at speed lower than 
the bulk wave velocity.  A closed form solution for interactions measures, deformation, and rate 
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fields is provided under general loading conditions. Viscous-like dissipation within material 
elements is neglected since the analysis is developed at a time smaller than the characteristic 
activation time. Stress intensity factor and energy release rate are evaluated for subsonic sub-
Rayleigh crack propagation. One of the aim of the present paper is to explore the effects of 
phason-phonon coupling. The indeterminacy of the coupling coefficient between the gross 
deformation and the atomic rearrangements is accounted for parametrically. The method adopted 
for determining the explicit expressions of the fields investigated is an evolution of a previous 
approach employed in [3] for anisotropic elasticity and is based on the Stroh formalism [4]. For the 
considered isotropic relation between phonon stress and strain, the eigenvalue problem is 
degenerate, namely the fundamental matrix admits two double eigenvalues associated with a single 
eigenvector [5]. 

2 THE MODEL 
 The problem of a crack or dislocation propagating at constant speed v along a rectilinear path 
in an infinite medium is considered. A Cartesian coordinate system (0, x, y, z) fixed in time and 
another (0, x1, x2, x3) moving with the defect in the x1 direction, are considered. During steady-state 
propagation an arbitrary scalar or vector field v obeys the condition v(x1, x2) = v(x − vt, y), so that 
v&  = − v v,1. By introducing the following four-dimensional vectors 
 
 t1 = (σ11, σ21, S11, S21), t2 = (σ12, σ22, S12, S22),  u = (u1, u2, w1, w2),  (1) 
 
which collect the phonon and phason stress and displacement components, the constitutive 
relations for icosahedral quasicrystals introduced in [6, 7, 8] may be written in the matrix form 
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and the dynamic equilibrium equations write 
 
 t1,1 + t2,2 = ρv2 D u,11 + cv (I  − D) u,1, (4) 
 
where D = diag(1, 1, 0, 0) and a subscript comma denotes partial differentiation with respect to 
spatial coordinates. The last term in (4) is due to the phason dissipation and may be neglected for 
sufficiently rapid propagation. Introduction of (2) in (4) yields the equations of motion in terms of 
the phonon and phason displacements, namely 
 
 Q u,11 + (B + BT) u,12 + C u,22 = 0, (5) 
 
where the matrix Q = A − ρv2 D is non singular and thus Eqn (5) may be written in the form 
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2.1 Degenerate eigenvalue problem 
 Let us find the spectrum and corresponding eigenvectors of the 8×8 matrix of coefficients in 
equation (6), namely the values of ωk, e k and f k satisfying the following eigenvalue problem 
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 The eigenvalues ωk are the roots of the characteristic equation 
 
 det[C − ωk (B + BT) + ωk

 2 Q] = 0,  (8) 
 
namely 
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as well as their corresponding conjugate pairs with negative imaginary part. In (9) we introduced 
the speeds of elastic wave propagation in the bulk material along the x1 direction, namely  
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 For subsonic propagation the speed v is smaller than the shear wave speed v2.  
 Note that the algebraic multiplicity of the root ω3 is two, whereas the eigenvalues ω1 and ω2 are 
distinct for v > 0. The eigenvectors (ek, f k) corresponding to each eigenvalue ωk , for k = 1, 2, 3, 
are given by the non trivial solution of the system (7). Since the eigenvalue problem (7) is 
degenerate, then there exists only one eigenvector for the double eigenvalue ω3. Therefore, a 
generalized eigenvector (e4, f4), linearly independent of the other three, can be defined for the 
repeated eigenvalue ω3 from the solution of the following linear system [4, 5]  
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 Now, let us define the 4×4 matrices E = [e1, e2, e3, e4] and F = [f 1, f 2, f 3, f 4] such that their 
columns are the eigenvectors ek and f k, respectively, for k = 1, 2, 3, 4. Then, equations (7), for k = 
1, 2, 3, and (11) can be written in the compact form 
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where W and N are the following semisimple and nilpotent matrices  
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respectively. Let us define the vector g(x1, x2) such that 
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then, the introduction of (14) into the differential system (6), by using the relation (12) gives 
 
 g,1 + (W + N) g,2 = 0,  (15) 
 
and its complex conjugate relation. The introduction of the complex variables 

 zk = x1 + i x2
21 km− , for k = 1, 2, 3, 4, (16) 

with m3 = m4 = 0, so that z3 = z4 = x1 + i x2 = z, allows writing equation (15) as 
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 Looking for an iterative solution, starting with g = h(z), one may find 

 g( z , h(z)) = h(z) + 
2
i z  N h′(z), (18) 

where the components hk(zk), for k = 1,2,3,4, of vector h(z) are analytic functions of zk. The 
corresponding displacement and stress fields, collected in the vectors u, t1 and t2, in term of the 
unknown vector g = g( z , h(z)) follow from (14) and the constitutive relations (2) as 
 
 u,1 = 2 Re[E g],  u,2 = 2 Re[F g],  t1 = 2 Re[G g],  t2 = 2 Re[H g],  (19) 
 
where 
 
 G = A E + B F, H = BT E + C F.  (20) 
 
 Therefore, the stress and displacement distribution will be known once the vector h(z) of 
analytic functions has been determined for the boundary conditions of the considered problem. 

3    SEMI-INFINITE CRACK LOADED ON THE CRACK SURFACES 

 A semi-infinite rectilinear crack steadily propagating in a quasi-crystal solid is considered. The 
Cartesian coordinate system (0, x1, x2, x3) is centered at the crack tip and moves with it. Crack 
surfaces are assumed to be loaded on a finite segment of length L with a uniform distribution of 
shear and normal phonon stresses, denoted with τ0 and σ0, respectively. Moreover, phonon and 
phason stress fields are assumed to vanish at infinity, so that the generalized stress vectors t1 and t2 
must vanish at infinity and, thus, also vectors g and h. 



 Continuity of the phonon and phason tractions along the x1 axis, continuity of the phonon and 
phason displacements along the positive x1 axis ahead of the crack tip and the considered loading 
conditions on the crack surfaces require 
 
 t2
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respectively, where q0 = (−τ0, −σ0, 0, 0). Conditions (21) allow to define an inhomogeneous 
Rieman-Hilbert problem for the analytic vector function g(z, h(z)), which admits the following 
solution vanishing at infinity [9]: 
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where 〈〈 kf 〉〉 = diag(f1, f2, f3, f4). Since N2 = 0, then from (22) one may obtain 
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 The introduction of (22) and (23) in (18) then yields 
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 The phonon and phason displacements, collected in the vector u introduced in (1)3, follow from 
direct integration of the vector u,1 in (19)1 with respect to x1, by using (24), namely 
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 The energy release rate G for a crack propagating in a QC can be obtained by generalizing the 
result found for linear elastic fracture mechanics displaying square root stress singularity [10]: 

 G = − 
2
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{ r
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lim t2(r)} ⋅ { r
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 By using (19)1, (19)4 and  (24), the energy release rate (26) becomes 

 G = 
π
L4  q0 ⋅ Re[i E H−1] q0.  (27) 

 Since the matrix i E H−1 is Hermitian, then its real part is a symmetric matrix and, thus, G turns 
out to be positive if Re[i E H−1] is positive defined. 
 



 4.1   Free crack surface 

 If the crack surfaces are traction free, then no specific load and length are present and the 
function h(z) must satisfy the homogeneous Hilbert problem defined by conditions (21) with q0 = 
0. This problem admits the following solution, which vanishes at infinity [9]: 
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where h0 is a real constant vector. According to (19)4 and (24), the generalized traction vector t2 

ahead of the crack tip, at x2 = 0, turns out to be t2 = (2 π x1)−1/2 h0, for x1 > 0. The stress ahead of 
the crack tip along the x1 axis can be written in term of the stress intensity factors for the phonon 
and phason stresses, collected in the vector k = (KII, KI, TII, TI), in the form t2 = (2 π x1)−1/2 k, and 
thus it follows that h0 = k. Since N2 = 0, then from (28) one obtains 
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 The introduction of (28) and (29) in (18) then yields 

 g( z , h(z)) = 
π22

1 [〈〈
kz

1
〉〉 + 

zz
x

2
2 N] H−1 k. (30) 

 The phonon and phason displacements, collected in the vector u, can be obtained by direct 
integration with respect to x1 of the vector u,1 in (19)1, namely 
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 Moreover,  from (26) by using (19)1, (19)4, (30) and (31) one obtains 

 G = 
2
1  k ⋅ Re[i E H−1] k.  (32) 

4    MOVING DISLOCATION 

 A steadily moving dislocation in a quasi-crystal solid is considered. The Cartesian coordinate 
system (0, x1, x2, x3) moves with it. A uniform jump in phonon and phason displacements is 
considered to occur along the negative x1 axis. Continuity of phonon and phason tractions is 
assumed to occur therein. Moreover, phonon and phason stress fields are assumed to vanish at 
infinity, so that the generalized stress vectors t1 and t2 must vanish at infinity and, thus, also 
vectors g and h. 
 Continuity of the phonon and phason tractions along the x1 axis, continuity of the phonon and 
phason displacements along the positive x1 axis ahead of the crack tip and the considered jump 
conditions along the negative x1 axis require 
 
 t2
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respectively, where b = (b1, b2, d1, d2) is the Burger vector collecting the gliding and climbing 
components of the dislocation, both for the phonon and phason fields. Conditions (33)1,2 and the 
derivative of (33)3 with respect to x1 allow to define an homogeneous Riemann-Hilbert problem 
for the analytic function g(z, h(z)), which admits the following solution vanishing at infinity [9]: 
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where the vector q can be obtained as a function of b by using (21)1,3. Since N2 = 0, then from (34) 
it follows that 
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 The introduction of (34) and (35) in (18) then yields 
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 The phonon and phason displacements, collected in the vector u introduced in (1)3, follow from 
direct integration of the vector u,1 in (19)1 with respect to x1, by using (36), namely 
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π
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 Finally, from (37) and (21)1,3 one may obtain the following relations between vectors b and q  

   b = 4 Re[i E q],  Re[i H q] = 0, (38) 

so that 

 q = 
4
1  H−1 {Re[i E H−1]}−1 b.  (39) 

5 RESULTS 
Results are here reported for the constitutive coefficients in the linear constitutive relations (3) 

given by λ = 75 GPa, μ = 65 GPa, k1 = 81 GPa, k2 = −42 GPa [8]. The coupling ratio χ = k3/ k1  
may vary from −1 to 1. However, the mean value of k3 is 0.1 k1, so that χ = 0.1.  
 The contours of phonon and phason stress components σ12, σ22,  S12  and S22 normalized by σ0, 
under Mode I loading conditions, for χ = 0.1 and for the crack tip speed corresponding to v = 0.8 
v2, are plotted in Fig. 1, where the coordinates are normalized by L. A significant phason stress 
field is induced near the crack tip as a consequence of the coupling effect provided by the 
constitutive equations, also for small values of the coupling parameter k3. The corresponding 
phonon and phason displacement fields are plotted in Fig. 2. The distributions of the phonon stress 
fields are similar to the classical elastodynamic crack-tip fields [11]. In particular, for small crack 
tip speeds, namely for v < 0.6 v2, the opening phonon stress σθθ attains its maximum ahead of the 
crack tip, whereas for larger crack tip speeds the maximum opening stress occurs at about θ = 60° 
thus causing possible crack branching and instability. The phason stress field also exhibits the 
square root singularity near the crack tip, it arises from the coupling relationship between the 
phonon and the phason fields. The magnitude of the phason stress and displacement fields is 



smaller than that of the corresponding phonon fields. However, their magnitude remarkably 
increases for large crack tip speeds, thus denoting a corresponding increase in the phason activity. 
 The non-dimensional energy release rate ratio G/G0, where G0 is the stationary energy release 
rate for v = 0, is plotted in Fig 3 as function of the ratio v/v2 for different values of the coupling 
parameter χ. Fig. 3 shows that the energy release rate G becomes unbounded as the crack tip speed 
approaches a limit value vR coinciding with the Rayleigh wave speed of the material. A further 
increase of the crack tip speed yields a negative energy release rate (G < 0), so that the crack 
propagation turns out to be energetically not favourable at speed larger than vR. In some cases, the 
energy release rate turns out to be positive at crack tip speed a bit larger than vR, e.g. for χ = 0.4 
and χ = 0.5. This behavior may denote an energetically favourable speed regime for speed larger 
than vR, thus implying that the crack tip speed may jump of as it approaches the limit value vR to a 
crack tip speed remarkably larger than vR. The limit speed vR varies with the coupling parameter χ 
according to the results plotted in Fig. 3. In particular, vR becomes very small as χ approaches the 
value 0.52 from below. For χ > 0.52 there exists no limit speed and crack propagation seems to be 
possible within the entire subsonic regime, up to the shear wave speed v2. Note that the shear wave 
speed in QCs tends to vanish as the parameter χ approaches the limit value 0.89.  
 

 
Figure 1:  Contours of normalized phonon and phason stress fields under Mode I loading 

condition, for χ = 0.1 and v = 0.8 v2. 
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Figure 2:  Phonon and phason displacement fields under Mode I loading condition, for χ = 0.1 and 

v = 0.8 v2. 
 
 The regimes corresponding to energetically non favourable crack propagation are filled in Fig. 
3. Note that as χ tends to vanish the limit crack tip speed coincides with the Rayleigh wave speed 
for linear elastic materials recovered for v ≈ 0.92 v2.  
 

 
 
Figure 3:  Energetically favourable (G > 0) and non-favourable (G < 0) regimes for crack 

propagation in QCs in the χ-v plane. 

6 CONCLUSIONS 
 The results obtained for crack propagation in QC show that phonon stress fields are similar to 
classical elastodynamics crack-tip fields. The phason stress field displays square root singularity as 
the standard Cauchy stress, but its magnitude is much smaller at least for small values of the 
coupling parameter k3.Phason activity increases with the parameter k3 coupling the gross scale 
with the lower scale events, and also with the crack tip speed. Therefore, a significant influence of 
the atomic rearrangements (phason activity) is observed on the macroscopic mechanical behavior, 
even if the phason fields are much smaller than the phonon fields. 
 Moreover, the proposed method can be successfully applied to investigate a number of 
problems related to the presence of defects in QCs and their interactions. 
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