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Abstract—Providers of Web-based services can take advantage
of many convenient features of cloud computing infrastructures,
but they still have to implement request management algorithms
that are able to face sudden peaks of requests. We consider
distributed algorithms implemented by front-end servers to dis-
patch and redirect requests among application servers. Current
solutions based on load-blind algorithms, or considering just
server load and thresholds are inadequate to cope with the
demand patterns reaching modern Internet application servers.
In this paper, we propose and evaluate a request management
algorithm, namely Performance Gain Prediction, that combines
several pieces of information (server load, computational cost
of a request, user session migration and redirection delay) to
predict whether the redirection of a request to another server may
result in a shorter response time. To the best of our knowledge,
no other study combines information about infrastructure status,
user request characteristics and redirection overhead for dynamic
request management in cloud computing. Our results show that
the proposed algorithm is able to reduce the response time with
respect to existing request management algorithms operating on
the basis of thresholds1.

I. INTRODUCTION

Service providers have now the alternative to create Web-

based services on top of cloud computing infrastructures pro-

viding virtualized resources. Even in these instances, sudden

and unpredictable modifications of the request patterns may

affect the performance experienced by the users and the ser-

vice providers have to introduce suitable request management

algorithms. We consider the most common case where the

number of virtual servers acquired by the service provider

does not change. Hence, spikes and flash crowds must be

managed through distributed request redirection algorithms

among virtual servers. When a virtual server receives a re-

quest, the management algorithm must decide whether it is

convenient to process it or to redirect to another virtual server.

Since in modern Web-based services the service of a request

typically involves access to user session information, with

redirection we mean both the migration of already established

user sessions and the actual forwarding of the user request to

a different server. Decisions concerning request redirection are

usually enforced through the evaluation of the load conditions

of the local server and (possibly) of its neighbors, and through

the comparison of these load values against a fixed, static

1The authors acknowledge the support of MIUR-PRIN project DOTS-
LCCI ”Dependable Off-The-Shelf based middleware systems for Large-scale
Complex Critical Infrastructures”.

threshold [1], [2]. Even if this approach has been applied

in several fields of ranging from network resource optimiza-

tion [3] to performance improvement on a local [4], [2] and

geographic scale [5], these proposals do not consider pieces of

information that could improve redirection decisions, but rely

only on a comparison of the server load with static thresholds.

This approach has some limits: (a) it does not consider the

redirection overhead, that includes the delays introduced by

request forwarding and session migration; (b) it does not take

into account the computational demand of a user request and,

consequently, the impact of its redirection on the load of other

servers.

To address these issues, we propose a novel request man-

agement algorithm, namely Performance Gain Prediction, that

evaluates the performance gain associated to the redirection of

a user request. For each user request, the algorithm predicts

and compares the response times that would be obtained

through local service and through a redirection, then it chooses

the most appropriate server accordingly. This is the first

paper proposing an algorithm that operates dynamic request

management in cloud data centers by combining information

about infrastructure status, user request characteristics and

redirection overhead.

With the help of a system simulator, we demonstrate that the

proposed Performance Gain Prediction algorithm outperforms

existing, static threshold-based request management strategies.

Our results show that, thanks to the combination of differ-

ent information about user requests, infrastructure status and

management costs, the proposed algorithm is able to estimate

the actual gain achievable through user session migration

and request redirection, thus guaranteeing good and stable

performance across different scenarios.

The paper is organized as follows. Section II presents the

problem of request management in cloud data centers. Sec-

tion III discusses the proposed Performance Gain Prediction

algorithm for request management. Sections IV and V discuss

the experimental setup and the results of the experimental

evaluation. Section VI concludes the paper with some final

remarks.

II. SYSTEM MODEL

In this section we present the model of the cloud system

as seen from the service provider offering Web-based services
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to the end users, and we describe the request management

process.

A. Web-based services on a cloud computing infrastructure

Service providers exploit the Infrastructure as a Service

paradigm of cloud computing to purchase from the cloud

provider the hardware resources needed to support their Web-

based services. The infrastructure made available to the service

provider consists of multiple virtual servers that can be used

to host the logical tiers of the Web-based service. The cloud

infrastructure provides also a storage facility that is used as a

repository for data and for images of virtual machines.

From the point of view of a service provider that is

deploying one Web-based service on the Cloud infrastructure

a cloud data center is basically composed of servers organized

according to a three-tier structure, with front-end, application

layer and back-end levels. The user requests arrive at the

servers of the front-end level, that distributes client requests

among the set S of the servers of the application layer that

are dedicated to the Web-based service. As modern Web-

based services involve the dynamic generation of contents

through complex operations, we focus our attention on the set

S of servers hosting the application layer, that represent the

most stressed component of the infrastructure. The number

of servers in the set S may change dynamically because

the service provider can dynamically deploy new server to

cope with the end-user demands. However, as operations such

as creation and termination of virtual machines represent an

expensive task, dynamic provisioning is typically carried out

on a coarse-grained time scale, possibly through capacity

planning algorithms that are run periodically [6], [7]. Sud-

den and unpredictable peaks in the end-user demand (also

known as flash crowds) may not be addressed only through

dynamic provisioning because the rapidly changing service

access patterns often can not be captured (let alone, be dealt

with) by means of coarse-grained decisions. Over provisioning

the infrastructure may represent a solution in the short term,

but it introduces additional costs for the service provider that

are quickly becoming unacceptable [8].

In our system model, we assume that the cloud provider

may guarantee to the service provider the following features:

• The virtual machines composing the cloud infrastructure

provide adequate performance insulation, which means

that from the point of view of the service provider each

virtual machine is like a traditional server that does not

change its characteristics over time; we model the servers

hosting the Web-based service as a time shared processor.

• The service provider has access to monitoring tools

that collect and exchange system information about each

server in the set S. Information may be collected by the

cloud provider and then made available to the service

provider [9], or directly by the service provider [10].

• The data used by the application layer are stored on

a cloud-based storage facility that is accessible to each

server belonging to the set S.

B. Request management

When a user request r is received by a server of the front-

end level, r is dispatched towards the application layer; to

this aim, the front-end level selects a server in the application

layer, that we call sa ∈ S, which hosts the required Web-

based service. The request dispatching performed at the front-

end level follows a sticky session approach to direct all the

requests belonging to the same user session to one server in the

application layer that stores the session information [11]. If the

request r belongs to an existing user session, the dispatching

operation selects sa on the basis of a binding table that maps

user sessions to servers. If the request belongs to a new

session, the dispatching selects a new server sb that will host

the request user session. We assume that the selection of a

new server is carried out through a load-blind algorithm, such

as Round Robin.

The task of request redirection is carried out by the servers

of the application layer, that are modeled as follows. Each

server contains a Local redirector module that is responsible

for the management of requests at a fine-grained time scale,

as shown in Figure 1. Request r is received by the server sa at

time t. The request may be processed locally or redirected to

a server sb ∈ S. We recall that in modern systems the service

of a request involves access to data, such as the user session

information, that must be migrated at the moment of request

redirection. For this reason, the redirection operation involves

both the migration of user session information and the actual

forwarding of request r to the server sb. We assume that the

amount of data to transfer for these tasks is similar for every

request as user session information tends to be rather standard,

like the size of a client request message.

We can summarize the functions of the local redirector as

follows:

1) Activation of the request redirection. That is, the local

redirector must decide if request r should be processed

locally on server sa or if it should be migrated to another

server.

2) Selection of the remote server. That is, if request

redirection is activated the local redirector must select

the server sb ∈ S to which the request should be sent

in order to improve the response time.

In literature there are multiple solutions to the second ques-

tion. The available alternatives range from the simplest Round

Robin or Random algorithms to load-aware solutions, such

as Weighted Round Robin or K-Least Loaded solutions [12].

In this paper we adopt the K-Least Loaded algorithm, that

combines good performance and simplicity as required in a

complex real-time environment.

On the other hand, the decision about whether a request

redirection can improve the user-perceived performance is

not clear. State of the art proposals are typically based on

thresholds. For example, many proposals of request manage-

ment techniques for large data centers are based on a single

threshold about the system load [5], [2]. When the load on

a server exceeds the threshold, redirection is activated to

offload the server. Redirection of incoming client requests



Fig. 1. System model

or sessions remains active until the server load is below the

threshold. Other studies, such as [4], [3], exploit a double

threshold solution, where redirection is activated by a High

threshold and remains active until the load is below a Low

threshold. This latter solution provides a more stable behavior,

reducing the number of activation/deactivation of redirection

with respect to the single threshold solution, but its higher

complexity requires the tuning of the two threshold values to

achieve good performance.

While threshold-based algorithms tend to be easy to im-

plement, we believe that considering only the server load

in the activation criterion for request redirection may hinder

the effectiveness of request management in highly variable

scenarios, such as the management of flash crowds in cloud

computing data centers. This motivates our choice to propose

an algorithm that can exploit multiple information for request

management with the goal to improve performance.

III. PERFORMANCE GAIN PREDICTION ALGORITHM

The Performance Gain Prediction algorithm for request

management exploits a combination of multiple information

about infrastructure status, user request characteristics and

redirection overhead to identify whether it is more convenient

to process the request locally or it is better to redirect the

request. More specifically, this algorithm aims to estimate

the response time that would be achieved on the server

sa receiving the request and on another server sb in the

case of redirection. As a consequence, we can evaluate the

performance gain that may be achieved by serving the request

on server sb rather than on sa.
Let T r

sa
(t), T r

sb
(t) be the response times at the data center

for the request r, arrived at time t and processed on server

sa and sb, respectively. As the servers reside in the same data

center, we do not consider the network contribution between

the client and the data center as a part of the response time. By

recalling that sa is the server that received the request r, and
sb is the remote server (selected through the K-Least Loaded

algorithm) to which the request may be redirected, the request

redirection is activated only if T r
sa
(t) > T r

sb
(t)

Hence, the problem of request redirection requires an esti-

mation of T r
s (t), for s ∈ {sa, sb}. To this aim, we consider

the following pieces of information:

• The redirection overhead d due to data transfer associated

with servicing request r on server sb
• The service time of the request r
• The load of the local server sa at time t
• The load of the remote server sb at time t

The information about the server load status of sa and sb
is available to the service provider through direct monitoring

on the virtual machine hosting the servers or through some

monitoring facility offered by the cloud provider.

The redirection overhead, denoted as d, takes into account

both the time for the request redirection to the remote server sb
and the time for the migration on server sb of the user session
data. The value of d is calculated through the measurement of

the delay introduced by past redirections. We consider a sliding

window with the delay of the past k redirection carried out

on a server and we apply a moving average filter to determine

the value of d that is used in the algorithm.

Let Or denote the service time of the request r. This infor-
mation is obtained by classifying requests according to their

computational cost. For example, in a Web-based application,

we define rules to map URLs into computational cost classes.

Let cr be the computational cost class of the request r. The
average service time for a request belonging to that class (that

we use as an estimation of Or) is determined through the

statistical analysis method proposed by Pacifici et al. [13].

The load of a servers s ∈ S measured over time denotes

a time series {Qs(t), Qs(t − ∆t), . . . , Qs(t − (k − 1)∆t)}
composed by k samples. As the load measure we consider the

process queue length, where ∆t is the sampling period of the

load monitor and s ∈ {sa, sb}.
In a highly variable scenario, instantaneous monitored sam-

ples are not a good representation of the system load [14]

and we need to reduce the variability of the samples through

a smoothing function. We define the time series Q̂s(t), s ∈
{sa, sb}, as the smoothed data on the process queue length.

According to other results available in literature [14], we

exploit a linear filtering based on exponential smoothing tech-

niques that provide reliable load representation with low com-

putational cost. We choose the Double Exponential Smoothing

(DES), that it is considered a valid solution in highly variable

time series characterized by a trend component [15]. As

servers are modeled as time-shared processors, a new request

entering the generic server s at time t will receive a share of

the server computational resources that is 1
Q̂s(t)+1

. Hence, the

response time of request r will be Or · (Q̂s(t) + 1). We can

thus express T r
sa

and T r
sb

as:

T r
sa
(t) = Or · (Q̂sa(t) + 1) (1)

T r
sb
(t) = Or · (Q̂sb(t) + 1) + d (2)



Equations 1 and 2 represent an approximate prediction

of the response time depending on the decision to process

locally or to migrate the request. The criterion on performance

gain prediction used to activate the request redirection can be

expressed as:

Or · (Q̂sb(t)− Q̂sa(t))− d > 0 (3)

Hence, we redirect a request if and only if the expected gain

on response time due to moving on another server (considering

also the redirection overhead d) is greater than 0. It is worth

to note that, to avoid ping-pong effects, a request that was

already redirected once it is not subject to further redirection.

IV. CASE STUDY

In this section we describe the testbed, the workload and

the request management algorithms considered for our exper-

imental evaluation.

A. Testbed

To evaluate the performance of the considered request man-

agement algorithms, we use a discrete event simulator based

on the Omnet++ framework [16]. We assume a cloud data

center where 90 servers are dedicated to the deployment of

the considered Web-based service, with 50 servers belonging

to the application layer and constituting the set S. The CPU

utilization and the process queue length on the server are

sampled every second among the 50 servers of the set S.
As our request management algorithm is applied to the

application layer, we do not detail the model of the front-end

and back-end tiers, that are simply considered as additional

delays to the response time. A further parameter of interest

for the performance evaluation is the redirection overhead d,
that we model as a normal distribution, with σ2/µ = 0.5.
The model is based on preliminary experiments carried out

with a prototype of a Web-based application where user profile

information (stored as session variables) is migrated using the

RMI mechanism provided by the J2EE platform.

B. Workload

To evaluate the performance of the considered algorithms

for request management we use a synthetic workload in-

cluding user requests belonging to 3 different computational

cost classes: the 50% of the requests have a service time

ranging between 0.1 and 0.5 seconds, the 25% between 0.6

and 1.9 seconds, and the remaining 25% between 2 and 3.5

seconds [17]. We model the user session duration and the

distributions of the inter arrival times of user requests within

a session as in [18].

As our goal is to evaluate how the request redirection

algorithms can cope with sudden variations in the request

patterns, we consider that half of the servers in a building block

receive a static load while the remaining 50% of the servers

must face a surge in the request intensity that may be double

with respect to the static load. This setup represents a scenario

where a flash crowd hitting the data center is not distributed

evenly over the servers and is consistent with other studies

on request management in Web distributed systems [5]. We

consider a request pattern, namely Ramp, where the request

intensity sustained by the server facing the surge experiences a

gradual increment passing from 250 clients up to 375 clients at

the maximum peak. The peak is followed by a similar gradual

decrease. The experiments lasted for 15 minutes.

C. Algorithms

For our analysis we consider three request management

strategies: the proposed Performance Gain Prediction algo-

rithm, a Local algorithm that never triggers request redirection

and is used as the worst case scenario, and a Threshold-based

algorithm that represents a state-of-the-art solution for request

management [2], [1]. The Threshold-based algorithm activates

redirection on the basis of a local knowledge about the server

load. To evaluate the server load metrics, this algorithm relies

on the CPU utilization ρsa(t) [1], [2], because it is bounded in

the [0, 1] interval and is more convenient than process queue

length that has no maximum value. For a fair comparison,

we apply the DES smoothing techniques also to the CPU

utilization to reduce the effect of high variability in samples

that could hinder the performance of the Threshold-based

algorithm. For every incoming request, the load of the server

sa is evaluated: if it exceeds a given threshold Thr, the request
r is redirected and the corresponding user session is migrated.

If the redirection is activated, the remote server is selected

through the K-Least Loaded algorithm. To ensure a fair

comparison between the Performance Gain Prediction and

the Threshold-based algorithms, we consider that the K-Least

Loaded algorithm relies on the same load metric, that is

the process queue length, to identify the K=3 servers with

the lowest load [19]. We performed some experiments with

different values of the K parameter, ranging from 2 to 5, but

this does not change the results of the comparison between

the redirection algorithms.

The condition for request redirection is expressed as:

ρ̂sa(t) > Thr, where the value of Thr = 0.7 is chosen on

the basis of preliminary experiments.

V. PERFORMANCE RESULTS

To compare the performance of the different request man-

agement algorithms, we evaluate the response time at the data

center for the user requests. Figure 2 shows the 90-percentile

of the response time as the average redirection overhead

ranges from 0.1 to 2 seconds. The graph demonstrates that

the Performance Gain Prediction algorithm outperforms the

other alternatives, with a reduction in the response time of

more than 25% with respect to the Threshold-based algorithm

and close to 100% with respect to the Local algorithm.

Figure 2 allows also to appreciate the impact of redirection

overhead on the user-perceived performance. We observe that,

with the obvious exception of the Local approach, an increase

in the redirection overhead results in a linear growth of the

response time. For the Threshold-based algorithm this result

is expected because the redirection overhead is not taken into

account when performing request direction. The Performance

Gain Prediction algorithm experiences a similar behavior for
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a different reason. Even if the algorithm takes into account

the redirection overhead d, the worst performing 10% of the

requests (that determine the 90-percentile of response time) are

typically requests subject to redirection, and, as a consequence,

the overhead has a direct impact on this metric.

To better understand the reasons for the performance gain

of the Performance Gain Prediction algorithm, we study the

temporal evolution of the process queue length on the servers

throughout the experiments. Figure 3 shows the maximum

value of the process queue length among the set of servers

S measured at intervals of one second during the experiment.

We observe that, as expected, the lack of redirection in the

Local algorithm determines high values and oscillations for

the process queue length. Also the Threshold-based algorithm

is characterized by high values of the queue length. Indeed, the

algorithm considers the CPU utilization ρ̂s for the activation of

the redirection, but the non-linear relationship between CPU

utilization and process queue length reduces the quality of the

Threshold-based solutions when the server load is high. On

the other hand, the Performance Gain Prediction algorithm is

successful in guaranteeing a queue length almost halved even

in the case of a traffic surge, if compared to the alternatives.

The percentage of requests redirected by each algorithm is

shown in Table I for two values of the redirection overhead d
considered in our experiments. The Threshold-based algorithm

presents the same amount of redirected requests for the two

values of d. This effect is expected because the algorithm does

not consider the value of d. On the other hand, the Performance

Gain Prediction algorithm, that considers d as a parameter to

decide when redirection is to be activated, shows a significant

variation in the amount of redirected requests as a function of

the redirection overhead.

These results evidence that the Performance Gain Prediction

algorithm is characterized by an amount of redirected requests

that is significantly lower (from 3 to 5 times less) when

compared to the Threshold-based alternative. The high amount

of redirection operations carried out by the Threshold-based

algorithms is one of the reasons for the poor performance of
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TABLE I
PERCENTAGE OF REDIRECTED REQUESTS

Redirected requests
Redirection Performance Gain Prediction Threshold-based
overhead algorithm algorithm

d = 0.1 s 12% 67%
d = 2 s 21% 67%

this algorithm.

The activation criterion in Equation 3 can be used to explain

why such a low number of redirection operations is sufficient

for the Performance Gain Prediction algorithm to achieve good

results. The algorithm predicts the performance gain due to

different load between the servers sa and sb and compares it

with the redirection overhead. Figure 4 shows the cumulative

distribution of the service times Or for requests that are

redirected and processed locally for the Performance Gain

Prediction and Threshold-based algorithms. The results refer

to the scenario with an average redirection overhead of 0.6

seconds. Figure 4(a) shows that for the Performance Gain

Prediction algorithm, the redirected requests are characterized

by service times significantly higher with respect to requests

that are processed locally (more than 60% of the locally-

processed requests have service times in the order of less than

0.5 seconds). This result confirms that the good performance of

the Performance Gain Prediction algorithm is motivated by its

ability to avoid redirection of requests with low service time,

where redirection overhead would hinder the benefit achieved

through redirection. On the other hand, the Threshold-based

algorithm (shown in Figure 4(b)) does not take into account

the computational cost of the requests and the service time of

redirected requests follows the same distribution of requests

processed locally. As a consequence, a significant number of

requests with low service time are redirected, with limited or

no performance gain at all from a user point of view.

VI. CONCLUSIONS

Popular Web-based services require cloud data centers to

scale to the ever increasing user demand. The mechanisms
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for the location of applications and data over the servers

of the data centers, and the subsequent request management

algorithms, are typically based on a coarse-grained approach

that may be unable to face temporary and unpredictable flash

crowds.

In this paper, we propose the novel Performance Gain

Prediction algorithm, that evaluates the response time of a

request in the cases of local processing and of redirection by

exploiting different information about user requests, infrastruc-

ture status and management costs. The proposed algorithm is

able to guarantee good and stable performance across different

workloads and scenarios operating under real-time constraints;

our experiments show that the algorithm can provide a per-

formance gain close to 25% on response time if compared

to existing solutions for request management based on static

thresholds.

The motivation for the good performance of the Perfor-

mance Gain Prediction algorithm is twofold: first, the global

number of redirected requests is reduced; second, the proposed

algorithm tends to redirect requests characterized by a high

service time. These requests are more likely to guarantee an

improvement in user-perceived performance when processed

by an alternative server with lower load. Moreover, the impact

of the redirection overhead on the response time for these

requests is almost negligible.
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