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A B S T R A C T 

The Mulatu numbers were introduced in [1]. The numbers are sequences of numbers of the form: 4, 1, 

5,6,11,17,28,45...  The numbers have wonderful and amazing properties and patterns.  

In mathematical terms, the sequence of the Mulatu numbers is defined by the following recurrence 

relation: 
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The double Angel Formulas for Fibonacci and Lucas numbers are given by the following formulas 

respectively. 
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Since both the Fibonacci and Lucas numbers have double angle Formulas, It is natural to ask if such 

formula exist for Mulatu Numbers. The answer is affirmative and produces the following paper. 
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1. Introduction and Background 

In his As given in [1], the Mulatu numbers are a sequence of numbers recently introduced by 

Mulatu Lemma, Professor of Mathematics at Savannah State University, Savannah, Georgia, 

USA.  The Mulatu sequence has wealthy mathematical properties and patterns like the two 

celebrity sequences of Fibonacci and Lucas.  

In this paper, more interesting relationships of the Mulatu numbers to the Fibonacci and Lucas numbers will 

be presented.  

Here are the First 21 Mulatu, Fibonacci, and Lucas numbers for quick reference. 

Remark 1: Throughout this paper M, F, and L stand for Mulatu numbers, Fibonacci numbers, and Lucas 

number respectively.  

The following well-known identities of Mulatu numbers, Fibonacci numbers, and Lucas numbers are required 

in this paper and hereby listed for quick reference.   
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The Main Results 

We will state the following theorem proved in [1] as proposition 1 and use it. 

Proposition 1. M n = F 3n + F 1n + F 2n  
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Theorem 1: The following are equivalent. 

(1) M n  

(2) F 3n + F 1n + F 2n  

(3) L n +2F 1n  

(4) F n +4F 1n  

(5) 4F 1n - 3F n  

 

Proof:  We will show that(1)  (2) (3) (4) (5) (1) 

 

(i) (1)  (2) follows by Proposition 1. 

(ii)          (2)) (3) follows  as shown: 

  F 3n + F 1n + F 2n = F 3n + F 1n + F 1n + F n  

                                 = F 3n + F 1n + F 1n + F 1n  + F 2n  

                                 = F 1n - F 2n  + F 1n + F 1n + F 1n  + F 2n  

                                 =2F 1n +L n  

(iii)(3) (4) follows  as shown: 

        L n +2F 1n = F 1n + F 1n +2F 1n  

                          =  F n + F 1n  +F 1n +2F 1n  

                                 = F n +4F 1n  

(iv)  (4)  (5) follows as shown: 

                  F n +4F 1n = F n + 4(F 1n -F n ) 

                                    =  4F 1n -3F n  
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  (v)  (5)  (1)   follows as shown:  

      4F 1n -3F n  = 4F 1n -3(F 1n -F 1n )= F 1n +3 F 1n = F 1n + F 1n + F 1n + F 1n  

                         = F 1n + (F n - F 2n )+ F 1n +F 3n +F 2n =  F 1n + F n - F 2n + F 1n +F 3n +F 2n  

                        = F 2n + F 1n + F 3n =M n  by Proposition 1 and hence) (5)  (1).Thus the theorem 

is proved. 

Theorem 2.              

                L n2 +2F 12 n = nnn FLM 25  - nL2
 

  Note that Using (9) above, we have L n2 +2F 12 n =
2

5 22
nn LF 

+2 nF 2
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                                        = nnLM + nF 25 - nL2
 

 

Theorem3. nM 2 nnLM + nF 25 - nL2
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Note that  

nnLM + nF 25 - nL2
= nnLM - nL2

+ nF 25  

                                                  = nnLM -( nF +2 1nF )
2

+ nF 25  

                                                  = nnLM -( nF 2
+4 1nF nF + 4F

2

1n ) + nF 25  

                                                  = nnLM  -( )4)( 11   nnnn FFFF + 1nnFF + nF 25  

                                                 = nnLM - 1nF nM + 1nnFF + nF 25  

                                                  = )( 1 nnn FLM   + nnn FFF 5( 1  )     

                                                  = nM 1nF   + 1nnMF  

                                                  = nnM  = nM 2 , by (10) above 

Theorem 4. 

nM 2   = nM 2 nnLM + nF 25 - nL2
= nnLM +   1

14



n

 , using (8)   above.Hence, the theorem follows. 

Theorem5. 

(a) If nM  is divisible by 2, then 1
2

1
2

  nn MM  is divisible by 4 

(b) If nM  is divisible by 3, then 1
3

1
3

  nn MM  is divisible by 9. 

Proof: Note that: Using 1nM  1 nn MM
, we have:

 

(a) 1
2

1
2

  nn MM  

 =   1111   nnnn MMMM = nM  11   nnn MMM = 1

2 2  nnn MMM . 

Now it is easy to see that if nM  is divisible by 2, then 1
2

1
2

  nn MM  is divisible by 4 

                     (b) 1
3

1
3

  nn MM  =   1
2

11
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11   nnnnnn MMMMMM  

 = nM  1
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1

2 33   nnnnn MMMMM  
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 = 1
3

1

23 33   nnnnn MMMMM  

Hence nM  is divisible by 3  1
3

nM  - 1
3

nM   is divisible by 9. 

 

Notable Honor and Dedication 

This interesting paper is in an honor of the2021 Black History Month and is also notable dedicated Professor 

Darrell Deloach who recently passed away. Professor Deloach was an outstanding professor of the SSU 

Math Department and he is always remembered. Let him rest in peace. 
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