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Anomalies and absence of local equilibrium, and universality, in one-dimensional particles systems
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One-dimensional systems are under intense investigation, both from theoretical and experimental points of
view, since they have rather peculiar characteristics which are of both conceptual and technological interest.
We analyze the dependence of the behavior of one-dimensional, time-reversal invariant, nonequilibrium systems
on the parameters defining their microscopic dynamics. In particular, we consider chains of identical oscillators
interacting via hard-core elastic collisions and harmonic potentials, driven by boundary Nosé-Hoover thermostats.
Their behavior mirrors qualitatively that of stochastically driven systems, showing that anomalous properties are
typical of physics in one dimension. Chaos, by itself, does not lead to standard behavior, since it does not guarantee
local thermodynamic equilibrium. A linear relation is found between density fluctuations and temperature profiles.
This link and the temporal asymmetry of fluctuations of the main observables are robust against modifications of
thermostat parameters and against perturbations of the dynamics.
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I. INTRODUCTION

Understanding the fluctuation properties of nonequilibrium
phenomena is one of the major tasks of modern statistical
physics [1–9]. To this purpose, various generalizations of
the Onsager-Machlup theory [10] have been proposed, such
as those of Refs. [8] and [9]. These papers have also moti-
vated various works on deterministic nonequilibrium particle
systems [11–15] meant to investigate the relationship be-
tween stochastic and deterministic models of nonequilibrium
physics. One basic tenet of classical statistical mechanics, in-
deed, maintains that the stochastic description is but a reduced
(mesoscopic) representation of the deterministic (microscopic)
description of a given system of interest. Nevertheless, the
relation between the two representations is far from fully
understood. For instance, nonequilibrium steady states require
thermostats, and one expects the state of a macroscopic system
to be unaffected by the details of the thermostatting mecha-
nism. Thus, even in mathematical models of nonequilibrium
steady states, one would like stochastic and deterministic ther-
mostats to lead to practically equivalent representations of the
same phenomenon. (Rieder, Lebowitz, and Lieb, speaking of
nonequilibrium systems due to stochastic boundary reservoirs
at different temperatures, express this idea as follows: “the
properties of a ‘long’ metal bar should not depend on whether
its ends are in contact with water or with wine ‘heat reservoirs’
at temperature T1 and T2” [16]. In other words, the temperature
should be the only thermodynamically relevant property of
a thermostat, in the nonequilibrium steady state.) However,
different theoretical models may capture different aspects of
a physical process, and a complete equivalence should not
be expected, except in some limiting situation, as postulated
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by various equivalence principles [17–23]. The presence of
local thermodynamic equilibrium fosters the equivalence. In-
deed, the thermodynamic relations are so largely independent
of the details of the microscopic dynamics, hence so generally
valid, precisely because of local equilibrium, cf. Sec. IV below,
Refs. [2,24–28] and references therein. In case local equilib-
rium cannot be established, one may still wish to organize
the different cases in homogeneous groups, or universality
classes [29,30], to help our understanding of nonequilibrium
phenomena.

It is, then, interesting to point out the conditions under
which the asymmetries of fluctuations characterizing the
(intrinsically irreversible) stochastic evolutions [8,31] are
present in the dynamics of time-reversal invariant particle sys-
tems. These asymmetries may indeed be experimentally and
numerically observed, and are thought to be responsible for the
irreversibility of macroscopic phenomena [31]. In Ref. [11],
the fluctuations of the current of the nonequilibrium Lorentz
gas, with large numbers N of noninteracting particles, were
found to be time symmetric, despite the clearly irreversible
behavior of the system. As explained in Ref. [14], this was
due to the lack of interactions among the particles, hence to
the lack of correlations among them [15], revealed by the large
system limit. (Asymmetric fluctuations are found at small N ,
since the averages computed over small numbers of particles
do not accurately reproduce the correlation functions [32].) On
the other hand, the absence of interactions prevents the onset
of local thermodynamic equilibrium, despite the convergence
to a given steady state. In Refs. [12–15], it is therefore argued
that systems of properly interacting particles should typically
have asymmetric fluctuation paths, as predicted for stochastic
systems. More precisely, Ref. [14] states that temporally
symmetric fluctuation paths of nonequilibrium time-reversal
invariant deterministic dynamics require the untypical condi-
tion of vanishing correlations; generically, fluctuation paths
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should then be asymmetric. Hence, deterministic reversible
and stochastic interacting particle systems are equivalent, i.e.,
belong to the same universality class, from this point of
view.

In the present paper, we continue the investigation of
these issues, by looking at variations of the nonequilibrium
Fermi-Pasta-Ulam (FPU) model introduced by Lepri, Livi, and
Politi [33]. This model consists of N anharmonic oscillators
of same mass m and positions xj , j = 1, . . . ,N , interacting
via the nearest-neighbor FPU-β potential [34],

V (q) = k2 q2

2
+ β

q4

4
, (1)

while the oscillators with j = 1 and j = N further interact
with deterministic thermostats known as Nosé-Hoover “ther-
mal baths,” and with still walls. The internal energy of the
system is then given by

H =
N∑

j=0

1

2
mq̇2

j + V (qj+1 − qj ). (2)

The equations of motion take the form

mq̈1 = F (q1 − q0) − F (q2 − q1) − ξ�q̇1,

mq̈j = F (qj − qj−1) − F (qj+1 − qj ),for

j = 2, . . . ,N − 1, (3)

mq̈N = F (qN − qN−1) − F (qN+1 − qN ) − ξr q̇N ,

where q0 = qN+1 = 0 represent the walls and m is the mass
of one particle, which we take to be unitary, so that velocities
q̇i and momenta pi represent the same quantity. Moreover,
the interparticle forces are obtained differentiating the po-
tential, F (q) = −V ′(q), and the Nosé-Hoover thermostats, at
“temperatures” Tr and T� with response times θr and θ�, are
implemented by the variables ξ�,ξr , which obey

ξ̇r = 1

θ2
r

(
q̇2

N

Tr

− 1

)
, ξ̇� = 1

θ2
�

(
q̇2

1

T�

− 1

)
. (4)

The nonequilibrium FPU-β model is time-reversal invariant,
but dissipative, in the sense that the time average of the diver-
gence of the equations of motion, −(〈ξr〉 + 〈ξ�〉), is negative.
Therefore, the sum of the Lyapunov exponents is negative, the
phase space volumes contract, and the system approaches in
time a nonequilibrium steady state, characterized by a singular
phase-space probability distribution.

In the theoretical calculations, the motion of particles is
commonly referred to the quantity a, which is the mechanical
equilibrium distance between two nearest neighbors [25].
Then, the mean displacement of the position of particle j

from its equilibrium position ja is often assumed to be small,
in order to define microscopically the physical observables.
It will be pointed out that this is not appropriate, except for
particularly small driving forces.

A quantity of interest is the “local virial” [33]. For
particles in the bulk (i = 2, . . . ,N − 1), this is the time
average of the product of the displacement of each particle,
times the net force acting on it, 〈qi(Fi+1 − Fi)〉, where we
have set Fi = F (qi − qi−1) for simplicity. If the anharmonic
part of V is replaced by hard-core elastic collisions, the
interaction between particles is purely harmonic, and one has

Fi − Fi+1 = k2(qi−1 − 2qi + qi+1). Therefore, the local virial
of particles in the bulk is expressed by

k2〈−qi(qi−1 − 2qi + qi+1)〉, i = 2, . . . ,N − 1

while for i = 1,N it reads

〈q1(−ξLq̇1 − k2(2q1 − q2))〉,
〈qN (−ξRq̇N − k2(2qN − qN−1))〉.

An important feature of this model is that its long-wavelength
Fourier modes, representing the slow relaxational dynamics,
may be considered as approximately independent of the short-
wavelength modes, representing the fast dynamics [25], i.e.,
representing some sort of noise added to the slow dynamics.
(See, e.g. Ref. [35] for a discussion of the relation between fast
and slow variables.) In the slow dynamics, one may further sep-
arate a conservative nonvanishing harmonic part, which cannot
contribute to transport phenomena, from a mode interaction
part [25,36,37]. From this standpoint, the nonequilibrium FPU
system is similar to the nonequilibrium Lorentz gas, as argued
in Ref. [14], but the presence of nonvanishing correlations,
even if decaying in time, provides a mechanism for asymmetric
fluctuation paths, within the corresponding decorrelation time
scales (see Refs. [13] and [14]). (The role of correlations
for temporal asymmetries has been emphasized in Ref. [15],
although in the different framework of homogeneously driven
and thermostatted systems.)

In this paper, we consider different values of k2 and a
different kind of anharmonicity: that provided by hard-core
elastic collisions. We also consider the limiting cases in
which either the harmonic or the anharmonic interactions
vanish. These limiting cases share indeed some peculiarities
of noninteracting particle systems, and constitute good can-
didates for the study of the onset of temporally symmetric
fluctuations [14,15]. The fact that all particles are identical
further means that there is no disorder in our chains, hence
there are no reasons for chaos, mixing, or ergodicity, except
those that may be contributed by the boundaries. We will see
that nonequilibrium boundary conditions make correlations
develop even in the bulk of such particles chains, and lead to
asymmetric fluctuations. The results presented here lead to the
following main conclusions:

(a) The kinetic temperature profiles are linearly related to
the deviations of the mean positions of the particles from their
equilibrium values, hence to the deviations from uniformity of
the density profiles (Sec. II):

Ti = β1〈xi+1 − xi〉 + β2. (5)

This relation and the temporal asymmetry of fluctuations
are robust against modifications of the parameters of the
thermostats and of the interaction potentials, besides being
robust against stochastic perturbations of the deterministic
dynamics (Appendix B).

(b) A comparison between our results for deterministic,
time-reversal invariant dynamics and those found in the
literature for chains with stochastic thermostats shows that
the behaviors concerning the two kinds of thermostats are
only qualitatively similar. The two kinds of thermostats do not
belong to the same universality class, except in a coarse sense;
equivalence is then only expected in the equilibrium limit.
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Other relevant conclusions include the following:
(c) The deviations of the mean positions of the particles

from their equilibrium values are large, except in the purely
harmonic case which, however, does not sustain a temperature
gradient. Hence the microscopic definitions of nonequilibrium
thermodynamic observables, based on small deviations, are
generally impaired (Sec. II).

(d) As in stochastically thermostatted systems, investigated
by other authors, the properties of steady states depend
substantially on the microscopic details of the dynamics,
showing that the absence of genuine local thermodynamic
equilibrium is typical of physics in one dimension (1D)
(Sec. II).

(e) As in the stochastic case, temporal asymmetries are
ubiquitous in deterministic, time-reversal invariant, nonequi-
librium particle systems, as long as correlations among
particles are present. Such asymmetries are not restricted to
large deviations in the large system limit and do not require
local thermodynamic equilibrium (Sec. III).

(f) At variance with common expectations, Nosé-Hoover
thermostats alter the bulk behavior, even when the bulk
resembles a noninteracting particle system, for both small
and large temperature gradients. This is a manifestation of
the nonlocality generically observed in nonequilibrium steady
states [8,38–40] (Sec. IV).

(g) Chaos by itself is not sufficient to establish standard
behavior in 1D systems, besides not even being necessary [33,
41–43] (Sec. V).

In Sec. II, we consider hard spheres on a line, connected in
pairs by harmonic forces. In Sec. III, the temporal symmetries
of the fluctuations of this model are analyzed. In Sec. IV, the
limiting cases of purely harmonic forces and purely elastic
collisions are considered. In Sec. V, the role of chaos is
investigated. Section VI is devoted to concluding remarks.
Appendix A quantifies the deviations of the temperature
profiles from a theoretical curve. Appendix B gives results
about stochastically perturbed dynamics.

II. HARD-CORE AND HARMONIC POTENTIALS

In the present case, the harmonic part of the potential of
Eq. (1) is retained, while the term proportional to β is replaced
by hard-core elastic collisions between particles of radius
r = 1. This model shares some features with noninteracting
particle systems. Indeed, isolated 1D systems of elastic
particles of equal mass and size exchange their momenta in
such a way that the overall motion is equivalent to that of
a system of noninteracting particles, in which each particle
preserves its momentum [44]. Moreover, in isolated systems,
the harmonic potential should not constitute an important
source of correlations, since the oscillations it entails amount
to independent normal modes. Nevertheless, two features dis-
tinguish our model from systems of noninteracting particles:
(i) The elongation of the harmonic springs discriminates the
case in which particles bounce back at collisions from the case
in which they pass through one another; and (ii) the presence of
the thermostats at the boundaries of the chain spoil the normal
mode decomposition of the purely harmonic motion.

The question which we have investigated numerically is
how crucially these facts affect the behavior of the system.
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FIG. 1. (Color online) Kinetic temperature (left-hand panel) and
local virial (right-hand panel) profiles for different fractions (1/4,
1/2, 3/4, 1) of the simulation length tmax = 2.5 × 105 time steps of
size h = 10−4, with N = 400, k2 = 1, θ� = θr = 1. The 〈p2

i 〉 profile
reaches rather rapidly its asymptotic form (the curves for the four
simulation lengths are indistinguishable), while the virial expression
takes longer to converge. Because of hard-core interactions, kinetic
temperature and virial profiles do not coincide [49].

To verify that the steady state is indeed achieved, we have
computed the local “temperatures,” 〈p2

i 〉, and the virial profiles,
at different times along a simulation of length tmax. We
have found that the temperature profile rapidly approaches
its asymptotic form (a quarter of our tmax suffices for good
accuracy), while the virial expression takes much longer to
settle down—cf. Fig. 1 for the case with N = 400, k2 = 1,
θ� = θr = 1.

Similar profiles have been found in numerous 1D nonequi-
librium chains of oscillators, with anharmonic interaction
potentials, such as the FPU-β chains [25,45,46]. In particular,
assuming that dynamical chaos practically amounts to some
degree of stochasticity in the evolution, our model should
behave similarly to that of Ref. [27], which has stochastic
boundary thermostats, harmonic interactions, and stochastic
exchanges of momenta between nearest neighbors, meant
to mimic (momentum and energy preserving) hard-core
interactions. In a suitable continuum limit, the corresponding
energy profile takes the form [27]

T (x) = T� + Tr

2
+

√
2 (T� − Tr ) (

√
8 − 1)ζ (3/2)

×
∞∑

n=0

(2n + 1)−3/2 cos

(
(2n + 1)π

2
(x + 1)

)
, (6)

where ζ is the Riemann ζ function, and the space variable is
rescaled so that the left end of the chain corresponds to x = −1
while the right end corresponds to x = 1.

However, as shown by the left panel of Fig. 2, and deduced
from a comparison of our Fig. 1 with Fig. 2 of Ref. [27],
the temperature profiles obtained by Lepri, Mejı́a-Monasterio,
and Politi are not completely equivalent to ours. In the first
place, the slope of profile (6) has square-root divergences at the
boundaries, which are less steep than ours. Second, the profiles
of Ref. [27] are odd with respect to the center of the chain, even
at finite N , while our profiles are not. One further difference is
the simple k2 dependence of the finite N temperature profiles
of Ref. [27], as opposed to the strongly irregular dependence
of our profiles, cf. the center panel of Fig. 2. To investigate
this question, we have analyzed the case with k2 = 1, T� =
320, Tr = 20, θ� = θr = 1, for N = 100, 200, 250, 300, 400.
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FIG. 2. (Color online) Comparison between the temperature profile T (x), Eq. (6), of Ref. [27] (continuous line) and those of our deterministic
models, for N = 100, T� = 320, Tr = 20, and decreasing k2 (left-hand panel). Dependence of the deterministic profile on k2 (central panel).
For k2 → 0, it tends to the k2 = 0 profile in an irregular fashion. Arrows indicate the values of k2. Deterministic profiles as functions of T�,
with k2 = 0.1 and Tr = 20 (right-hand panel).

Differently from Ref. [27], we found no evidence of the N−1/3

rate of convergence toward the asymptotic profile T (x) and,
in most of the chain, the difference between our profiles and
T (x) was observed to grow with N . Therefore, as shown in
Appendix A, either a scaling regime toward T (x) sets in at N

larger than 400, or our asymptotic profiles will not correspond
to those of Ref. [27]. On the other hand, Appendix A shows
that our profiles converge rapidly to a given asymptotic profile,
which is not odd. This may be related to the fact that, differently
from the stochastic case, the energy exchange between the
Nosé-Hoover boundary thermostats and the 1D (or almost
1D) systems of particles is more efficient at the hot side than
at the cold side—cf. Ref. [47] and Sec. IV below. (In Ref. [47]
it was observed that small temperature gradients allow the
cold thermostat to behave as “thermodynamically” as the hot
thermostat. The boundary thermostats of 1D chains act only on
momentum degrees of freedom, making it difficult, especially
at large temperature gradients, for local equipartition to be
established, except in the presence of mass diffusion [48].
However, the difference between T and the profiles obtained by
Nosé-Hoover boundary thermostats persists at small gradients,
as further evidenced in Sec. IV.)

Despite these facts, the temperature profiles concerning
nonequilibrium chains of oscillators typically enjoy the same
qualitative behavior, consisting of steep curves at the bound-
aries, due to contact resistance, interpolated by almost straight
lines in the bulk. The nature of this behavior is far from
obvious—cf. the discussion in Refs. [27] and [46]. In any event,
the strong and irregular dependence of the steady states of
both deterministic and stochastic 1D systems, on microscopic
details of the dynamics, as well as the violations of Fourier
law, reveal the absence of genuine local thermodynamic
equilibrium and of diffusion (see, e.g., Refs. [16,25,26,28,45]).

For certain observables, this dependence on the micro-
scopic mechanisms, hence the lack of local thermodynamic
equilibrium, persists in the large N limit [16,27,28]. Simi-
larly, completely different situations are determined by the
boundary conditions, such as the divergence of the conduc-
tivity of disordered harmonic chains with free boundaries,
in the thermodynamic limit, as opposed to its vanishing
trend in chains with fixed boundaries [28,30]. Moreover,

the scaling behavior of the conductivity with system size
crucially depends on the spectral properties of the heat
baths [50].

Rieder, Lebowitz, and Lieb interpreted this kind of results
as unphysical [16]. Indeed, were 1D chains of oscillators
to represent macroscopic objects enjoying thermodynamic
properties, the thermostat dependence of the heat fluxes of
Ref. [16], or of our temperature profiles, would be unrealistic.
However, recent theoretical and technological developments
allow different interpretations. The study of nearly 1D sys-
tems, especially with nonmacroscopic numbers of elementary
constituents, indicates that standard thermodynamic relations
typically fail to describe their behavior, although a complete
understanding of their properties is currently missing (see, e.g.,
Refs. [30,46,51,52] and references therein). Thus, a possible
absence of local thermodynamic equilibrium does not need
to be unphysical. Indeed, local thermodynamic equilibrium
requires a sufficiently fast decay of correlations of all relevant
observables, which would lead to diffusive transport. But this is
seldom afforded by (quasi-) 1D systems [26,53] (for instance,
certain correlations never decay in the narrow channels of
Ref. [53] and in our chains of hard-core particles, since
the particle order is preserved in time. While this is not
a problem per se—order is preserved in 3D crystals as
well—it violates the hypothesis of molecular chaos and bears
substantial consequences on transport phenomena), which
include modern technological artifacts as well as structures
found in nature. It is also known that 1D systems are affected
by peculiarities such as the cumulative O(N ) fluctuations,
about the particle equilibrium positions [54]. These frus-
trate the microscopic definitions of observables based on
the assumption of small fluctuations and, more importantly,
are at odds with the properties of solids. Furthermore, we have
found that temperature gradients induce large displacements
of the average equilibrium positions, making the distribution
of matter inhomogeneous. For three different values of k2, the
left-hand panel of Fig. 3 portrays these average deviations,
〈qi〉 = 〈xi − ai〉, for i = 1, . . . ,N = 100. The right-hand
panel of the figure portrays the quantity 〈xi+1 − xi〉, which is
related to the inverse of the density of particles. One observes
that nonequilibrium boundary conditions lead to a shift of all
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FIG. 3. (Color online) Mean displacement 〈qi〉k2 from the equilib-
rium centers of oscillation of the particles, ai (left-hand panel). Mean
coordinate difference 〈xi+1 − xi〉, for several values of k2 (right-hand
panel). The higher this difference, the lower the particle density. In
both panels N = 100, T� = 320, Tr = 20.

particles toward the cold side of the chain, hence to a density
gradient.

Denoting by 〈·〉k2 the averages computed with elastic
constant equal to k2, closer examination shows the fol-
lowing: (i) All 〈qi〉k2 are positive and, in the bulk, are
approximated by a parabola with maximum at i > N/2 for
k2 �= 0, while the maximum of 〈qi〉0 occurs at i = N/2;
(ii) consistently, 〈qN 〉k2 > 〈q1〉k2 for k2 �= 0, while 〈qN 〉0 =
〈q1〉0; (iii) 〈qN 〉k2 = 〈qN 〉k̃2 for all pairs k2,k̃2, while 〈q1〉k2 =
〈q1〉k̃2 only if both k2,k̃2 �= 0; and (iv) the dependence of
〈qi〉k2 on k2 is not monotonic, as the temperature profile is
not.

Therefore, the systems with pure hard-sphere interactions,
whose bulk corresponds to noninteracting particles, behave
differently from the systems with both hard-core and harmonic
interactions. Indeed, while the temperature profiles at k2 = 0
do not substantially differ from those at k2 �= 0, the net energy
transfer with k2 = 0 is singular, since it is equivalent to that of
a single particle, bouncing back and forth between the hot and
cold walls, independently of the value of N .

Recalling that a = 5 in our calculations, these plots show
that the steady-state (average) particle distribution is not
uniform and that the deviations of particle positions from
their equilibrium values are large and correlated to the kinetic
temperature profiles. Indeed, 〈xi+1 − xi〉 which, apart from an
unessential additive constant, is the discretized derivative of
〈qi〉, qualitatively approximates the typical temperature field
(compare, e.g., the right-hand panel of Fig. 3 with Figs. 1 and

2), hence a linear relation between the two quantities may be
surmised:

Ti = β1〈xi+1 − xi〉 + β2. (7)

The good agreement between Ti and the kinetic temperature
profile 〈p2

i 〉 is demonstrated in Fig. 4.
This relation between temperature profiles and rescaled

average displacements of neighboring particles is robust
against modifications of all the parameters of the dynamics,
including thermostat parameters and interaction potentials,
besides being robust against (small and large) stochastic
perturbations of the dynamics—cf. Appendix B. Apart from
the temporal asymmetries of the fluctuations of the main
observables, considered in the next section, this is the only
result which does not show a delicate dependence on the details
of the microscopic dynamics.

III. TEMPORAL SYMMETRY OF FLUCTUATION PATHS

In the literature, various notions of fluctuation path have
been investigated. Given the substantial equivalence of the
results based on such different notions, we adopt the first
definition of fluctuation-relaxation path of Ref. [14], denoted
by FR1. (See Refs. [13] and [14] for a discussion of the ambi-
guities in the definitions of fluctuation paths in deterministic
dynamics. Despite such ambiguities, the different notions of
fluctuation path have led to analogous conclusions and can
be used interchangeably to asses the symmetry properties
of nonequilibrium fluctuations. Furthermore, the different
notions coincide in the large N limit, cf. Refs. [12–15].) Denote
by M the phase space of our system, by St : M → M the
time evolution operator, and by X : M → IR an observable of
interest. Consider an initial phase � ∈ M, in the support of the
steady-state phase-space probability distribution, and denote
by Xt the quantity X(St�), under the assumption that all but
a set of vanishing probability, such initial conditions, enjoy
the same statistics. Choose a fluctuation value T (X). The FR1
fluctuation path is defined as follows:

Definition. Assume that Xt̂ = T (X). Then, for any t0,τ >

0, the FR1 fluctuation path of duration 2t0 based at t̂ is the
curve

{Xt̂+τ : τ ∈ [−t0,t0]}
in the (τ,X) plane.
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FIG. 4. (Color online) Comparison between temperature profiles (red circles) and rescaled average displacements of neighboring particles
β1〈xi+1 − xi〉 + β2 (blue stars), for N = 100, T� = 320, Tr = 20. The constants β1,β2 are obtained by a least-squares fit of the data of Fig. 3.
The values of the elastic constant are k2 = 0 (left-hand panel), k2 = 0.1 (center panel), and k2 = 1 (right-hand panel).
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FIG. 5. (Color online) Average fluctuations of density in the center of the chain, for different chain lengths, N = 100 (left-hand panel),
N = 200 (center panel), N = 400 (right-hand panel), and different values of the elastic constant, k2. The fluctuation paths are temporally
asymmetric and not sensibly affected by the value of k2.

As in Ref. [14], the symmetry properties of the fluctuation
paths of the observable X are here assessed setting a threshold
T (X) = IE(X) + 3σ (X), three standard deviations above the
mean IE(X), while the width of the observation time interval is
taken to be 2t0 = 2. Then, all such time intervals are translated
by −t̂ , so that the centers of all fluctuations coincide at t = 0.

The first fluctuating observable we consider is the local
dimensionless density of particles in the center of the chain,
defined in a box of size L, ideally with 1 
 L 
 N :

ρ = ρ0
−1 L

xF − xI

, xI = min
j∈L

xj , xF = max
j∈L

xj , (8)

where ρ0 = L/(L − 1)a is the equilibrium density.
For a family of n (time-translated) fluctuations, {ρ(s)(t),t ∈

[−t0,t0]}ns=1, we obtained the average path ρτ subdividing
[−t0,t0] in b0 = 100 bins, and by computing

ρτ = 1

nm(τ )

n∑
s=1

t0∑
t=−t0

ρs(t)Cτ (t), (9)

where τ labels a bin, and Cτ (t) = 1 if t belongs to the τ th
bin, while Cτ (t) = 0 if it does not. The quantity m(τ ) is the
number of integration time steps which make a bin. (In our
simulations, the integration time step equals 10−3 for small N ,
and 10−4 for large N , so that the numerical errors are of the
same order.)

Figure 5 represents the normalized average paths, Rτ =
(ρτ − min ρτ )/(max ρτ − min ρτ ), which start at zero in the
first bin and reach 1, their maximum value, in the central bin.
The result is that the average path is temporally asymmetric,
with growth steeper than relaxation, and that, differently from
the observables considered in Sec. II, it is not appreciably
affected by k2.

This is consistent with Refs. [14] and [15], in which
asymmetric paths are expected to be typical of nonequilibrium
steady states of interacting particle systems. In Fig. 5, the
asymmetry seems to grow with N , as in Ref. [14], but a
comparison of cases with different N is frustrated by the
unclear dependence on N of the many parameters entering the
definition of the asymmetry, like T (X) and t0. For instance,
Fig. 5 seems to imply that average growth (τ < 0) and
relaxation (τ > 0) tend to become linear as N increases,
but this may be due to the fact that the observation time t0,
which ought to be connected with the correlation decay rate,
increases with N . The right-hand panel of Fig. 5 would then
only illustrate a smaller fraction of the average path than that
of the left panel. As a matter of fact, Fig. 6 shows that the
instantaneous asymmetry, δτ = [ρτ − ρ−τ ], almost saturates
with growing τ , but it saturates at larger values of τ for larger
N . On the other hand, it is not clear how t0 should be modified
with N ; it is only obvious that [ρτ − ρ−τ ] must decrease back
to 0, for τ sufficiently long that correlations have decayed [15].
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FIG. 6. (Color online) Instantaneous asymmetry of average density fluctuations, δτ = [ρτ − ρ−τ ], for different values of the elastic constant
k2, T� = 320, Tr = 20, and N = 100 (left-hand panel), N = 200 (center panel), N = 400 (right-hand panel). The asymmetry saturates after
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TABLE I. Probability of positive asymmetry (the fraction of
fluctuation paths with ν > 0), for N = 100, T� = 320, Tr = 20, as a
function of the elastic constant k2.

k2 2 1 0.8 0.5 0.2 0.1 0

P (ν > 0) 0.5660 0.5716 0.5486 0.5710 0.5648 0.5462 0.5823

Unfortunately, that time is too long to allow us to collect a
statistically relevant sample of fluctuation paths.

Let us introduce the asymmetry ν, as a normalized cumula-
tive difference between fluctuation and relaxation trajectories,

ν = 1

ρmax − ρmin

[∑
t>0

ρt −
∑
t<0

ρt

]
. (10)

The probability that this quantity be positive, P (ν) > 0, is
reported in Table I for N = 100, where one observes that, from
this point of view, the k2 = 0 case does not differ substantially
from the k2 > 0 cases.

The above figures and table suggest that nonequilibrium
steady states of identical hard spheres on a line do not behave
as independent particles, although in equilibrium, when the
thermostats are removed, they do. Away from equilibrium,
particles appear to develop space correlations, which reach
the bulk, eventually connecting them to the boundaries,
even in the absence of springs. Therefore, the observed
asymmetries reveal that a form of nonlocality (long-range
correlations) [38–40,55] is common in nonequilibrium states
of both deterministic and stochastic models.

Another observable of interest is the heat flux. To define the
heat flux in the presence of hard-core collisions, we adopt the
method of planes, developed by Todd, Daivis, and Evans [56],
according to which the fluctuating heat flow Jq , through a
plane transversal to the medium, can be decomposed as the
sum of two terms:

Jq(x,t) = JK
q (x,t) + JU

q (x,t). (11)

The term JK
q represents the kinetic part of the heat flux, which

is expressed by

JK
q (x,t) = 1

A

N∑
i=1

∑
mi

Uiδ
(
t − ti,mi

)
sgn

[
cxi

(
ti,mi

)]
(12)

where i denotes a particle crossing the plane at (discrete) times
ti,mi

, cxi is the component along direction x of the particle’s
velocity with respect to the streaming velocity, A is the area
of the plane (if the system is 3D), and

Ui = m

2
[vi − u(xi)]

2 + 1

2
φij (13)

is the internal energy concerning particle i. Moreover, vi is
the velocity of the particle in the laboratory frame, u(xi) is
the streaming velocity at position xi , and φij is the interaction
potential between particles i and j . The term JU

q represents
the potential part of the heat flux, which is defined by

JU
q (x,t) = − 1

4A

N∑
i,j=1

[vi − u(xi)]

×Fij [sgn(x − xi) − sgn(x − xj )], (14)
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FIG. 7. (Color online) Average fluctuations of J U
q , for various

values of k2, with N = 100, T� = 320, Tr = 20, and θ� = θr = 1.
The fluctuations have been rescaled, so that they all vanish at time
−τ , and take the peak value 1 at time 0.

where Fij is the force that particle j exerts on particle i.
Figure 7 shows the average fluctuations of JU

q for the
cases with N = 100, T� = 320, Tr = 20, and for different
values of k2. Analogously to the density average path, the
average JU

q fluctuation rises faster than it relaxes, and is not
appreciably affected by the value of k2. Results similar to
those reported have been obtained for all different parameter
choices, even with k2 = 0, when the bulk behavior should
have closely resembled that of noninteracting particles. This
is consistent with the discussion of the single file behavior
of Ref. [53], according to which the order of particles
introduces persistent correlations, even in the presence of
positive Lyapunov exponents. The results appear to be robust
and independent of the time-reversal parity of the observable
at hand, since local density and heat flux have opposite parity.

The results of this section definitely prove that asymmetric
fluctuation paths are typical of deterministic, time-reversal
invariant nonequilibrium models.

IV. HARMONIC CHAIN IN A NONEQUILIBRIUM STEADY
STATE

In this section we consider the model studied by Rieder,
Lebowitz, and Lieb [16], with the stochastic boundary ther-
mostats replaced by Nosé-Hoover thermostats, which make
the dynamics time-reversal invariant. The oscillators are thus
coupled by the potential energy V of Eq. (1), with β = 0. In
equilibrium, this system is equivalent to a set of independent
particles, the normal modes.

If applicable, the local version of the virial theorem now
implies [33]〈

p2
i

〉 = −〈(Fi − Fi+1)qi〉, i = 2, . . . ,N − 1. (15)

Clearly, in the absence of thermostats, the local virial theorem
does apply to each independent mode of oscillation, but in
general this has to be checked. As in the case of stochastic
baths considered by Ref. [16], we find that Eq. (15) holds and
that the kinetic temperature profile is characterized by jumps
at the boundaries, and by approximately flat profiles in the
bulk. As in Ref. [16], harmonic chains do not sustain a kinetic
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FIG. 8. (Color online) Temperature profile as a function of the thermostat characteristic time θ . The shorter θ , the stronger the coupling
between particle and thermostat. Results at short θ = θ� = θr are reported in the left-hand half of the left-hand panel, while results at large θ

are reported in the right-hand half. After some oscillation, decreasing θ makes the profile settle at approximately the value 240, which is much
closer to T� = 320 than to Tr = 20. Note the apparent discontinuity of the profile between θ = 0.5 and θ = 0.3, which leads to the flat bulk
profile at (T� + Tr )/2. The right-hand panel portrays the profiles with θ� = 1 and decreasing θr : The system equilibrates with the hot thermostat
independently of θr . In both panels N = 100.

temperature gradient but, differently from the case of Ref. [16],
the approximate equipartition of energy in the bulk does not
correspond to the mean of the left and right temperatures: It
stays closer to the higher temperature, cf. Fig. 8.

Some dependence of the bulk behavior on the character-
istics of the thermostats is not surprising: The choice of the
parameters determines the efficiency of the energy exchange
between thermostats and thermostatted system. This, in turn,
may affect the behavior of a nonmacroscopic system since,
by definition, this does not enjoy any local thermodynamic
equilibrium. In our case, the relevant parameters consist of the
target temperatures T� and Tr , of the thermostat characteristic
times θ� and θr , and of the elastic constant k2. We have
studied the behavior of the profile in the θ = θ� = θr → 0
limit, the limit of strong coupling between thermostats and
thermostatted particles, as well as in weak coupling cases.
Figure 8 (left-hand panel) shows that the kinetic temperature
profile settles closer to T� than to Tr , at all values of θ , except
at θ = 0.3. The situation does not change if θr is shorter than

θ�, so that the cold thermostat is more strongly coupled to the
system than the hot thermostat, as illustrated by the right-hand
panel of Fig. 8. For θ = 0.3, the deterministic time-reversal
invariant Nosé-Hoover thermostats behave most similarly to
the irreversible stochastic ones of Ref. [16], as far as the
kinetic temperature profile is concerned. Note, in particular, the
flatness of the θ = 0.3 profile, and the temperature overshoot
on the cold side, predicted by the theory of Ref. [16]. The
equivalence with the results for stochastic thermostats of
Ref. [16] is not complete, however, because the temperature
does not overshoot in the hot side.

This is consistent with the observations of Ref. [47], on a
system of rotating disks and pointlike particles, thermostatted
by Nosé-Hoover mechanisms acting on the boundary disks.
There, the hotter side reaches local equilibrium more easily
than the colder one, even if not necessarily at the target
temperature of the thermostat. The thermostat closer to an
equilibrium state (as it should be) seems, then, more efficient
in driving the bulk of the chain than the other thermostat. In
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FIG. 9. (Color online) Temperature profile as a function of θ = θ� = θr , for N = 100, T� = 320, Tr = 300. For high θ , i.e., weak coupling,
it settles within [Tr,T�], while for low θ , i.e., strong coupling, it reaches even lower than Tr . The profile depends quite irregularly on θ . For
θ = 0.7 and θ = 1 the bulk temperature settles close to (T� + Tr )/2.
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FIG. 10. (Color online) Average coordinates difference between
nearest neighbors, 〈xi+1 − xi〉, for k2 = 1 and equilibrium distance
a = 5 (left-hand panel). Average displacement 〈qi〉 from the equi-
librium position, ai (right-hand panel). In both panels N = 100,
T� = 320, Tr = 20, k2 = 1.

Ref. [47], it was further observed that small gradients lead
to standard behavior of the cold thermostat. Differently, in
our case, the temperature profiles remain quite irregular even
under relatively small gradients, and only for a limited set of
θ ’s do they lie close to (T� + Tr )/2. The profiles worsen in the
small θ limit, i.e., for strong couplings, when they even brim
over the interval [Tr,T�]—cf. Fig. 9. The strong dependence
on the microscopic parameters is confirmed by the departure
at large θ of the bulk profiles from the mean of the boundary
values—cf. the case θ = 2 in the left-hand panel of Fig. 9.

To further assess the relation between our chains and those
of Ref. [16] we have produced the histograms of pi , and
have verified that they are not Gaussian, although to different
degrees for the different i’s. Indeed, the distributions of p1 and
pN/2 differ much less from a normal distribution than the distri-
bution of pN does (N is the particle interacting with the cold
bath at temperature T�), as indicated by normal distribution
plots not reported here. Also, local Gaussian distributions are
better approximated at both ends of the chain, as in Ref. [47],
if the temperature gradient is reduced. Increasing k2 without
changing the thermostat properties is another route toward
approximately Gaussian local distributions. This confirms that,
closer to equilibrium, it is easier to obtain the equivalence
between deterministic and stochastic thermostats, as generally
expected [26], although the temperature profiles demonstrate
that complete equivalence is not to be expected.

The peculiar behavior of the purely harmonic nonequilib-
rium chains is evidenced also by quantities such as 〈xi+1 − xi〉
and 〈qi〉, whose profiles are much more irregular than those

TABLE II. Largest Lyapunov exponent, λ1, and average phase-
space contraction rate, 〈χ〉, as functions of T�, for purely harmonic
chains with N = 100, k2 = 1, and Tr = 20. Standard deviations of
the computed values are reported.

T� λ1 〈χ〉
420 0.007 71 ± 0.5 × 10−4 2.7988
370 0.007 69 ± 0.6 × 10−4 2.5737
320 0.007 79 ± 0.7 × 10−4 2.3382
220 0.007 92 ± 0.5 × 10−4 1.7644
120 0.009 28 ± 0.1 × 10−3 1.0726
80 0.011 01 ± 0.1 × 10−3 0.7194
50 0.013 38 ± 0.2 × 10−3 0.3775
20 0.013 28 ± 0.1 × 10−3 6.54 × 10−5

TABLE III. Largest Lyapunov exponent and dissipation for the
purely harmonic case, with k2 = 1, and fixed temperature difference:
Tr = 20,T� = 320. The global gradient decreases with N , as λ1, while
〈χ〉 is practically constant.

N λ1 〈χ〉
50 0.0120 ± 0.8 × 10−4 2.3013
100 0.00779 ± 0.7 × 10−4 2.3382
150 0.0062 ± 0.8 × 10−4 2.3286
200 0.0048 ± 0.1 × 10−3 2.3296

of Fig. 3— cf. Fig. 10. Here, differently from Fig. 3,
〈qi〉 almost vanishes, consistently with the approximately
equilibrium state of the bulk of the chain. (Note that this
state only looks close to equilibrium: For instance, position-
velocity correlations differ significantly from their equilibrium
counterparts [30].)

V. LYAPUNOV EXPONENTS: THE HARMONIC AND THE
HARD-CORE CASES

In this section we consider the Lyapunov exponents of
the two limiting cases of purely harmonic and purely hard-
core interactions. These exponents have been computed in
tangent space, with the usual algorithm devised by Benettin
et al. [57]. The phase-space contraction rate χ , i.e., the
dynamical dissipation, can be separately computed as the
negative of the average of the divergence of the vector field,
neglecting the instantaneous elastic collisions, which do not
contribute to the variations of the phase-space volumes [58].
In our case, 〈χ〉 = (〈ξ�〉 + 〈ξr〉) and 〈χ〉 � 0, where equality
characterizes equilibrium states, while 〈χ〉 > 0 characterizes
nonequilibrium states.

The motion of purely harmonic chains, in the absence of
thermostats, is Hamiltonian and fully integrable, hence all
Lyapunov exponents vanish. Table II shows the values of the
largest Lyapunov exponent, λ1, for several different kinetic
temperatures at the left end of a chain of 100 particles, while
the right end is subjected to a thermostat with Tr = 20.

It is interesting to note that even at equilibrium, i.e.,
for T� = Tr , the presence of the thermostats makes chaotic
the dynamics. Indeed, λ1 is higher at lower-temperature
differences, since higher dissipations imply smaller attractors
and more orderly states. It also appears that λ1 saturates as a
function of the temperature difference, while the dissipation
keeps increasing significantly. As a function of the relaxation
times of the thermostats, the largest Lyapunov exponent
decreases monotonically. For instance, the largest exponent

TABLE IV. Largest Lyapunov exponent and dissipation for the
purely harmonic case, with k2 = 1, Tr = 20, and fixed global
temperature gradient (T� − Tr )/N = 3.

N λ1 〈χ〉
50 0.0131 ± 0.68 × 10−4 1.4384
100 0.0078 ± 0.73 × 10−4 2.3382
150 0.0057 ± 0.96 × 10−4 3.0205
200 0.0050 ± 0.67 × 10−4 3.6501
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for N = 100 and T� = 320 decreases from the value λ1 =
0.007 79 reported in Table II for θ = 1 to λ1 = 0.000 444 for
θ = 10. This is a consequence of the fact that the motion
of single oscillators is integrable and that large θ practically
decouples the thermostats from the system of interest. Table III
reports the computed values of λ1 and χ , at fixed temperature
difference and varying chain length. The Lyapunov exponent
decreases with N , hence with the temperature gradient, while
the dissipation 〈χ〉 is practically constant.

The picture is completed by the behavior with N at fixed
temperature gradient—cf. Table IV. (As observed in, e.g.,
Ref. [59], the local kinetic temperature gradient inside the
chain is not a useful variable, in this case, because it fluctuates.)
The data indicate that two competing effects contribute to the
values of the largest Lyapunov exponent: (a) Decreasing the
temperature gradient, the system approaches the equilibrium
state, which enjoys the largest value of λ1 afforded by a
chain of given length; (b) increasing N reduces the impact
of the thermostats on the bulk of the chain, which then
better approximates an isolated, fully integrable system, with
vanishing Lyapunov exponents.

As λ1 does not grow indefinitely with (T� − Tr ), increasing
N leads to a decrease of λ1. The dissipation 〈χ〉, on the other
hand, is more directly related to the value of (T� − Tr ), and
grows with it.

An interesting feature of the purely harmonic case, with
Nosé-Hoover thermostats at different temperatures, is that
nonchaotic dynamics can at least be realized in short chains.
For instance, in the case with N = 3, T� = 80, k2 = 1, and
Tr = 20, all Lyapunov exponents are negative, except for
one vanishing exponent, and the motion is periodic. As a
matter of fact, even some cases with larger N might share
these features, but their largest exponents appear to be only
marginally positive, hence hard to distinguish from vanishing
values. Differently, the case with N = 4 has clearly positive
exponents.

Consider now the case in which particles interact via
hard-core elastic collisions only, which, in the absence of
thermostats, would be the other limiting, fully integrable case.
The largest exponents are commonly found to be positive and
behave as in the purely harmonic case—cf. Table V.

The comparison between hard-core and purely harmonic
cases illustrates one interesting fact, consistent with the
observations of Ref. [41]. Both kinds of systems have positive
Lyapunov exponents, but the purely harmonic case shows a

TABLE V. Largest Lyapunov exponent and dynamical dissipation
for hard particles with k2 = 0, N = 100, and Tr = 20. The behaviors
of both λ1 and 〈χ〉 do not differ substantially from those of purely
harmonic cases.

T� λ1 〈χ〉
320 0.016 41 ± 0.16 × 10−2 8.413 88
220 0.019 31 ± 0.18 × 10−2 4.939 16
120 0.019 78 ± 0.10 × 10−3 2.057 88
80 0.024 41 ± 0.14 × 10−3 1.020 30
50 0.029 83 ± 0.22 × 10−3 0.338 46
20 0.031 57 ± 0.16 × 10−3 0.041 61

quite peculiar bulk equipartition of energy, while the chains
of purely hard-core particles verify more standard nonequilib-
rium conditions. The randomness entailed by hard collisions,
which occur at practically random times and positions, as
assumed in Ref. [27], breaks correlations among particles more
efficiently than generic chaotic mechanisms do and favors
standard behavior, as argued also in Ref. [41]. However, the
other peculiarities noted in the previous sections still do not
allow us to speak of genuine local thermodynamic equilibrium
for chains of hard particles. That chaos does not suffice for
standard behavior, in FPU systems, has been observed in the
past [33,43].

VI. CONCLUDING REMARKS

We have analyzed deterministic chains of oscillators with
harmonic forces and elastic collisions, to assess the equiva-
lence of deterministic time-reversal invariant and stochastic
models of thermostats. Close to equilibrium, it is easier
to obtain equivalent behaviors than far from equilibrium,
although the peculiarities of 1D dynamics prevent complete
equivalence, even in the large N limit. Only from a qualitative
standpoint, various properties are common to the different
models, such as the form of the temperature profiles, the
temporal asymmetries of flucutations, and the nonlocality
of nonequilibrium steady states [3,8,9,38,40]. Similarly, the
strong dependence of the bulk behavior on microscopic details
of the dynamics, such as the boundary conditions, which is
enhanced by the growth of the dissipation, reveals qualitative
similarities between the different kinds of thermostatted
evolutions. This qualitative similarity is robust against changes
of the interaction potentials. For instance, the overall behavior
of systems made of purely harmonic identical oscillators
differs from that implied by hard-core and other nonlinear
forces, but this happens for both stochastic and deterministic
thermostats.
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FIG. 11. (Color online) Temperature profiles as functions of i/N ,
with k2 = 1, with T� = 320, Tr = 20 θ� = θr = 1, for N = 100, 200,
250, 300, 400. A rather rapid convergence to the asymptotic profile,
T∞(y), is observed.
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FIG. 12. (Color online) Magnification of Fig. 11 concerning the center of the chain (left-hand panel) and the cold side (right-hand panel).

Therefore, from relatively coarse, qualitative viewpoints
we may state that the different models of thermostat are
equivalent. This weak equivalence suffices to conclude that
anomalous behaviours are in fact typical of physics in (quasi-)
1D, but does not suffice to predict the kind of anomalies
that one should expect in different situations. As a matter
of fact, Appendix B shows that numerous parameters affect
the temperature profiles, including the elastic constant k2

and any perturbation of the interaction forces. In particular,
the presence of different degrees of stochasticity produces
different behaviours, and only in the equilibrium limit may the
equivalence of the different models be established.

Independently of the nature of the thermostats, “realistic”
particle interactions, or mechanisms preventing the conserva-
tion of the most obvious dynamical quantities, do not lead
to the onset of local thermodynamic equilibrium [26,41,46].
One reason is that certain correlations (e.g., particle order)
persist in time, violating the molecular chaos hypothesis of
kinetic theory, in 1D or quasi-1D systems. Thus, some kind

of anomalous behavior is to be generically expected, as a
consequence of the low dimensionality of the dynamics, rather
than of the peculiarities of thermostats. Indeed, in 3D, the
same thermostatting mechanisms do not lead to anomalous
behavior. Even in cases of apparently normal transport in
1D, this is not as robust, with respect to variations of the
microscopic parameters, as it is in macroscopic thermo-
dynamic phenomena [26,41], indicating that genuine local
thermodynamic equilibrium does not hold in those cases.
Experimental evidence, although presently scanty, confirms
this picture—cf., e.g., Refs. [46,51–53,60–62]. Further study
is desired to understand the relation between the peculiarities
of the 1D models so far considered in the literature and those
of real systems, not in local thermodynamic equilibrium.

We found the linear relation (5) between the particle
mean displacements from their equilibrium positions and the
temperature profiles. Apart from the temporal asymmetries of
the fluctuations of the main observables considered in Sec. III,
relation (5) is the only result which does not show a delicate
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FIG. 13. (Color online) Temperature profiles as functions of p for N = 100, k2 = 0.1. The left-hand panel reports the case with T� = 320
and Tr = 20. The right-hand panel reports the case with T� = 120 and Tr = 20. The continuous line represents the temperature profile T (x) of
Eq. (6). The lower-temperature jump leads to more rapid convergence to the unperturbed profiles, as p → 0.
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FIG. 14. (Color online) Temperature profiles as functions of p for N = 100, k2 = 1. The left-hand panel reports the case with T� = 320
and Tr = 20. The right-hand panel reports the case with T� = 120 and Tr = 20. The continuous line represents the temperature profile T (x) of
Eq. (6). The dependence on p is reduced at this higher value of k2.

dependence on the details of the microscopic dynamics. It is
robust against all modifications of the dynamics, which we
have investigated, and must therefore play an important role in
the identification of universality classes and in the equivalence
of thermostats in 1D systems

Our analysis of systems with purely harmonic and purely
hard-core interactions indicates that chaos, or a generic source
of randomness, per se, does not suffice to establish standard
nonequilibrium steady states. On the other hand, it has been
observed by various authors that dynamical chaos is not even
necessary for that, see, e.g., Refs. [41,42].
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APPENDIX A: LARGE N LIMIT

To assess the relevance of our results for the large N limit,
and to compare with the results of Refs. [27] and [28], we
have produced temperature profiles for hard-core collisions
and k2 = 1, with T� = 320, Tr = 20, θ� = θr = 1, and growing
N . Figure 11 shows these profiles, plotted as functions of the
rescaled variable x = i/N . One observes a scaling similar to
that of Fig. 1 in Ref. [43], where the asymptotic profile is well
approximated, on the scale of the figure, at moderately large
values of N .

Magnifying this figure, one observes that the profile slowest
convergence occurs close to the cold boundary—cf. Fig. 12.

The difference �N (y) = T (y) − TN (y) between the an-
alytic profile T of Ref. [27] and our profiles, TN , with
normalized variable y ∈ [−1,1], for finite N , does not scale
with N as the difference between asymptotic and finite N

profiles of Ref. [27]. If the scaling was confirmed, we would
have had

�N (y) ∝ N−1/3g(y), (A1)
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FIG. 15. (Color online) Mean displacement 〈qi〉k2=0.1 from the equilibrium centers of oscillation of the particles, ai (left-hand panel) and
mean displacement 〈qi〉k2=1 (right-hand panel), for N = 100, T� = 320, and Tr = 20. Larger k2 reduces the p dependence, except for p = 0,
which does not sustain temperature gradients.
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FIG. 16. (Color online) Relation between mean coordinate difference 〈xi+1 − xi〉 and temperature profiles, for N = 100, T� = 320, Tr = 20,
k2 = 0.1. The left-hand panel reports the case p = 0.1, and the right-hand panel reports the case p = 0.9. Relation (5) is confirmed in all
instances, as discussed in Sec. II.

where g(y) depends on the details of the model, but not on
N . As a matter of fact, the absolute value of �N (y) initially
grows with N , rather than decreasing, e.g., in the center of
chain. This does not prevent the scaling to set in at still
larger values of N , although this looks unlikely given the
observed convergence of our profiles to a different asymptotic
shape.

APPENDIX B: A STOCHASTIC PERTURBATION

We consider a stochastic perturbation of the model of
Sec. II. If the dynamics of Sec. II leads two particles to collide
at a given instant of time t , they will actually collide with
probability 1 − p, p ∈ [0,1], at time t . Taking p = 0 yields the
dynamics of Sec. II, while p = 1 yields the purely harmonic
dynamics of Sec. IV, because no collision takes place. For
a system of N = 100 particles, we find that the temperature
profiles strongly depend on the values of the pair of parameters
p and k2, confirming that nonequilibrium chains of oscillators
may hardly be part of a unique universality class, except in the
equilibrium limit, i.e., for temperatures at the boundaries very
close to each other. The states of these chains are indeed too
far from local equilibrium, and sensitive to many details of the
microscopic dynamics, in general.

In particular, Fig. 13 shows the temperature profiles for
different values of p and k2 = 0.1, for two temperature

differences (T� − Tr ). The dependence on p is quite strong, al-
though, in both cases, the profiles settle around the unperturbed
ones, when p decreases. The cases with lower-temperature
difference more rapidly collapse on a unique shape, different
from the theoretical T of Ref. [27].

Figure 14 shows that increasing the rigidity of the chains
reduces the effect of the parameter p. Comparing Figs. 13
and 14 leads to the conclusion that, even for a fixed kind
of thermostat, the equivalence of the different microscopic
dynamics requires various parameters to be adjusted, in
general. In our case, k2 plays an important role, which it did
not in Refs. [27] and [28]. Taking of k2 = 2 does not yield
profiles which approximate the theoretical one of Ref. [27]
more closely than k2 = 1.

The only result which is robust against all the modifications
of the dynamics, which we have investigated, is the validity
of the linear relation (5), which must then play an important
role in the identification of universality classes and in the
equivalence of thermostats in 1D systems. Figures 15 and 16
illustrate this fact, confirmed by all simulations we performed,
for only two of these cases.

For a given choice of the parameters of the deterministic
model, the values of the parameters β1 and β2 of Eq. (5) do not
depend on p, as long as p < 0.9. They change discontinuously
for p � 0.9, i.e., close to the purely harmonic chains, which
are quite peculiar models, compared to the others.
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