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ABSTRACT

Current data centers are shifting towards cloud-based ar-
chitectures as a means to obtain a scalable, cost-effective,
robust service platform. In spite of this, the underlying
management infrastructure has grown in terms of hardware
resources and software complexity, making automated re-
source monitoring a necessity.

There are several infrastructure monitoring tools designed
to scale to a very high number of physical nodes. However,
these tools either collect performance measure at a low fre-
quency (missing the chance to capture the dynamics of a
short-term management task) or are simply not equipped
with instrumentation specific to cloud computing and virtu-
alization. In this scenario, monitoring the correctness and
efficiency of live migrations can become a nightmare. This
situation will only worsen in the future, with the increased
service demand due to spreading of the user base.

In this paper, we assess the scalability of a prototype mon-
itoring subsystem for different user scenarios. We also iden-
tify all the major bottlenecks and give insight on how to
remove them.

Categories and Subject Descriptors

D.2 [Software Engineering]: Metrics—performance mea-
sures; C.2 [Computer, Communication Networks]: Net-
work operations—network monitoring ; C.2 [Computer, Com-
munication Networks]: Distributed Systems—distributed
applications

General Terms

Measurement, Performance, Scalability, Data centers

1. INTRODUCTION
The improvement of energy efficiency, the optimization of
hardware resources utilization and the flexibility of an on-
demand, pay-as-you-go servicing scheme are all driving fac-
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tors behind the adoption of the Private Cloud Computing
paradigm in modern data centers [1]. In spite of this, the
size of data centers continues to grow in terms of hardware
components, complexity of software interactions and traffic
volume due to users. Nowadays, it is is not uncommon to
see even mid-sized data centers deployed over one hundred of
nodes, each one running several tens of virtual machines, in
the range from 20 to 100 and even more [6]. The underlying
management platforms interact with the Virtual Machine
Monitors and provide a set of system-level tasks oriented to
basic management of virtual machines (creation, distruction,
live migration). A number of tools and services are available
for monitoring a large data center infrastructure (ZenoSS,
VMware Infrastructure among others). At their core, the
vast majority of these solutions uses popular open source
monitors such as SAR, Nagios, Cacti that collect samples of
performance indexes (CPU utilization, memory utilization,
disk utilization, network throughput) at the system and at
the application level. Usually, the default sampling interval
chosen in these products and in previous literature [8] is five
minutes.

In this scenario, we evidence two problems. First, the
number of performance samples collected in a time unit
can be very high. For example, in a data center running
100 physical nodes (each one hosting 100 virtual machines),
a monitor that collects 5 distinct performance indexes for
each host and for each virtual machine has to manage N =
Nhost+Napp = 100∗5+100∗100∗5 = 50500 samples per time
unit. Second, some management tasks (such as live migra-
tion of virtual machines) take typically less than five minutes
to complete [3]. Consequently, the performance samples ob-
tained by monitors run into a serious risk of becoming stale.
Thus, it becomes crucial to a monitoring infrastructure to
shorten the five minutes sampling interval. In this paper,
we try to answer to the following basic questions.

1. Is it at all possible to design a low-level monitoring
infrastructure that scales to N performance samples,
possibly working with short sampling intervals?

2. Which bottlenecks will the proposed monitoring infras-
tructure come into for different usage patterns (several
monitors on few physical nodes, few monitors on sev-
eral physical nodes)?

Our focus is on assessing the scalability limits of a realistic,
barebone prototype of an infrastructure oriented to the fol-
lowing basic operations: monitor performance samples at a
high frequency, mark them as invalid if they do not fulfill

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Modena e Reggio Emilia

https://core.ac.uk/display/53987898?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


some acceptance criterium, insert them into a database for
later retrieval and processing. We have instrumented this
prototype using, where possible, already existing and well
established software modules. We have run an extensive set
of experiments in the Emulab environment [7], using com-
mon off-the-shelf hardware for a data center. Our major
findings can be summarized as follows.

• Collecting and storing performance samples through
standard OS tools is a very cheap operation that con-
sumes only small fractions of computer resources. Re-
trieving more indexes within the same monitor comes
at virtually no cost.

• Collecting system-level performance samples through
a single monitor module per physical node allows the
monitoring subsystem to scale to hundreds of nodes
and to collect up to 6825 samples per time unit (far
more than Nhost = 500). The main bottleneck is mem-
ory, followed by the CPU. The network is underuti-
lized.

• Collecting system-level and application level perfor-
mance samples through multiple monitor modules per
physical node is problematic for two reasons. First,
the monitored host suffers a high resource consump-
tion (memory utilization overcomes 0.1 already with 32
monitor probes). Even worse, the monitoring subsys-
tem collapses at 16 hosts, the memory and the CPU of
the database being saturated. Under these conditions,
the monitoring subsystems collects and stores 7680
samples per time unit (far less than Napp = 50000).
It is mandatory to use multiple, independent moni-
toring subsystems (at least 6) to achieve our goal of
N = 50500 samples per time unit. Retrieving and
processing performance samples from different acqui-
sition databases with the goal of providing a coherent
representation of resource state is an interesting topic
for future research.

The paper is organized as follows. Section 2 describes in
greater detail the requirements and the design of the pro-
totype used to carry on the following performance analysis.
In Section 3 we present the results of our scalability assess-
ment. Section 4 concludes our discussion with some insights
for future work.

2. THEMONITORING INFRASTRUCTURE

2.1 Basic requirements
Scalability. The proposed monitoring infrastructure must

scale with the increasing number of hardware and software
components in the data centers. On the one hand, the mon-
itor must be able to collect data from a growing number
of physical hosts. This requirement is shared with the vast
majority of existing tools. On the other hand, with the
adoption of virtualization, monitoring an increasing number
of processes on a single node is also a crucial task.

Robustness. Current monitoring applications can fail
in various ways. Some of them are trivially detectable; for
example, when a probe crashes, no data will ever be col-
lected (and stored) until it is resumed. Another common
failure is the collection of out-of-range values (for example,
a negative utilization). Other failures are more subtle; an

otherwise perfectly valid sequence of performance samples is
interspersed with outliers. A crucial issue in a modern mon-
itoring infrastructure is to detect these functional anomalies
as soon as possible and to mark the corresponding perfor-
mance samples as invalid. Keeping a copy of the invalid
samples helps in diagnosing problems.

Short term processing Many management tasks of a
cloud-based data center must take decisions at very short
time scales, in the range of seconds, typically under a minute.
One notable example is live migration of virtual machines
across different physical nodes. Monitoring at short time
scales is a critical operations for two reasons. First, there
is typically no time for complex analyses on the monitoring
data obtained from the probes. The decisions taken using
these values must focus on avoiding disasters rather than
on achieving optimal performance. Second, the volume of
monitoring data can be very high. Thus, even the storage
of the performance samples in a database for later analysis
can be a problem due to the high computational overhead
and to the disk space consumption involved.

2.2 Logical design
In Figure 1 we propose a high level design of the proposed

monitoring infrastructure that will be used throughout the
experimental analysis. At the heart of the prototype is the
acquisition subsystem, which is responsible for gathering and
storing resource performance samples at regular time inter-
vals. An acquisition subsystem is built from several moni-
tored hosts and a set of acquisition databases running on one
or more hosts. A monitored host is characterized by one or
more resource sets R1, . . . , Rj that are used by the operat-
ing system or by different applications. For example, one of
these sets may represent resources (hardware and software
that is, CPU, memory, storage, file and socket desctiptors)
used globally at the host level; one other set may repre-
sent the resources used by a particular process (a VM), and
so on. A monitor module Mj pipes in the output of the
monitor modules to extract periodically performance sam-
ples for each resource in a given set Rk. Besides collecting,
the monitoring module also checks that the monitored in-
formation is actually available and valid. In this prelimi-
nary version of the prototype, we have implemented a basic
“range check”that marks the monitored samples as invalid if
the corresponding values lie outside of a configurable, fixed
interval. The monitor module has been designed with mod-
ularity in mind and can be easily extended to operate a
pipeline of checks, with the goal of implementing more so-
phisticated data validation strategies. However, introducing
further checks into the monitor module, while interesting,
would be against the main scope of this paper that is, as-
sessing the scalability limits of a realistic monitoring infras-
tructure.

As soon as a set of performance samples has been col-
lected and marked as valid, it is inserted into one acquisition
database, which makes the data available to a short term
data filtering subsystem. The acquisition database, being
accessed very often in a mixed read-write scenario, is most
likely to become the bottleneck of the whole monitoring in-
frastructure. For this reason, it must be characterized by a
very high performance, even at the expense of more sophis-
ticated functions (triggers, stored procedures) that may be
offered by more traditional DBMS. Even more, the acquisi-
tion database does not need to offer persistent storage, since



Figure 1: High level design of the monitoring infrastructure.

the collected raw performance samples, after being processed
by other modules, can be simply discarded. Adding more
RAM-DBs is straightforward in a multi-core host; we just
instantiate another DB server on another port and pin the
process to one particular core, to avoid CPU cache bouncing
effects which would introduce context switching overheads.

2.3 Implementation details
We have implemented the monitor module in 85 lines of

Python code. The choice of Python is motivated by its sim-
plicity and by the availability of simple libraries for database
communication and inter-process communication. The mon-
itoring tool used to extract the performance samples is vm-
stat. It is also possible to extract per-process statistics
through the pidstat utility, which has a lower resource con-
sumption because it operates on a per-process basis instead
of summing statistics over all the processes executing in the
machine. Our choice fell on vmstat for the sake of simplic-
ity; in this way, we avoid dealing explicitly with different
process IDs, and the starting scripts are simpler. Another
advantage of vmstat over pidstat is that we can collect more
performance samples. We believe that this assumption does
not invalidate our results.The monitor modules are written
in Python.

We have chosen as a DBMS platform MySQL v5.1 and the
MEMORY storage engine, which stores the entire set of ta-
bles in RAM. We have also investigated other solutions, but
they where either object-oriented or unveiled some problems
in their programming API.

3. EXPERIMENTAL ASSESSMENT

3.1 Testbed

We have used the Emulab network testbed facility [7] to
deploy the architecture proposed in Section 2. All machines
are equipped with several Gigabit Ethernet interfaces, 2GB
physical memory and a SATA 7200 RPM local hard disk.
The acquisition and short term processing engines run on
Dual-Core 2.4GHz nodes, while the monitors run on Intel
3.0GHz nodes.

Each test runs for a fixed time of 4000s, which we believe
is sufficiently long to obtain a statistically relevant number
of performance samples. During this time, a given set of
monitoring hosts is configured to spawn a desired number of
monitoring processes. These processes collect performance
samples with a default frequency of 1HZ and send them to a
specific acquisition processes, which stores them in a RAM
DB. In some tests, a short term analysis process extracts
data from an acquisition DB, performs an exponential mov-
ing average and stores the data into a short term RAM DB.
To evaluate the resource consumption of the monitoring sys-
tem without any bias due to external operating conditions,
the machines hosting the testbed do not run any other ap-
plication and the testbed is setup from scratch for every
test.

3.2 Scalability
In previous literature [5], the overhead of a monitoring

subsystem tends to be measured in terms of CPU utiliza-
tion at the monitored host. This can be very misleading
since (a) it makes the assumption that the CPU is the main
bottleneck resource; (b) the acquisition DB contributes sig-
nificantly to the scalability of the architecture. In this paper,
we will consider several critical resources at both sides. On
the monitored host, we need to limit the resource utiliza-
tion of the probes to avoid wasting too many system re-
sources. Finding a good threshold is a difficult subject and



is certainly out of the scope of this paper; previous works
also show that it can be very difficult to discern significant
changes in the load staus of a resource [2, 4]. So, we are
left with defining a reasonable interval of resource utiliza-
tion arbitrarily; we choose the [0.0, 0.1] range. If any of
the considered resources stays in this interval, we assume
that the monitoring subsystem is operating efficiently. If at
least one resource exceeds this threshold, we assume that
the monitoring subsystem is taking too many resources. On
the other hand, on the acquisition host, we want to use the
available computing resources at their full potential. Here,
we are interested in assessing the scalability limits of the
acquisition DB.

To answer the remaining question of this paper, when scal-
ing to multiple monitored hosts we also compute the number
N of performance samples collected and stored per time unit
and compare it with current values Nhost = 500 (number of
host-level samples collected in a medium-size data center per
time unit) and Napp = 50000 (number of process-level sam-
ples collected in a medium-size data center per time unit)
mentioned in the introduction. The quantity N is a function
of the number of monitored hosts h, the number of moni-
tor modules p executing in each monitored host, and the
number of metrics m collected by a single monitor module
during time interval t: N(h, p,m, t) = h∗p∗m

t
.

3.3 The acquisition subsystem
Figure 2 shows the resource utilization over time of a sin-

gle monitor module that collects one performance index and
sends it to a remote RAM-based DB. Since both the mon-
itor and the RAM-based DB consume only CPU, resident
memory and network resources, we only report the corre-
sponding performance samples in Figures 2(a), 2(b) and 2
(c), respectively. We have verified that, in an otherwise idle
system, the consumption of other system resources is very
low, when not null; thus, they will be omitted in the anal-
ysis. As can be seen, except for a single CPU utilization
outlier value (0.0719 at t=167s), the resource consumption
of a single monitor process is very low and contained during a
run. The medians of CPU, memory and network utilization
are 0.01, 0.003 and 0.0007, respectively. Figure 3 shows the
resource consumption of the acquisition DB over the same
run. The medians of CPU, memory and network utilization
are 0.01, 0.003 and 0.0007, respectively. We can conclude
that retrieving performance samples through standard OS
tools and storing them into a DB is a very cheap operation
even within a dynamic language runtime environment.

To monitor the internal state of a single node, it is of-
ten necessary to collect several performance indexes. For
the sake of efficiency, a single process is used to perform
the collection of all the required indexes. In the next set of
experiments, we measure the resource consumption of such
a monitor module for an increasing number of performance
indexes. To give a more compact visualization of the dis-
persion and skewness of the utilization samples, we use box
plots. We enriched the box plots with the value of the me-
dian (written in the upper x axis) and with a red line con-
necting all the medians. Figure 4 and 5 show the resource
consumption of a monitor module collecting up to 15 perfor-
mance indexes and the corresponding utilization of the DB
process. The message behind these figures is immediate:
if the monitor pipes in several pieces of information from
the same process, the collection and storage of additional

performance indexes comes at virtually no cost. This is a
somewhat logical and expected result, since parsing a vm-
stat line and building a SQL INSERT statement with a few
additional values is cheap. We believe that 15 performance
indexes are more than enough to characterize the behavior
of most standard hardware and software components; how-
ever, since collecting and storing them does not hurt the
performance of the acquisition subsystem, in the following
experiments the monitors we will do so.

Now, we evaluate the scalability of the acquisition process
over an increasing number of monitored nodes. Each moni-
tored node runs exactly one probe; this is a good model of
ordinary system monitors that execute a single probe col-
lecting host-related information only. Figure 6 shows the
resource consumption of the RAM-DB process over all the
experiments. Unfortunately, we could not use more than
64 physical nodes but, judging from the data available, the
acquisition process seems to scale pretty well. In order to
assess the scalability limits, we performed a least squares re-
gression using parabolas as fitting functions and quadratic
residuals. Figure 7 shows that, scaling to larger sizes, the
acquisition subsystem will face three bottlenecks: memory
(253 hosts), CPU (332 hosts), network (455 hosts). The
memory bottleneck is particularly critical for RAM-based
DBs, since it will not be possible to store further perfor-
mance samples. However, even modern, disk based storage
engines such as InnoDB and ISAM cache query results ag-
gressively; exhausting the main memory, while not leading to
storage errors, would cause a serious performance penalty. If
needed, the monitoring infrastructure can be further scaled
through parallel, distributed, hierarchical techniques that
are out of scope in this paper. Under these conditions (p =
1, t = 1, m = 15), we obtain Nmem

host (h = 253) = 3795,
N

cpu

host(h = 332) = 4980 and Nnet
host(h = 455) = 6825 samples

per second. This means that the considered acquisition sub-
system, running at full capacity, is able to monitor a single
bunch of (presumably host level) performance indexes at a
rate way higher than Nhost = 500 samples/s. We conclude
that collecting and storing host-wide performance samples
is not a problem. Resource consumption at each monitored
host is negligible, as seen previously.

Let us turn to a more realistic scenario, which we believe
is a good model of today’s data centers that host (and need
to control) several (possibly virtualized) services on a single
node. We consider a single monitored host executing mul-
tiple monitor processes; the performance samples are stored
into a single RAM-DB. Figures 8 and 9 report the resource
utilization of the monitored host and of the acquisition DB
for an increasing number of monitor modules. Both fig-
ures confirm that memory tends to be the main bottleneck,
followed by the CPU and the network. Starting with 32
probes, the monitors tend to consume over 10% of some
system resource (in the order, memory at 32 probes, CPU
at 128 probes, network for some value of probes higher than
256). This is a potential limitation in current data centers
that may require more than 50 probes per host. Scaling
to a higher number of monitors implies adding more physi-
cal memory to the host; otherwise, to confine resource con-
sumption within the desired [0.0, 0.1] range, we must limit
the maximum number of probes per node to p = 32. On
the other hand, the RAM-DB does not seem to show any
particular signs of congestion.

Let us assess the scalability of this system by adding mon-



(a) CPU utilization (b) Memory utilization (c) Network utilization

Figure 2: Resource consumption of a monitor probe over time (p = 1, m = 1, h = 1)

(a) CPU utilization (b) Memory utilization (c) Network utilization

Figure 3: Resource consumption of the database process over time (p = 1, m = 1, h = 1)

(a) CPU utilization (b) Memory utilization (c) Network utilization

Figure 4: Resource consumption of a monitor probe with an increasing number of performance indexes (p = 1,
h = 1, m > 1)

(a) CPU utilization (b) Memory utilization (c) Network utilization

Figure 5: Resource consumption of the database process (p = 1, h = 1, m > 1)

itored hosts with 32 probes each. In Figure 10 we present
the resource utilization of the RAM-DB process. We can see

that both the main memory and the CPU are exhausted. In
these conditions (p = 32, t = 1, m = 15, h = 16), the acqui-



(a) CPU utilization (b) Memory utilization (c) Network utilization

Figure 6: Resource consumption of a monitor probe over different hosts (p = 1, h > 1, m = 15)

(a) CPU utilization (b) Memory utilization (c) Network utilization

Figure 7: Assessing the scalability of the acquisition process (p = 1, h = 1, m > 1)

(a) CPU utilization (b) Memory utilization (c) Network utilization

Figure 8: Resource consumption of several monitor probes (p > 1, h = 1, m = 15)

(a) CPU utilization (b) Memory utilization (c) Network utilization

Figure 9: Resource consumption of the database process (p > 1, h = 1, m = 15)

sition subsystem collects and stores 7680 samples per second.
This number is not even remotely close to Napp = 50000;
scaling to this value would require the deployment of 7 in-

dependent acquisition systems.



(a) CPU utilization (b) Memory utilization (c) Network utilization

Figure 10: Resource consumption of the database process for monitor processes on different hosts - 32 probes
per host

4. CONCLUSIONS AND FUTUREWORK
As we have seen, a single monitor probe requires a very

small amount of resources to gather information and push
it to a database. Since the monitor pipes in a whole line
of samples, the collection and storage of additional perfor-
mance indexes come at virtually no costs. Scaling a single
probe over some hundreds nodes (up to 455 in our setup) is
also fairly straightforward. The monitoring system is able
to collect up to 6825 samples per second, which is far more
than the desired Nhost = 500.

Adding multiple probes to each monitored host seems
problematic in an off-the-shelf hardware/software environ-
ment. Monitoring more than 50 applications on a single
physical node can run into some resource overhead (more
than 0.2 in terms of memory, more than 0.08 in terms of
CPU utilization). Right now, there is no other way round
other than to limit the number of probes or add more hard-
ware resources to each monitored host. Even worse, in our
testbed the monitoring subsystem collapses at 16 hosts, the
memory and the CPU of the database being saturated. Un-
der these conditions, the monitoring subsystems collects and
stores 7680 samples per second, which is far less than the
desired Napp = 50000. Actually, it is mandatory to use
multiple, independent monitoring subsystems (at least 6) to
achieve the goal of N = 50500 samples per second.

In all of the experiments, the main memory showed up as
the main system bottleneck, both in the monitored and in
the acquisition database hosts. This bottleneck can be re-
moved by adding more physical memory or by switching to
more traditional DBMS that trade memory for speed. The
second bottleneck in terms of importance is the CPU of the
acquisition host. This bottleneck can be removed by adopt-
ing more efficient DBMS (for example, CSQL) or through
the deployment of several parallel, indipendent instances in
a multi core architecture. In our experiments, the network
was never a bottleneck.

Our work can be extended in several ways. For exam-
ple, the experimental data can be used to build models of
interactions for the considered resources. We are currently
exploring different fitting techniques and evaluating their
statistical significance. The deployment of multiple acquisi-
tion databases also opens new interesting issues, such as the
evaluation of the speedup and the extraction of a coherent
representation of resource state from multiple sources.
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