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We describe an efficient theoretical criterion suitable for the evaluation of the tripartite entanglement of any
mixed three-boson or three-fermion state, based on the notion of the entanglement of particles for bipartite systems
of identical particles. Our approach allows one to quantify the accessible number of quantum correlations in the
systems without any violation of the local particle number superselection rule. A generalization of the tripartite
negativity is here applied to some correlated systems including the continuous-time quantum walks of identical
particles (for both bosons and fermions) and compared with other criteria recently proposed in the literature. Our
results show the dependence of the entanglement dynamics upon the quantum statistics: The bosonic bunching
results in a low number of quantum correlations while Fermi-Dirac statistics allows for higher values of the
entanglement.

DOI: 10.1103/PhysRevA.84.022303 PACS number(s): 03.67.Mn, 05.40.−a, 03.65.Ud

I. INTRODUCTION

The notion of the entanglement in bosonic or fermionic
systems has been the subject of many recent discussions
and controversies since it raises some conceptual questions
about the nature of the quantum correlations appearing in such
systems [1–5]. The main difficulty appearing in the definition
of a criterion apt to classify and quantify the number of
quantum correlations is due to the intrinsic indistinguishability
of the particles supposed to be entangled, which results in the
symmetrization or antisymmetrization of the wave function.
This stimulated great interest in the scientific community
and led to various proposals of entanglement criteria for
identical particles. In particular, a number of works present
in the literature have been focused on the analysis of bipartite
entanglement [1,3,4,6]. In the paper by Schliemann et al. [1],
the number of quantum correlations between two fermions is
evaluated by considering the fermionic analog of the Schmidt
rank, namely the Slater rank, which is given by the number of
Slater determinants needed to expand the entangled states.
The Schliemman criterion has been used to evaluate the
entanglement in a number of bipartite systems of physical
interest [7–9]; still it is discussed since it does not seem to
behave correctly under one-site (local) and two-site (nonlocal)
transformations [2]. In the approach developed by Zanardi
[3], the entanglement is evaluated in terms of the quantum
correlations between modes by mapping the Fock space of
the modes themselves into qubit states. It has been shown
that such a criterion overestimates the entanglement between
the two parties of the quantum system since it conflicts
with the local number particle superselection rule [4]. In
order not to violate the latter, Wiseman and Vaccaro [4] have
proposed an operational criterion for bipartite entanglement
of identical particles. They define as entanglement of particles
the maximum number of quantum correlations which can
be extracted by means of local operation on the modes
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from the two parties of the system and then set in standard
quantum registers (composed of distinguishable qubits) [4,6].
Only recently a coherent picture on the entanglement of
indistinguishable particles somehow including all the above
criteria has been presented in the literature [5].

Though the entanglement of multipartite systems suggests
more possibilities and phenomena with respect to the bipartite
case, so far it has not been widely investigated. Its quantifica-
tion would undoubtedly represent a key ingredient to under-
stand a number of physical phenomena involving correlated
many-particle systems such as quantum phase transitions, the
quantum Hall effect, and high-temperature superconductivity
[10–12]. Among the various physical systems of identical
particles, particular attention has been devoted to the analysis
of multipartite entanglement in a noninteracting fermion gas.
It has been shown that the multiparticle entanglement can
be built only out of two-fermion entanglement [13]. The
existence and the nature of the entanglement in systems of three
noninteracting fermions have also been analyzed by means of
different parametrized entanglement witnesses [14–16] that
enable the detection of two different classes of tripartite
entangled states, namely Greenberger-Horne-Zeilinger (GHZ)
and W states. By using the Zanardi approach [3], that is, by
mapping the Fock space of a system of fermions into the
isomorphic mode state, a geometric measure of entanglement
for N fermions with spin 1

2 has also been proposed [17]. A
general entanglement criterion applicable to both bosonic and
fermionic systems has recently been introduced though it is
defined only with reference to the measurement setup [5].

In this work, we discuss an entanglement criterion suitable
both for three-fermion and for three-boson mixed states. We
follow the basic concepts of the method proposed by Wiseman
and Vaccaro [4] for the analysis of bipartite entanglement
in systems of identical particles. Our criterion does not
violate the particle local number superselection rule. In fact
here the entanglement between three subsets, say A, B, C,
is given by the average, over the local particle number,
of the number of quantum correlations existing among the
standard quantum registers of three subsets each with a
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definite local particle number. Given the use of the concept
of standard quantum registers, the tripartite negativity (TPN),
recently introduced to quantify the tripartite entanglement of
nonidentical subsystems [18,19], is here taken as a measure of
the entanglement exhibited by three-boson or three-fermion
mixed states. In order to get a better understanding of the
criterion, first we compare and contrast it to other approaches,
evaluating the quantum correlations in many-particle systems.
Then we apply it to investigate the entanglement dynamics
in a simple model mimicking the continuous-time quantum
walks (QWs) [20] of three identical particles (bosons or
fermions) in a one-dimensional structure. Specifically, QWs
of indistinguishable elements constitute the ideal systems to
test and validate our theoretical approach since in them the
exchange terms lead to the formation of correlations between
the particles even in absence of interaction, as shown by
the experimental investigations on two-photon propagation in
lattices of coupled waveguides [21,22].

The paper is organized as follows: In Sec. II we define
the tripartite entanglement criterion in boson and fermion
systems with reference to other entanglement measures in
systems of identical particles. The main properties of the
TPN as a measure of the number of quantum correlations
in a six-mode system and its comparison with the geometric
measure introduced in Ref. [17] are discussed in Sec. III. In
Sec. IV we evaluate the time evolution of the TPN in QWs of
three particles propagating in a lattice for two different cases:
particles following the Bose-Einstein statistics and particles
following the Fermi-Dirac statistics. Finally, we present our
conclusions in Sec. V.

II. TRIPARTITE ENTANGLEMENT CRITERION

In this section, we introduce an entanglement criterion
for boson and fermion systems relying on the concept of
entanglement of particles [4].

In order to represent the mixed quantum state of N identical
particles, we adopt the occupation-number representation.
Thus, in a system with L modes an arbitrary mixed state of N

bosons (fermions) can be written as [23]

ρ =
∑

{n},{n′}
f ({n},{n′})|{n}〉〈{n′}|, (1)

with the integers ni (n′
i) of the set {n} = n1, . . . ,ni, . . . ,nL

({n′} = n′
1, . . . ,n

′
i , . . . ,n

′
L) satisfying n1 + · · · + ni + · · · +

nL = N (n′
1 + · · · + n′

i + · · · + n′
L = N ). The ket |{n}〉 is

the state of the Fock space with ni particles in the single-
particle modes i, and f ({n},{n′}) are the coefficients in the
superposition. While for bosons ni ranges from 0 to N , for
fermions the occupation numbers are restricted to 0 and 1 by
the Pauli exclusion principle.

A formal equivalence between the Fock space and the
space obtained as a tensor product of L-dimensional single-
particle subspaces can be established [3]. In such a procedure,
the occupation number of each mode represents a distinct state
of the mode itself. Zanardi and Lari et al. [3,17] defined as
entanglement of a system of identical particles the so-called
entanglement of modes (EM ), namely the number of quantum
correlations appearing among the occupation numbers of the
modes.

As argued by some authors [24,25], an application of the
EM , as it is, to the quantum states of many-body systems could
lead to misleading results since such a measure quantifies the
entanglement between modes and not between the particles. In
order to clarify this point, let us consider a single particle in an
equal superposition of three modes, so that in the occupation-
number representation its state |χ〉 reads

|χ〉 = 1√
3

(|001〉 + |010〉 + |100〉). (2)

By using the geometric measure of the entanglement relying
on the isomorphism between the Fock space and the mode
space [17], we can evaluate the tripartite entanglement εG

between the modes as

εG = ||τ || − ||τ ||sep, (3)

where

||τ || =
√√√√ 3∑

i,j,k

|〈χ |σi ⊗ σj ⊗ σk|χ〉|2 and ||τ ||sep = 1,

(4)

with {σi} the set of three generators of the SU(2) group,
namely the Pauli operators, each acting on a single-mode
space. After straightforward calculations, one finds that the
tripartite entanglement of |χ〉 is different from 0, specifically
εG = √

33/3 − 1. Such a result would seem to indicate a
single-particle nonlocality stemming from the entanglement
with the vacuum [24,25]. However, the above entanglement
is not apparent when the particle wave function χ (x) is
considered in the space configuration

χ (x) = 1√
3

[ψ1(x) + ψ2(x) + ψ3(x)], (5)

with ψi indicating the single-particle states.
To explain the emerging paradox, the appearance of

nonlocality has been related to multiparticle effects [25].
Anyway, this behavior raises some questions on the use of the
criteria relying on EM , since they do not always capture the true
entanglement between the parties of the system. As argued by
Wiseman and Vaccaro [4], in particular such criteria fail to take
into account the local particle number (LPN) superselection
rule. In fact each party of the system must be able to perform
arbitrary local operations on its modes in order to fully use
the entanglement between the modes. Unless each subsystem
possesses a definite number of particles, such local operations
violate the superselection rule for the LPN and are not possible
in practice. Thus in general, the entanglement measures relying
on EM overestimate the available entanglement.

A tripartite entanglement criterion obeying the local particle
number superselection rule can be obtained by extending the
operational definition of bipartite entanglement of identical
particles introduced by Wiseman and Vaccaro [4,6]. Being
Alice, Bob, and Charlie, the three parties of a quantum system
in the mixed state ρ each accessing a given set of modes, here
we assume that any subsystem possesses a standard quantum
register, namely a set of distinguishable qubits in addition to
the indistinguishable particles described by ρ. We define as
tripartite entanglement εT the maximum number of quantum
correlations that Alice, Bob, and Charlie can produce between
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their standard quantum registers by means of local operations.
As a consequence of the LPN superselection rule, this tripartite
entanglement in place of quantum correlations between the
modes that Alice, Bob, and Charlie have access is given by

εT =
nA+nB+nC=N∑

nA,nB ,nC

PnA,nB ,nC
εABC(ρnA,nB,nC

), (6)

where ρnA,nB,nC
= �nA,nB,nC

ρ�nA,nB,nC
is obtained from ρ

by means of the projectors �nA,nB,nC
onto fixed LPN states

(nA for Alice, nB for Bob, and nC for Charlie). PnA,nB,nC
=

Tr(ρnA,nB,nC
) is the probability of finding nA,nB , and nC

as a result of a measurement of the local particle number
by Alice, Bob, and Charlie, respectively, while εABC is an
entanglement standard measure which quantifies the degree
of tripartite entanglement among the three sets of modes

each controlled by a party of the system. It is worth noting
that here is used a standard measure of the tripartite entan-
glement, that is, a measure of the tripartite entanglement of
nonidentical subsystems, since the standard quantum registers
of Alice, Bob, and Charlie consist of distinguishable qubits.
Specifically, since some good measures εAB of bipartite
entanglement can successfully be extended to multipartite
systems by considering bipartite partitions of them [26], we
take as standard tripartite entanglement measure the geometric
mean of the entanglement measures of the bipartitions of the
system:

εABC = 3
√

εA-BCεB-ACεC-AB (7)

in agreement with that proposed in the literature [18,19,27].
Thus, expression (6) now reads

εT =
nA+nB+nC=N∑

nA,nB,nC

PnA,nB,nC

3
√

εA-BC(ρnA,nB,nC
)εB-AC(ρnA,nB,nC

)εC-AB(ρnA,nB,nC
). (8)

The tripartite entanglement εT does not violate the LPN
superselection rule. In fact when Alice, Bob, and Charlie
measure their local particle numbers nA,nB , and nC , the
mixed state ρ collapses, with a given probability PnA,nB,nC

,
in ρnA,nB,nC

. Local operations can be performed on the latter
without any restrictions in order to transfer its entangle-
ment ε(ρnA,nB,nC

) to the standard quantum registers of each
subsystem. Since εT is the weighted sum of the terms
[εA-BC(ρnA,nB,nC

)εB-AC(ρnA,nB,nC
)εC-AB(ρnA,nB,nC

)]1/3, the en-
tanglement is not affected, on the average, by measurements
on the local particle number.

Unlike εG, the tripartite entanglement of the single-photon
state written in Eq. (2) according to our criterion is 0. By
considering the partition of the system in three subsystems
each controlling a single-mode state, the state |χ〉 is given
by the linear superposition of three quantum states having
different LPNs and therefore the contribution to εT from each
term is zero. This result again supports the interpretation of
εT as a measure of the tripartite entanglement not among the
modes but among the particles of the systems, in agreement
with the analogous investigations performed for the bipartite
case [4,6].

III. TPN IN A SIX-MODE SYSTEM

In order to obtain εT according to the criterion given in
Eq. (8), the evaluation of the bipartite standard entanglement
εI -JK (ρnA,nB,nC

) for all bipartitions I -JK of each possible set
of LPNs is needed (with I = A,B,C and JK = BC,AC,AB).
Unfortunately, the latter is a very challenging task in high-
dimensional systems for mixed states of multiparticle systems.

In this section, we intend to give a nonambiguous measure
of the tripartite entanglement εT which can be used in a
practical way in a simple system and then compare it with
the geometric measure [17]. To this aim, we restrict our
analysis to the case of three bosons (fermions) each in a

six-mode single-particle space h6. The Fock space H6(3)
of the full system is the totally symmetric (antisymmetric)
subspace of the tensor product h⊗3

6 . By partitioning the system
in three subsets, each acceding two modes, we note that only
a few quantum states belonging to the Fock space H6(3)
give a nonvanishing contribution to the tripartite entanglement
according to the criterion given in Eq. (8). Let us examine
the case of the set of mixed states F(nA=0) := span{ρ(0,nB ,nC )}
(nB,nC = 0,1,2,3 with nB + nC = 3) where the local number
of particles possessed by Alice is zero. Any state of F(nA=0) can
be written as |00〉〈00|A ⊗ ρBC and therefore it is biseparable;
that is, it can be factorized in a term describing Alice with no
particle and in a term describing the Bob and Charlie subsets
with three particles. The bipartite entanglement relative to the
bipartition A-BC is zero and, in turn, εT is vanishing according
to Eq. (8). This implies that the entanglement due to sets of
quantum states with a LPN equal to zero is vanishing. On
the other hand, the tripartite number of quantum correlations
can be different from zero only when each party has one
particle, that is, only for the quantum states belonging to
the set F(na=1,nb=1,nc=1) := span{ρ(1,1,1)}. Since each partition
has two modes, the subspace spanned by the vectors of
F(na=1,nb=1,nc=1) turns out to be isomorphous to the three-qubit
Hilbert space C2 ⊗ C2 ⊗ C2. Thus the entanglement of three
identical particles (both bosons and fermions) in this case can
be evaluated in terms of the quantum correlations between
three qubits.

Different approaches have been developed to characterize
the tripartite entanglement in system of distinguishable qubits.
The three-tangle or residual entanglement related to squares
of the bipartite concurrences has been proposed [28], even if its
use is questioned since it does not properly quantify the three-
party entanglement for W states [29]. Alternatively, as stated
in the previous section, standard tripartite entanglement can be
estimated by means of some good measures of the number of
quantum correlations in bipartite systems whose Hilbert space
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is C2 ⊗ C4. It should be noticed that in this case both von
Neumann entropy and concurrence present weaknesses [18].
The former is an appropriate measure only for pure states; the
latter, even if it is well defined for mixture states of two qubits,
is applicable to higher dimensions only for pure states. A valid
measure of tripartite entanglement for nonpure states can be
obtained by using the negativity. From the Eq. (7), the tripartite
negativity (TPN) NABC can be defined as

NABC = 3
√
NA-BCNB-ACNC-AB, (9)

where the bipartite negativities are given by NI -JK =∑
i |γi(ρTI )| − 1 with γi(ρTI ) the eigenvalues of ρTI which

is the partial transpose related to the subsystem I of the total
density matrix.

By inserting the TPN of Eq. (9) in Eq. (8), the tripartite
entanglement of a mixed state ρ of three bosons (fermions) in
a six-mode system can be easily evaluated from

εT = P1,1,1
3
√
NA-BC(ρ1,1,1)NB-AC(ρ1,1,1)NC-AB(ρ1,1,1), (10)

once we know the projection of ρ on the subspace where
the local number of each party is fixed to 1, namely ρ1,1,1 =
�1,1,1ρ�1,1,1.

In order to illustrate some features of the entanglement
measure introduced in Eq. (10) in comparison with the
geometric measure εG, here we consider a six-mode three-
fermion system in the state

|
〉 = cos α cos β|010101〉 + cos α sin β|101010〉
+ sin α√

2
|111000〉 + sin α√

2
|000111〉, (11)

where α,β are phases ranging from 0 to π . If we consider
the following partition of the system A = {1,2}, B = {3,4},
and C = {5,6}, we note that |
〉 is a linear superposition of
states, each with a given LPN for any set of modes. When
α = 0,π and β = (π/4),(3π/4), only the first two terms are
nonvanishing and a GHZ state with each party of the system
containing a particle, namely, nA = nB = nC = 1, is obtained.
On the other hand for α = (π/2), a specific LPN cannot be
ascribed to the subsystems. Our goal is to evaluate the number
of quantum correlations of |
〉 according to εT and εG. The
latter can be calculated again from Eq. (3), where now [17]

||τ || =
√√√√ 15∑

i,j,k=1

8
∣∣〈
|λi ⊗ λj ⊗ λk|
〉∣∣2

and

||τ ||sep = 6
√

6, (12)

with {λi} indicating the set of fifteen generators of the SU(4)
group [30] acting on the two sites of one subset.

Figure 1 displays εT and εG as a function of α and β. The
two entanglement measures show a different behavior, and
in agreement with the theoretical predictions of the previous
section the geometric measure is always greater than the TPN.
The latter is vanishing for any value of β when α = π/2; in
this case, |
〉 becomes the linear superposition of two terms,
each corresponding to different LPNs, thus yielding zero
entanglement. At α = 0,π and β = (π/4),(3π/4), εT exhibits
four peaks indicating the maximum number of quantum
correlation in the GHZ states (1/

√
2)(±|010101〉 ± |101010〉)

α/π

0
0.25

0.5
0.75

1

β/π

0

0.25

0.5

0.75

1

0

0.5

1

1.5

2

ε G

α/π

0
0.25

0.5
0.75

1

β/π

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

ε T

FIG. 1. (Color online) The tripartite entanglement εG (left panel)
and εT (right panel) as a function of the phases α and β ranging
from 0 to π . Specifically, the quantum correlations exhibited by the
three-fermion state |
〉 of Eq. (11) among the three parties A = {1,2},
B = {3,4}, and C = {5,6} are here considered.

describing one particle in each partition. On the other hand,
the geometric measure is zero only for those values of
the phases reducing the linear superposition of the four
states in Eq. (11) to a single term. For α = π/2, εG shows
a local minimum but unlike εT it is not vanishing, thus
indicating a degree of nonseparability different from zero. Its
maximum values are found when β = (π/4),(3π/4) and α =
(π/4),(3π/4), namely when all the moduli of the coefficients
of the linear superposition of Eq. (11) become equal and |
〉
reduces to 1

2 (|010101〉 ± |101010〉 ± |111000〉 ± |000111〉).
The disagreement between the qualitative behavior exhibited
by the tripartite negativity and the geometric measure for this
specific case is representative of the discrepancy between the
two entanglement notions. In fact, εG quantifies the number
of quantum correlations between the modes regardless of the
number of particles in any subset, while εT measures the
entanglement of the particles in the modes.

IV. ENTANGLEMENT DYNAMICS IN THREE-BOSON AND
THREE-FERMION QUANTUM WALKS

In the last years, theoretical and experimental investigations
have shown how the quantum statistics, due to exchange
symmetry, may play a key role in the appearance of quantum
correlations between noninteracting identical particles in
various systems, ranging from the propagation of photons
[31] to electron transport in the integer quantum Hall effect
[32]. Among the different physical phenomena examined, the
continuous-time quantum walks (QWs) have received great
interest since they represent an ideal laboratory to observe
many-particle quantum mechanical behavior and to implement
future quantum technologies [21,22,33,34]. Specifically, the
emergence of nonclassical correlations in QWs of two photons
in an array of coupled waveguides has experimentally been
observed [21,22]. By using the criterion based on TPN
described in the previous section, here we investigate the
entanglement dynamics of the continuous-time QWs of three
bosons and of three fermions in an array of six sites.
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In order to study the three-particle entanglement dynamics,
we follow the formalism developed in Ref. [33] for the QWs
of nonclassical light in an array of coupled waveguides. We
consider a one-dimensional tight-binding model, within the
approximation of nearest-neighbor interaction, described by
the Hamiltonian H:

H = G

6∑
i=1

c
†
i ci + T

5∑
i=1

(c†i ci+1 + c
†
i+1ci), (13)

where c
†
i (ci) is the creation (annihilation) operator for a

particle in the ith site which obeys the commutation relation
[ci,c

†
j ]± = δij , where the upper sign holds for bosons and the

lower one for fermions [35]. G is the on-site energy and T

is the tunneling rate at which the particles are transferred to
the neighboring sites. Here we are considering a lattice with
reflecting boundary conditions, so that the transition amplitude
from the node 1 (6) to the node 6 (1) is zero. As will be shown
in the following, this implies that the time evolution of the
quantum system is not periodic, unlike the QWs of particles
in lattices with periodic boundary conditions [36,37].

By diagonalizing the Hamiltonian (13), in the Heisenberg
picture the annihilation operator cr at time t can be obtained
as [33]

cr (t) =
6∑

s=1

cs(0)Crs,

Crs = 2

7
exp

(
− iGt

h̄

) 6∑
k=1

exp

[
−2itT

h̄
cos

(
kπ

7

)]

× sin

(
rkπ

7

)
sin

(
skπ

7

)
, (14)

where 2
7

∑6
k=1 sin

(
rkπ

7

)
sin

(
skπ

7

) = δrs . Since any input Fock

state can be expressed by means of the creation operators c
†
r and

the vacuum state |0,0,0,0,0,0〉, its time evolution during the
QWs can be calculated by using Eq. (14). Even if the effect
of different initial occupation numbers on the entanglement
dynamics could be considered, here, for simplicity, we only
examine the case of three particles (bosons or fermions)
initially coupled to three neighboring sites, i.e., the state

|�(t = 0)〉 = |1,1,1,0,0,0〉. (15)

By means of the time evolution of the quantum state
|�(t)〉, we can quantify the tripartite entanglement dynamics
of the system by using the TPN defined in Eq. (10). To this
purpose, a numerical approach has been used which allows
one to evaluate at any t from |�(t)〉 the density matrix ρ1,1,1

where the LPN of each subset is fixed to 1 and then to
diagonalize its partial transposes for the evaluation of the
bipartite negativities. Here we consider two different partitions
of the system, namely A = {1,2}, B = {3,4}, C = {5,6} and
A′ = {1,4}, B ′ = {2,5}, C ′ = {3,6}.

In Fig. 2 we report the entanglement of the three-boson and
the three-fermion state as a function of the “time” τ = tT /h̄

for the two above partitions. We note that in all the cases the
number of quantum correlations in the tripartite system under
investigation oscillates with time though such oscillations are
not periodic. In fact the interference of the three-particle wave
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FIG. 2. (Color online) Entanglement as a function of the “time”
τ for the fermionic (blue line) and bosonic (green line) systems
when two different partitions are considered: A = {1,2}, B = {3,4},
C = {5,6} (left panel) and A′ = {1,4}, B ′ = {2,5}, C ′ = {3,6} (right
panel).

function amplitudes, due to the backscattering at reflecting
boundaries, results into a nonperiodic time evolution of the
system. Unlike the case of single-particle dynamics in QWs
into periodical structures [36,37], a time revival, namely the
time interval needed to reconstruct the whole initial wave
function, cannot be found here.

For both of the partitions, we note that the tripartite
entanglement for the fermions is always greater than the
one exhibited by the bosonic systems. This behavior can be
explained by taking into account the quantum statistics of
the particles. The Bose-Einstein particles exhibit bunching,
thus making finite the probability to find more particles in
the same site or in the same subset during the time evolution
of the system. On the other hand, due to the exclusion Pauli
principle, no more than one fermion can occupy the same
mode. This implies that the term P1,1,1 describing at any time
the probability to find one particle in each subset and appearing
in the definition of TPN of Eq. (10) increases moving from the
boson to the fermion system, even if both of them are initially
described by the same state |�(t = 0)〉. As a consequence, the
tripartite entanglement among bosons becomes smaller than
the one among fermions.

The TPN dynamics of the two partitions examined presents
some differences. While the tripartite bosonic entanglement
shows the same qualitative behavior, that is, oscillations
within the interval ranging from 0 to 0.2, the number of
quantum correlations among fermions in the partition where
subsets are composed of nonadjacent modes becomes, on the
average, larger than the one found for subsystems controlling
neighboring sites. In order to more deeply investigate this
behavior, we focus on some single- and two-particle features
of the quantum system at “time” τ = 8.7 where the fermionic
TPN between A′, B ′, C ′ shows a peak. In Fig. 3 the single-
particle density ρr (t) = 〈c†r cr〉 and the two-particle correlation
�rs(t) = 〈c†r c†s cscr〉 are reported. Here we do not consider the
three-particle correlation function, since the two-particle one
is sufficient to understand the features of the entanglement,
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FIG. 3. (Color online) Single- and two-particle density probability of the bosonic and fermionic systems initially described by the state |�〉
of Eq. (15) for τ = 8.7. (a) The single-particle density distribution ρr which is identical for fermions and bosons. (b) The correlation matrix �rs

for bosons computed from Eq. (16). Bosons tend to localize in the the same or different sites of the first half of the lattice. (c) The correlation
matrix �rs for fermions computed from Eq. (17). Fermions are found with high probability in the neighboring sites of the first half of the lattice.
(d) The interparticle distance probability for bosons. They tend to appear at the same site or at neighboring sites. (e) The interparticle distance
probability for fermions. They are more likely to be separated by a small number (1–2) of sites.

as will be shown in the following. ρr (t) does not permit
us to analyze the quantum properties of the system under
investigation since it shows the typical features of the classical
QWs of two uncorrelated particles. As a matter of fact,
the single-particle density whose expression in terms of the
coefficients Crs reads ρr (t) = ∑6

s=1 |Crs |2ns (with ns the
number of particles in the site s at t = 0) does not depend upon
quantum statistics and turns out to be identical for bosons and
fermions [see panel (a) of Fig. 3].

On the other hand, in analogy with the Glauber photode-
tection theory [38] �rs(t) indicates the probability to detect
at time t one particle at site r and the other one at site s and
displays the two-particle quantum correlations between the
locations r and s depending on the quantum statistics of the
particles. For bosons it is given by

�rs(t) =
6∑

p=1

p−1∑
q=1

|CrpCsq + CrqCsp|2npnq

+
6∑

p=1

|Crp|2|Csp|2np(np − 1), (16)

while for fermions it reduces to

�rs(t) =
6∑

p=1

p−1∑
q=1

|CrpCsq − CrqCsp|2npnq. (17)

As shown by the correlation matrix in the panels (b) and (c) of
Fig. 3, bosonic bunching results in a very large probability
to find two particles in the same sites in the first half of
the lattice. Instead, if the particles follow the Fermi-Dirac
statistics, they tend to separate to neighboring sites of the
first half of the lattice [see panel (c) of Fig. 3]. Regardless
of the quantum statistics, this implies that for the partition
{A,B,C} the probability that more particles occupy the same
subset is very high, and in turn, this means a low value of
the entanglement as depicted in the left panel of Fig. 2. On
the contrary, for the partition where the subsystems control
nonadjacent modes, the LPN of A′,B ′, and C ′ is more likely
to be equal to 1 and therefore the TPN can reach high values
(see the right panel of Fig. 2).

Also the interparticle distance probability [34] g(�) =∑
q �q,q+�, depicted in panels (d) and (e) of Fig. 3, supports

our interpretation. Apart from the behavior in � = 0, related

022303-6



MEASURE OF TRIPARTITE ENTANGLEMENT IN BOSONIC . . . PHYSICAL REVIEW A 84, 022303 (2011)

to the role played by quantum statistics in determining the
probability to find two particles in the same site, g is high
for low values of the intersite distance both for bosonic and
fermionic systems, thus confirming the localization of particles
in neighboring sites.

A more exhaustive discussion of the entanglement dynam-
ics in our model undoubtedly requires further analyses also on
three-particle quantum properties of the system at any time,
but this goes beyond the scope of this work.

V. CONCLUSIONS

In summary, we have presented a criterion for the tripartite
entanglement of mixed states of indistinguishable particles
(both bosons and fermions). The entanglement measure pro-
posed deviates from the other approaches recently advanced
[17]. They rely on the entanglement of modes [3] but their
physical significance is not always very clear as shown here by
some misleading results. As a matter of fact, such measures can
give values different from zero even when applied to single-
particle states which describe a particle in equal superposition
of modes. In this paper, we developed a different criterion
based on the notion of bipartite entanglement of particles as
introduced by Wiseman and Vaccaro [4]. It provides a valid
guideline to quantify the number of quantum correlations in
tripartite systems on which the allowed physical operations,
such as preparation, manipulation, and measurement, do not
change the local number of particles contained in each subset.

Specifically, we have shown that a good entanglement
measure satisfying the requirements of the theoretical criterion
introduced in this paper can be obtained from the TPN
recently used in the context of nonidentical particles [18,19].
Indeed, it constitutes a very practical tool to evaluate the
number of quantum correlations appearing in three-boson
or three-fermion mixture states of low-dimensional systems,
that can be extracted and then placed in standard quantum
registers without any violation of the local particle number
superselection rule. As an application, we have considered
a simple toy model of three fermions in a system with six
modes and proved the reliability of the TPN in comparison with
the geometric multipartite entanglement measure introduced
in Ref. [17]. In agreement with theoretical predictions, we

found that TPN is greater than the geometric measure. The
qualitative behaviors of the two criteria as a function of the
parameters of the model are quite different thus indicating
their conceptual discrepancy. The geometric measure gives an
estimation of the number of quantum correlations among the
occupation numbers of the sites regardless of the particles.
On the other hand the TPN, even if it depends upon the local
particle number in the subsystems, quantifies the entanglement
among the particles themselves.

Furthermore, we have used the TPN to quantify the time
evolution of the quantum correlations for the continuous-
time QWs of three noninteracting particles (both bosons and
fermions) in a six-mode lattice, for two different partitions
of the system. As expected, we find that the entanglement
dynamics is not periodic due to the presence of reflecting
boundary conditions in the lattice sites. Furthermore, it
strongly depends upon the quantum statistics of the particle
involved in the process: The bosonic bunching leads to a
large probability to find more bosons in the same site and
therefore in the same subset of the system. This implies a local
particle number equal to zero for another of the two particles
and therefore the separability of the three-particle state. On the
other hand, for fermions the Pauli exclusion principle prevents
occupation numbers of sites greater than one, thus making
more likely to find correlated states with one particle in each
subset.

Although the criterion introduced in this paper has been
mainly applied to the investigation of the tripartite entangle-
ment in some simple models, such as continuous-time QWs,
it is completely general, and its application turns out to be
helpful to investigate the building up of quantum correlations
in both bosonic and fermionic systems. In particular, it would
be of interest to extend the TPN to those physical system
with large dimensionality where new and interesting results
could be expected due to higher complexity of the systems
themselves and to consequent richer structure of the quantum
correlations.
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