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Abstract. Normalization and lexical annotation methods, developed in the con-
text of matching systems, have proven to be effective for the discovery of lexical
relationships among schemata. We will show how these methods are applicable
and effective in the context of Semantic Resource Framework to mine the seman-
tics of a web service interface and to discover mappings between them.
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1 Introduction

This chapter will discuss the applicability of normalization and lexical annotation meth-
ods, developed in the field of schema matching, in the context of web service interfaces.
The lexical annotation of a schema element is the explicit assignment of its meanings
w.r.t. a lexical resource. Normalization (also called linguistic normalization [14]) is the
reduction of the label of a schema element to some standardized form that can be easily
recognized.

Starting from our previous works in the context of data integration [5, 21, 26], we
propose to apply normalization and annotation methods to mine the semantics of a
service, exposed through its interface and to discover connection patterns among web
services.

In Natural Language Processing, Word Sense Disambiguation (WSD) is the pro-
cess of identifying which sense of a word (i.e. meaning) is used in a sentence, when the
word has multiple meanings (polysemy). We describe our probabilistic lexical annota-
tion method, which automatically associates one or more meanings to schema elements
w.r.t. the lexical resource WordNet (WN) [13], by exploiting a Word Sense Disambigua-
tion (WSD) algorithm, called PWSD (Probabilistic Word Sense Disambiguation) [21].
The accuracy of lexical annotation is affected by labels which are non-dictionary words,
such as Compound Nouns (CNs), acronyms and abbreviations which are very frequent
on real-world schemata and web service interfaces. We addressed this problem by de-
vising a method to normalize schema labels which is able to semi-automatically expand
abbreviations and to properly lexically annotate CNs by creating new WN meanings.

Starting from the lexical annotation of schema elements, we can discover lexical
relationships between them, on the basis of the relationships defined in WN between
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Fig. 1. Example of discovered lexical relationships without (a) and with (b) normaliza-
tion.

their meanings (synsets in WN terminology). Traditional schema matching methods
based on string distance techniques [10] do not permit to automatically discover that
there exists, for example, a synonym relationship between the two schema elements
“amount” and “quantity”, as their labels share only few characters. Instead, by using
our method, we are able to: (1) automatically annotate these schema elements with the
corresponding WN meanings; (2) discover a synonym relationship among them, as they
share the same meaning in WN (i.e. the synset “how much there is or how many there
are of something that you can quantify”).

Moreover, our normalization method improves the quality of semantic mappings
by reducing the number of discovered false positive/false negative relationships. Fig-
ure 1 shows two schemata that need to be mapped/integrated, and compares the rela-
tionships discovered with and without normalization. Let us consider, for example, the
two schema elements “CustomerName” and “CLIENTADDRESS”, respectively, in the
source “PurchaceOrder” and “PO”, shown in Figure 1(a). If we annotate separately the
terms “Customer” and “Name”, and “CLIENT” and “ADDRESS”, then we might as-
sume a SYN relationship between them, because the terms “Customer” and “CLIENT”
share the same WN meaning. In this way, a false positive relationship is discovered
because these two CNs represent “semantically distant” schema elements.

Furthermore, if we consider the two corresponding schema labels “amount” and
“QTY” (abbreviation for “quantity”), without abbreviation expansion we cannot dis-
cover that there exists a SYN relationship between the elements “amount” and “QTY”.

In this chapter, we describe the normalization and annotation methods w.r.t. a generic
object schema, which may be either a set of data sources or a set of web services (sec-
tion 2). In Section 3, an example of application of the methods on the Semantic Re-
source Framework model is shown. Some related works are described in Section 4.
Finally, in Section 5, we make some concluding remarks.



Fig. 2. Overview of the schema label Normalization and Annotation methods.

2 Normalization and Annotation of a Conceptual Schema

To describe the normalization and annotation methods, we use a generic Conceptual
Modeling Language (CML), which contains common aspects of most semantic data
models, UML, ontology languages, such as OWL, and description logics [1].

In the sequel, we use S to denote a schema prescribed by the generic CML. Specif-
ically, the language allows the representation of classes (unary predicates over individ-
uals), and attributes, which can be simple (binary predicates relating individuals with
values such as integers and strings) or complex (binary predicates relating individuals).

Let S = {C1, C2, ..., Cn} be a finite set of classes, where each class, C = {A1, A2, ..., An},
is described by a finite set of attributes. A simple attribute in the class Hotel, represent-
ing an hotel reservation web site, may be name, while a complex attribute may be
address; address refers to a class Address in the same schema that combines the
information of street, number, city, zipcode, and country.



Attributes may be subject to constraints such as, cardinality constraints. Such con-
straints do not influence our annotation and normalization methods and therefore are
not taken into account in our generic CML.

Classes are organized in a familiar is-a hierarchy. In the previous example, the class
Hotel may be defined as a sub-class of Service.

Normalization and annotation methods regard classes and attributes of a schema,
referred to as schema elements from now on. Each schema element has a name, referred
to as label from now on.

Definition 1 (Lexical Annotation). The lexical annotation of a schema element is the
explicit assignment of its meanings w.r.t. a lexical resource.

We define the lexical annotation as the connection of a schema element with its
meanings defined in a lexical resource. However from now on, we will also make ref-
erence to the annotation of the label of a schema element.

The lexical resource we employ in our methods is WN. WN groups English words
into sets of synonyms, called synsets. Each synset represents a distinct concept and
is further clarified with a short defining gloss (i.e. a definition and optional example
sentences). WN records the various semantic relationships between these synonym sets.
These relationships vary based on the type of word; for the syntactical category of
nouns, they include:

– hypernyms: Y is a hypernym of X iff every X is a (kind of) Y (person is a hypernym
of student, because every student is a member of the larger category of persons);

– hyponyms: Y is a hyponym of X iff every Y is a (kind of) X (student is a hyponym
of person);

– holonym: Y is a holonym of X iff X is a part of Y (building is a holonym of win-
dow);

– meronym: Y is a meronym of X iff Y is a part of X (window is a meronym of
building).

We focus our work on the development of an automatic lexical annotation method
able to select the synsets that cover the meaning of a schema element.

Thanks to the WN network of relationships, after the application of the annotation
method we can discover lexical relationships among schema elements.

Lexical relationships are defined between classes and attributes, and are specified
by considering class/attribute labels. Formally, a lexical relationship can be defined as:

Definition 2 (Lexical relationship) Let t and s be two schema elements and t#i and
s#j annotations assigned to t and s respectively. A lexical relationship is defined as the
triple < ti, tj , R > where R defines the type of the relationship between ti and tj . The
types of lexical relationship are:

– SYN (Synonym-of): defined between two elements whose meanings are synonymous
(they correspond to a WN synonym set), formally

t SYN s iff ∃ t#i ≡ s#j



– BT (Broader Term): defined between two elements where the meaning of the first is
more general than the meaning of the second (the opposite of BT is NT, Narrower
Term), (it corresponds to a WN hypernymy/hyponymy relationship)), formally

t BT s iff ∃ t#i hypernym of s#j

– RT (Related Term): defined between two elements whose meanings are related in
a meronymy hierarchy (it corresponds to a WN meronymy relationship, i.e. part-of
relationship), formally

t RT s iff ∃ t#i meronym of s#j

Let us suppose we want to automatically lexically annotate (annotate in the fol-
lowing) the schema element “address”. In WN the noun “address” has eight different
meanings, including very similar ones such as “written directions for finding some lo-
cation; written on letters or packages that are to be delivered to that location” or “a sign
in front of a house or business carrying the conventional form by which its location is
described”. We might generate a single (forced) annotation for each word (as done by
many WSD approaches proposed in the literature). However, in many cases, choosing a
single annotation would be difficult even for a human annotator: generating more than
one probabilistic annotation comes to be a good solution that avoids loosing semantic
information.

Uncertainty is an intrinsic feature of automatic and semi-automatic annotation meth-
ods and provides a quantitative indication of the quality of the result. In our method,
uncertainty is qualified as probability values related to annotations w.r.t. WN.

The strength of a thesaurus like WN is the presence of a wide network of semantic
relationships among meanings. Its main weakness is that it does not cover different
domains of knowledge with the same level of detail and that many domain dependent
terms (called non-dictionary words) may not be present in it. Non-dictionary words
include CNs, abbreviations and acronyms (from now on, these last two will be referred
to simply as “abbreviations”). The result of automatic annotation is strongly affected
by the presence of these non-dictionary words in schemata, thus label normalization is
needed. With label normalization, we mean the process of abbreviation expansion and
CN annotation through the creation of new WN meanings.

Definition 3 (Abbreviation expansion). Let AB be an abbreviation (or short form), ab-
breviation expansion is the task of finding a relevant expansion (long form) for the given
abbreviation AB1.

Definition 4 (CN annotation). Let CN be a non-dictionary compound noun constituted
of more words (its constituents). The annotation of a CN is the task of creating a new
WN synset starting from the annotations of its constituents.

1 The long form that is extracted through abbreviation expansion may not be an entry in WN.
This issue remains an open problem. For the moment, we limit ourselves to examine long
forms which have an entry in WN (e.g. the long form “Number” for the abbreviation “Nbr”)
or that correspond to CNs (e.g. the long form “Purchase Order” for the abbreviation “PO”).



In the following, we describe normalization, annotation and relationship discovery
in detail. In the end of this section, we show some results in term of performance of the
methods.

2.1 Normalization

As shown in Figure 2, the schema label normalization method [26] consists of three
steps: (1) schema label preprocessing, (2) abbreviation expansion and (3) CN anno-
tation. The input of schema label preprocessing is the set of schema element labels.
During this phase, we automatically select the labels to be normalized. The output
of this module are the tokenized labels classified into four groups (as shown in Fig-
ure 2): WN terms (i.e. labels having an entry in WN which do not need normalization,
e.g. “Airport”) abbreviations (e.g. “FLTNO”), CNs (e.g. “DepartureAirport”), and CNs
containing abbreviations (e.g. “ARRAirport”).

The abbreviation expansion step is applied on all the schema labels classified as ab-
breviations or CNs with abbreviations. During this step, each abbreviation is expanded
with the most relevant long form by using the knowledge provided by the schema
and abbreviation dictionaries. Our method exploits the online abbreviation dictionary
Abbreviations.com2, particularly useful for expanding domain standard abbreviations,
and a user-defined dictionary. Since real-world schemata often use application-specific
codes (e.g. “X09CCDE”) that will not appear in any public dictionary, the designer may
enrich the user-defined dictionary with such abbreviations. The user-defined dictionary
is initially bootstrapped with schema standard abbreviations and for our example by
using the OTA standard3.

The CN annotation is applied on all the schema labels classified as CNs or CNs with
expanded abbreviations. In particular, we focus on a category of CNs called endocen-
tric. Endocentric CNs consist of a head (i.e. the categorical part that contains the basic
meaning of the whole CN) and one or more modifiers, which restrict the meaning of the
head. An endocentric CN exhibits a modifier-head structure, where the head noun oc-
curs always after the modifiers. Endocentric CNs are often not included in dictionaries,
but they can be interpreted by using the knowledge about their constituents.

This step can be summed up into three sub-steps: (1) CN constituent disambigua-
tion; (2) CN interpretation via semantic relationships; and (3) creation of a new CN
synset in WN.

During the first sub-step the constituents of a CN are automatically annotated w.r.t.
WN by applying the PWSD algorithm [21] (described in the following) which assigns
a set of probabilistic annotations to each constituent. Then, starting from these annota-
tions we perform CN interpretation. The interpretation of a CN is the task of determin-
ing the semantic relationships holding among its constituents. In particular, we perform
automatic CN interpretation by using the set of nine semantic relationships defined by
Levi in [16]: CAUSE (“flu virus”), HAVE (“college town”), MAKE (“honey bee”), USE
(“water wheel”), BE (“chocolate bar”), IN (“mountain lodge”), FOR (“headache pills”),

2 http:\\www.abbreviations.com
3 OpenTravel Alliance XML schema for the travel industry. Available online at http://www.
opentravel.org/.



FROM (“bacon grease”), and ABOUT (“adventure story”). At the end, we establish a
new WN synset for the CN: first, we derive the gloss starting from the discovered Levi
relationship and by exploiting the glosses of the CN constituents; then, the new meaning
for the CN is inserted in the WN thesaurus by automatically creating a hypernym (and
the opposite hyponym) relationship between the new synset and the synset of the CN
head, and a generic (Related term) (which corresponds to the WN relationships member
meronym, part meronym, substance meronym) between the new synset and the synset
of the modifier.

However, the insertion of these two relationships is not sufficient; it is also necessary
to discover the relationships of the new inserted meaning w.r.t. the other WN synsets.
To this end, we use the WNEditor tool [4] to create/manage the new synset and to set
relationships between it and the existing WN ones. As the final goal of our method is
to produce a set of probabilistic annotations for each schema elements, we compute the
probability associated to the new synset as the product of the probability values of the
individual constituent annotations4.

2.2 Probabilistic Lexical Annotation

As shown in Figure 2, the output of the normalization method will be the input of the
annotation method. Lexical annotation is performed by PWSD, an automatic algorithm
that combines several WSD algorithms. In this way, the process is not affected by the
effectiveness of a single WSD algorithm in a particular context or application domain.
PWSD satisfies three important constraints: (1) it is an automatic technique (only a few
configuration settings are required), (2) it is flexible (i.e., it can combine any set of
WSD algorithms5), and (3) the output of the method does not commit to an exact synset
for a term under consideration, but to a set of possible senses that represent the term.
We use the Dempster-Shafer theory of evidence [24, 20] to combine annotation outputs
obtained by the WSD algorithms. By using the Dempster-Shafer’s theory of evidence,
PWSD associates a probability value to each sense selected to disambiguate a term; this
value shows the uncertainty of the disambiguation process.

Given a schema element t, the PWSD algorithm associates a set of probabilistic
annotations to t:

PM(t) = {< t#i, P (t#i) >, ..., < t#n, P (t#n) >}

Eventually, to minimize the introduction of errors, probabilistic annotations with a
probability value under a certain threshold can be filtered.

2.3 Probabilistic Lexical Relationship Discovery

Once we have obtained annotations for schema elements, we can use the probability
distributions over the set of possible meanings (i.e. the output of PWSD) to infer prob-

4 We assume that the probabilities being combined are independent. This assumption is not
usually hold, however, factoring out dependencies in WSD context is extremely difficult as
they are usually hidden [22].

5 At present, we combine five WSD algorithms.



abilistic lexical relationships among the object and attribute terms. As stated in Defini-
tion 2, the lexical relationships SYN (Synonym-of), BT (Broader Term)/ NT (Narrower
Term) and RT (Related Term) are defined on the basis of the semantic relationships de-
fined in WN among the meanings of two schema elements. To each lexical relationship,
it is assigned a probability value that depends on the probability value of the meanings
under consideration for the schema elements and it is determined by the formula of the
joint probability.

More formally, given two schema elements t and s with the related probabilistic
annotations, PM(t) and PM(s), a probabilistic lexical relationship LexRel between
t and s with probability P , denoted by

< t, LexRel, s, P >

is defined iff

1. ∃ < t#i, P (t#i) >∈ PM(t), ∃ < s#j , P (s#j) >∈ PM(s) , and P = P (t#i) ∗
P (s#j)

2. and one of the following conditions holds
(a) t#i ≡ s#j and LexRel = SY N
(b) t#i hypernym of s#j and LexRel = BT
(c) t#i meronym of s#j and LexRel = RT

2.4 Experimental Evaluation

In [21], our normalization and annotation methods have been evaluated in order to
measure and qualify their performance. They have been integrated within the MOMIS
(Mediator EnvirOment for Multiple Information Sources) data integration system [5]6,
and have been evaluated on two test cases; the first is a set of three ontologies from
the benchmark OAEI 20087; the second is composed of two relational schemata of the
well-known Amalgam integration benchmark for bibliographic data8. Even if these data
sources represent different scenarios w.r.t. Semantic Resource Framework, our previous
evaluations can be used to give an idea about the quality of the results obtained by our
methods.

To assess the quality of our method, gold standards were created for each normal-
ization step as well as for the lexical annotation and the lexical relationship discovery
methods. The gold standards were manually generated by a human expert. Then, we
compared the gold standard with the result obtained by using our methods. For each
experimental phase, we determined: the true positives, i.e. correct results (TP), as well
as the false positives (FP) and the false negatives (FN).

Based on the cardinalities of the TP, FP, and FN sets, the following quality measures
are computed:

– Precision= |TP |
|TP |+|FP |

6 Seehttp://www.dbgroup.unimore.it for references about the MOMIS project.
7 101, 205 209 ontologies available at http://oaei.ontologymatching.org/2008/
benchmarks/

8 See http://dblab.cs.toronto.edu/~miller/amalgam/.



Precision Recall F-Measure
Lexical annotation without normalization 0.63 0.43 0.51
Lexical annotation with normalization 0.62 0.73 0.67
Discovered lexical relationships without normalization 0.49 0.29 0.36
Discovered lexical relationships with normalization 0.81 0.74 0.77

Table 1. Average performance of the lexical annotation and lexical relationship discov-
ery methods with and without normalization.

– Recall= |TP |
|FN |+|TP |

– F-Measure= 2 ∗ Precision∗Recall
Precision+Recall

Table 1 shows the average performance of lexical annotation and lexical relationship
discovery with and without the normalization method. The experimental results show
how the effectiveness of automatic lexical annotation and, as a consequence, the quality
of the discovered lexical relationships are improved by the normalization method.

3 Towards Annotated Services in SRF

In this section, we describe an application of our normalization and annotation methods
to the Semantic Resource Framework (SRF) described in a previous chapter of this
book [6]. SRF is a multi-level (conceptual, logical, and physical level) description of
data sources for searching computing applications. It extends the Service Mart model
presented in [8] by making such model more expressive and more fitting to the web
service description requirements. SRF represents a first step for adding more semantics
to web service description.

By using our method, it is possible to enrich the semantics of SRF descriptions by
annotating them w.r.t. the lexical resource WN.

Our normalization and annotation methods find application at the conceptual level
of a Service Mart. The conceptual level includes the object’s name and the collection
of the object’s attributes; all the attributes are typed: they can be atomic (single valued)
or part of a repeating group (multi-valued). Moreover, the discovered lexical relation-
ships may suggest useful information at the logical level to derive connection patterns
between Service Marts.

We can easily apply our method by considering the classes and the attributes of a
Service Mart [6], as the classes and attributes of a generic object schema as defined in
Section 2.

Let us suppose we have a flight booking Service Mart having the following concep-
tual description:

Booking(CustomerName, BookingNR, FlightNumber, Airline,
DepartureDatetime, DepartureAirport, ArrivalDatetime, ArrivalAirport)

(1)

For the service attribute names that do not have an entry in WN, we apply our
normalization method.



Attribute Lex. Annotation Prob.
Airline Airline#2 0.89

ArrivalAirport Airport
#1

FOR Arrival#2 0.9
DepartureAirport Airport

#1
FOR Departure#1 0.9

BookingNumber Booking#2 HAVE Number#4 0.8
FlightNumber Flight#9 HAVE Number#4 0.62

Flight#2 HAVE Number#4 0.67
Table 2. Annotations of some attributes of the “Booking” Service Mart (for the CNs
the word representing the head is underlined).

WN synset WN gloss
Airline#2 a commercial enterprise that provides scheduled flights

for passenger
Airport#1 an airfield equipped with control tower and hangers as

well as accommodations for passengers and cargo
Arrival#1 accomplishment of an objective
Arrival#2 the act of arriving at a certain place

Departure#1 act of departing
Booking#2 the act of reserving (a place or passage) or engaging the

services of (a person or group)
Number#4 a numeral or string of numerals that is used for identifi-

cation
Flight#2 an instance of traveling by air
Flight#9 a scheduled trip by plane between designated airports

Table 3. WordNet glosses.

3.1 Normalization

The normalization method is divided in three steps: preprocessing, abbreviation ex-
pansion, and CN annotation. In the first step, the method recognizes as non-dictionary
words the following labels:

CustomerName, BookingNR, FlightNumber, DepartureDatetime, DepartureAirport,
ArrivalDateTime, ArrivalAirport

As a consequence, these labels are first tokenized (e.g. “CustomerName” as “Cus-
tomer” and “Name”) and then classified as CNs (i.e. “CustomerName, FlightNumber,
DepartureDateTime, DepartureAirport, ArrivalDateTime, and ArrivalAirport”) and as
CNs containing abbreviations (i.e. “Booking NR”).

The second step of normalization is focused on expanding abbreviations: the method
automatically expands the previously identified CN containing abbreviations “Book-
ingNR” as “BookingNumber”.

The last step of the normalization deals with the CNs. During this step the CNs are
interpreted. Let us consider the label “BookingNumber”;it is composed by two con-



Attribute Lex. Annotation Prob.
Airport Airport#1 1.0

FlightStatus.FLTNO Flight#2 HAVE Number#4 0.89
FlightStatus.Airline Airline#2 0.89

FlightStatus.ARRAirport Airport#1 FOR Arrival#2 0.95
Table 4. The most relevant annotations of a subset of attributes of the “Flights” Service
Mart.

stituents: “Booking” and “Number” which are automatically annotated by PWSD with,
respectively, the synset Booking#2 with probability 0.89, and with Number#4 with
probability 0.89, as shown in Tables 2 and 3. Then the HAVE semantic relationship is
automatically selected and a new WN meaning for the CN is created and inserted in the
WN noun hierarchy: we associate the new term “Booking Number” with a gloss given
by union of the glosses of “Booking” and “Number” connected by the relationship
HAVE (i.e. gloss of Booking#2 “HAVE” gloss of Number#4); moreover, we create
a hypernym/hyponym relationship between the new synset for “Booking Number” and
the synset of “Number”, and a Related Term relationship between the new synset and
the synset of the modifier “Booking”. The probability value associated to the new synset
will be the product of the probabilities of the individual annotations Booking#2 and
Number#4, i.e. 0.8.

Note that, on this example, only the attribute “Airline” is a WN term, whereas the
others are CNs not present.

3.2 Probabilistic Lexical Annotation

After normalization, we perform the probabilistic lexical annotation of all the labels
except for the CNs that have been annotated by the normalization method.

For annotating the attribute “Airline”, WSD1 selects Airline#2 with a probabil-
ity of 0.65, WSD2 provides Airline#2 with a probability of 0.7 and WSD3 selects
Airline#1 with a probability of 0.6. The Dempster-Shafer’s rule of combination ap-
plied on these outputs returns the following annotations:

PM(Airline) = {< Airline#1, 0.11 >,< Airline#2, 0.89 >}.

By applying a threshold of 0.2 , the annotation Airline#1 is discarded. In the end,
“Airline” is thus annotated by Airline#2 with a probability value of 0.89 (see Table 2).

3.3 Probabilistic Lexical Relationship Discovery

After lexical annotation, we can use the probability distributions over the set of possi-
ble meanings (i.e. the output of the PWSD) to infer probabilistic lexical relationships
among the attributes of the two Service Marts that share the same application domains.

Let us assume, for example, another Service Mart about the scheduled flights de-
parting from an airport, to explain the relationship discovery task:



“Booking” Lex. Rel. “Flights” Prob.
Airline SYN FlightStatus.AirLine 0.79

FlightNumber SYN FlightStatus.FLTNO 0.60
ArrivalAirport SYN FlightStatus.ARRAirport 0.85
ArrivalAirport NT Airport 0.9

DepartureAirport NT Airport 0.9
BookingNR RT FlightStatus.FLTNO 0.71

Table 5. Lexical relationships between “Flights” and “Booking” Service Marts.

Flights(Airport, FlightStatus(FLTNO, Airline, ARRAirport,
ScheduledDPTDateTime, EstimatedDPTDateTime))

(2)

The normalization and annotation methods applied on the conceptual description of
“Flights” retrieve the annotations shown in Table 4. From the annotations of “Booking”
and “Flights”, we discover a set of lexical relationships between their attributes (as
shown in Table 5).

Let us consider for example, the attribute “ARRAirport” (expanded to “ArrivalAir-
port”) in “Flights”; it is split into its constituents, “Arrival” and “Airport”. The con-
stituents are disambiguated as Arrival#2 and Airport#1. Then, the semantic relation-
ship “FOR” between the meanings of the head and the modifier is selected. When we
compare the annotation of Arrival Airport in “Booking” and the annotation of Flight-
Status.ARRAirport in “Flights”, we discover a SYN relationship as the two elements
share the same meaning (Airport#1 FOR Arrival#2.). On the other hand, when we
examine the annotations of Arrival Airport in the “Booking” description and Airport in
the “Flights” description, we discover an NT relationship as the new meaning of Arrival
Airport is an NT of Airport#1.

At the logical level of Service Marts, lexical relationships may suggest useful in-
formation to build a connection pattern between them. Every connection pattern has a
conceptual name and a logical specification, consisting of a sequence of simple com-
parison predicates between pairs of attributes or sub-attributes of the two services [8].

For example, the SYN relationships discovered between “Flights” and “Booking”
(showed in Table 5) might be used to determine a connection between these two Ser-
vice Marts. This connection could be exploited on previously defined access patterns
where the “Airline”, “FlightNumber”, and “ArrivalAirport” attributes are defined as out-
put parameters in the “Booking” access pattern, while “FlightStatus.AirLine”, “Flight-
Status.FLTNO”, and “FlightStatus.ARRAirport” are input parameters in the “Flights”
access pattern.

As a first example, let us suppose we want to define a simple connection between
“Flights” and “Booking”, checking just the existence of scheduled flights at the arrival
airport of a booking: in this case, the lexical relationship ArrivalAirport SYN FlightSta-
tus.ARRAirport (as shown on Table 5) helps in the identification of which attribute has
to be connected to “ArrivalAirport”.

As a consequence, the following connection pattern can be define:



ExistsArrivalAirport(Booking,Flights):[(ArrivalAirport=ARRAirport)]

This means that “Flights” and “Booking” are connected via the connection pattern
“ExistsArrivalAirport”, which uses a join on arrival airports. The interpretation of joins
within connection patterns is existential: if the arrival airport in the “Booking” Service
Mart is equal to the ARRAirport of any scheduled flights in the “Flights” description,
the predicate is satisfied, and the two instances of “Booking” and “Flights” are com-
posed to form an instance of the result.

Suppose now, we want to define another connection between “Flights” and “Book-
ing” that controls the departure airport in addition to the arrival airport. In this case,
selecting the attribute to be connected to “DepartureAirport” is less intuitive. The set of
lexical relationships discovered comes to be an important help in this selection. In fact,
as shown in Table 5, we found the relationships DepartureAirport NT Airport that has
a hight probability value (i.e. 0.9). We can, thus, write the connection pattern:

ExistsLink(Booking,Flight):[(ArrivalAirport=ARRAirport) and
(DepartureAirport = Airport)]

4 Related Work

Works related to the issues discussed in this chapter are in the area of schema matching,
including probabilistic matching and WSD techniques.

The problem of linguistic normalization has received much attention in different
areas such as machine translation, information extraction and information retrieval. As
observed, the presence of non-dictionary words in schema element labels (including
CNs and abbreviations) may affect the quality of schema elements matching and re-
quires additional techniques to deal with [11]. Surprisingly, current schema integration
systems either do not consider the problem of abbreviation expansion at all or solve
it in a non-scalable way by including a user-defined abbreviation dictionary or by us-
ing only simple string comparison techniques [17, 2]. Dealing with short forms using a
user-defined dictionary only suffers from the lack of scalability: (a) the dictionary can-
not handle ad hoc abbreviations; (b) same abbreviations can have different expansions
depending on the domain, thus an intervention of a schema/domain expert is still re-
quired; and (c) the dictionary evolves over time and it is necessary to maintain the table
of abbreviations. Some works have tried to address the limitations of the user-defined
dictionary approach by using simple string comparison techniques (e.g. the Similarity
Flooding [18]). Syntactical methods are able to detect matches by comparing prefixes
and suffixes of literals, however, they are not able to bring to the surface the seman-
tics of abbreviations, thus, in contrast w.r.t. our method, they cannot detect a match
between synonyms like “QTY” (short form of quantity) and “amount”. Similarly to the
abbreviation expansion problem, few papers address the problem of CN interpretation
in schema matching area. The CN interpretation is manually executed or relies on a
set of manually created rules in most of the work [12, 27]. Other schema and ontology
matching tools do not interpret nor normalize CNs but they treat the constituents of
a CN in isolation [15, 27, 25]. This oversimplification leads to the discovery of false
positive relationships, thus worsens the matching results.



Several language-based methods have been experimented in the context of ontol-
ogy matching and data integration (H-MATCH [9], CUPID [17]). Some methods rely
on string-based techniques only. Other methods make use of external resources, such
as dictionaries, to find similarities between terms, but in most of the cases, without
performing any disambiguation on the terms. Unlike these methods, our approach is
based first of all on the lexical annotation of ontology/schema elements. It is only after
this phase that the similarity between elements is computed, thus overcoming the lim-
itation of methods that cannot recognize the meaning of the elements. To the best of
our knowledge, [3] is the first work that introduces WSD techniques in an integration
process. One of its main limitations is that it does not make use of normalization tech-
niques to process CNs, and this is reflected in a low coverage of the method. In the area
of NLP, where WSD is a challenging topic, combination methods have been shown to
be an effective way of improving WSD performance, in particular it has been showed
that combination systems outperform the behavior of the individual algorithms [7, 22].

Modeling uncertainty in probabilistic schema matching has been an active area of
research for some years [19]. Our method takes inspiration from [23], where the concept
of probabilistic schema mapping is introduced and an algorithm for uncertain query an-
swering is presented. The authors start from initial probabilistic schema mappings, and
without dealing with the generation of probabilistic mappings, propose a probabilistic
query answering method. The paper describes the requirements of a data integration
system to support uncertainty: uncertain schema mappings, uncertain data and uncer-
tain queries.

5 Conclusion

Lexical annotation (i.e. the explicit assignment of meanings to a schema elements w.r.t.
a lexical reference) is an effective methodology in the discovery of lexical relationships
between schema elements. Normalization helps to improve the performance of lexical
annotation by increasing the number of annotable elements.

Starting from our previous works in the context of data integration, in this chap-
ter, we presented how normalization and annotation methods work on generic object
schema. Then, we shown how the methods might be applied in the context of search
computing in order to enrich the semantics of SRF. We provided an application exam-
ple showing the effectiveness of our methods: they can profitably be used in SRF to
annotate the conceptual level of a service and to identify connection patterns between
service descriptions belonging to the same application domain.
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