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 Holocentric/holokinetic chromosomes show centro-
meric activity spread along the whole chromosomal axis 
so that at anaphase chromatids move apart in parallel and 
do not form the classical V-shaped figures typically ob-
served in monocentric chromosomes [Hughes-Schrader 
and Schrader, 1961; Blackman, 1987]. They have been de-
scribed in almost all the higher eukaryote taxa so far 
studied, with the exception of echinoderms and chor-
dates and they are present in each principal node of the 
eukaryote phylogenetic tree [Wrensch et al., 1994; Dern-
burg, 2001; Manicardi et al., 2002].

  Even though aphids are extremely useful for the study 
of holocentric/holokinetic chromosomes in view of the 
ease mitotic chromosomes are obtained from their em-
bryonic tissues, until now their chromosomes have not 
been deeply studied [Bizzaro et al., 1996, 2000; Mandri-
oli et al., 1999a, b; Manicardi et al., 2002; Mandrioli and 
Borsatti, 2007; Criniti et al., 2009]. Moreover, the rela-
tionship between their chromatin structure and epi-
genetics has been just lightly touched upon [Mandrioli 
and Borsatti, 2007] making aphids effectively uncharted 
biological models for epigenetic studies. At the same 
time, a cytogenetic analysis of aphids is very helpful since 
the description of species-specific chromosomal markers 
could  make  easier  the  identification   of   species   that   is,   
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 Abstract 
 A detailed karyotype analysis of the oleander aphid  Aphis 
nerii  focusing on the distribution, molecular composition 
and epigenetic modifications of heterochromatin was done 
in order to better understand the structure and evolution of 
holocentric/holokinetic chromosomes in aphids. The female 
karyotype (2n = 8) consisted of 3 pairs of autosomes and
a pair of X chromosomes that were the longest elements in 
the karyotype and carried a single, terminally located nucle-
olar organizer region. Males showed 2n = 7 chromosomes 
due to the presence of a single X chromosome. Heterochro-
matin was located in the X chromosomes only and consisted 
of 4 satellite DNAs that have been identified.  A. nerii  constitu-
tive heterochromatin was enriched in mono-, di- and tri-
methylated H3 histones and HP1 proteins but, interestingly, 
it lacked DNA methylation that was widespread in euchro-
matic chromosomal regions. These results suggest that 
aphid heterochromatin is assembled and condensed with-
out any involvement of DNA methylation. 
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at present, quite difficult [Blackman, 1980; Rakauskas, 
1998]. 

  Aphid karyotypes are frequently described in the lit-
erature as highly variable in view of the holocentric/
holokinetic nature of their chromosomes which stabilize 
rearrangements and fragmentations [Blackman, 1980; 
Blackman et al., 2000]. Surprisingly, the species of the ge-
nus  Aphis  present a very stable chromosome number, as 
observed in  A. gossypii, A. verbasci, A. spiraecola, A. af-
finis, A. clematidis, A. sambuci, A. pomi ,  A. solanella  and 
 A. fabae  [Khuda-Bukhsh and Pal, 1985; Manicardi et al., 
1998a, b; Criniti et al., 2005; Rivi et al., 2009] making this 
taxon intriguing in terms of karyotype constancy. 

  In the present paper, a detailed cytogenetic analysis of 
the oleander aphid  Aphis nerii  has been done allowing us 
to identify and localize on chromosome 4 satellite DNAs 
that constitute  A. nerii  heterochromatin. Moreover, the 
species specificity of  A. nerii  satellite DNAs has been 
evaluated in  Aphis gossypii  and  Aphis spiraecola  by dot 
blotting, whilst the epigenetic state of  A. nerii  heterochro-
matin has been studied by looking for the presence of 
DNA methylation, H3 histone methylation at lysine 9 and 
heterochromatic protein 1 (HP1). Lastly, other repetitive 
DNAs and multigenic DNA families (including telomer-
ic sequences and 28S and 5S ribosomal DNA genes) have 
been identified and localized on chromosomes.

  Material and Methods 

 Specimens of  A. nerii  were collected in Modena (Italy) and 
maintained at 22   °   C with 16:   8 h light/darkness on  Hoya carnosa  
plants. Male aphids were obtained by exposing parthenogenetic 
females to short photoperiods (8:   16 h light/darkness) according to 
Crema [1979].  A. gossypii  and  A. spiraecola  were collected on  Hi-
biscus  sp. plants in Modena (Italy).

  Chromosome preparations were made from parthenogenetic 
female embryos by spreading as previously described [Mandrioli et 
al., 1999a]. Male chromosomes have been obtained by squash prep-
aration of single embryos as reported by Manicardi et al. [1991].

  C-banding treatment was performed according to Sumner 
[1972]. After treatment, slides were stained with chromomycin A 3  
(CMA 3 ) according to Schweizer [1976] and with 4,6-diamidino-
2-phenylindole (DAPI), as described by Donlon and Magenis 
[1983]. Silver staining was performed according to Manicardi et 
al. [1998a].

  In situ nick translation (NT) experiments were done on fresh 
chromosome spreads digested with 0.6 U/ � l of the endonucleases 
in the supplier’s buffer for 1 h at 37   °   C. NT was carried out for 30 
min according to Sumner et al. [1990], except that extravidin-
FITC was used as a label, in place of streptavidin alkaline phos-
phatase, to reveal the incorporation of biotin-dUTP. 

  In  situ  immune-staining  experiments  were  performed  with   
a mouse anti- Drosophila   melanogaster  HP1a antibody diluted

1:   500 (kindly provided by Rebecca Kellum) [Huang et al., 1998], 
with rabbit antibodies against mono- and di-methylated-K9 his-
tone H3 (Me9H3) (Upstate, Cambridge, UK) and with rabbit anti-
tri-methylated-K9 histone H3 (Me9H3) (Active Motif, Carlsbad, 
Calif., USA) diluted 1:   250 according to Bongiorni et al. [2001]. 

  In situ immuno-detection of 5-methylcytosine residues was 
performed using a mouse anti-5-methylcytosine monoclonal an-
tibody (Epigentek Inc., Brooklyn, N.Y., USA) following the proto-
col reported in Pfarr et al. [2005]. 

  Random priming probe digoxigenin-labeling was performed 
according to the Roche protocol, whereas fluorescent in situ hy-
bridization (FISH) was done according to Mandrioli et al. [1999a]. 

  The presence of the telomeric (TTAGG) n  repeat has been eval-
uated in  A. nerii  by in situ hybridization with a telomeric probe 
obtained by PCR amplification using the 2 primers F (TTAGG) 5  
and R (CCTAA) 5  in the absence of template, as described by Ijdo 
et al. [1991].

  Immuno-fluorescent preparations and FISH slides were ob-
served using a Zeiss Axioplan epifluorescence microscope 
equipped with a 100 W mercury light source. Photographs of the 
fluorescent images were taken using a CCD camera (Spot, Digital 
Instrument, Madison, Wisc., USA) and using the Spot software 
supplied with the camera and processed using Adobe Photoshop 
(Adobe Systems, Mountain View, Calif., USA).

  DNA extraction followed a standard phenol-chloroform pro-
tocol [Mandrioli et al., 1999a], whilst Southern blot hybridization, 
cloning and restriction enzyme digestion were done as described 
in Bizzaro et al. [2000]. SatDNA clones have been sequenced at 
BMR Genomics, whereas sequence alignments and search for in-
ternal repeats were done using the GCG software (GCG Com-
puter Group, Madison, Wisc., USA). The curvature-propensity 
plot was calculated with DNase I parameters of the bend.it server 
(http://www2.icgeb.trieste.it/ � dna/bend_it.html) according to 
Gabrielian et al. [1996].

  RNA extraction and reverse-transcription PCR (RT-PCR) 
were performed with the SV Total RNA Isolation System (Pro-
mega Corporation, Madison, Wisc., USA) and the Access RT-PCR 
System (Promega), respectively, according to the supplier’s proto-
cols. 

  The  � -tubulin gene was amplified using the primers F TUB  
(5 � ACTAGCATAGCAATTCGG) and R TUB  (5 � GCCTTGACCA-
TTACGGACG). Amplification served us as positive control for 
RNA samples in RT-PCR experiments.

  The 28S rDNA probe was obtained by PCR amplification of a 
400 bp fragment of the 28S rDNA gene using the 2 primers, F 
(5 � AACAAACAACCGATACGTTCCG) and R (5 � CTCTGTCC-
GTTTACAACCGAGC), designed according to the insect 28S 
rRNA sequences available in GenBank. The amplification mix 
contained 100 ng genomic DNA, 1  �  M  of each primer, 200  �  M  
dNTPs and 2 U of DyNAZyme II polymerase (Finnzymes Oy). 
Amplification  was performed using a Hybaid thermal-cycler at 
an annealing temperature of 60   °   C for 1 min with an extension 
time of 1 min at 72   °   C. 

  The 5S rDNA repeat unit of  A. nerii  was amplified by PCR 
 using 2 primers, F (5 � TGCACGTAGTGTTCCCAAGC) and R 
(5 � ACGACCATACCACGTTGAATAC), derived from the insect 
5S rRNA sequences available in GenBank. The 2 primers were 
designed so that primer cross-hybridization with other pol III-
controlled genes was prevented [Geiduschek and Tocchini- 
Valentini, 1988]. The amplification mix contained 100 ng  ge-
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nomic DNA, 1  �  M  of each primer, 200  �  M  dNTPs and 2 U of 
DyNAZyme II polymerase (Finnzymes Oy). Amplification was 
performed as above except that the annealing temperature was 
59   °   C for 30 s and the extension time 45 s at 72   °   C.

  Results 

 According to DAPI, CMA 3  and silver staining ( fig. 1 A–
C),  A. nerii  female karyotype consists of 8 chromosomes 
including 6 autosomes and 2 X chromosomes, easily 
identified as they are usually the longest chromosomes 
and bear the unique nucleolar organizing regions (NORs) 
[Manicardi et al., 2002]. To confirm X chromosome iden-
tification, the male karyotype was examined evidencing 
7 autosomes and only one NOR-bearing X chromosome 
( fig. 1 D–F).

  For a detailed analysis of the  A. nerii  karyotype, we 
performed C-banding followed by DAPI staining show-
ing large AT-rich heterochromatic regions at one telo-
mere and in 5 intercalary bands of the X chromosomes 
( fig. 1 G). No heterochromatic bands were detected in the 
autosomes ( fig. 1 G, Q).

  CMA 3 -stained mitotic metaphases showed a single 
GC-rich heterochromatic region located at one telomere 
of both X chromosomes ( fig. 1 H) indicating that most of 
the aphid heterochromatin is AT-rich. This GC-rich band 
was highly positive after silver staining ( fig. 1 I) and FISH 
carried out with the 28S rDNA probe ( fig. 1 L) assessing 
that it corresponds to NOR-containing actively tran-
scribed rDNA genes.

  The chromosomal localization of 5S rDNA genes re-
vealed a single hybridization interstitial signal located in 
autosome pair 1 ( fig. 1 M), as deduced by the silver stain-
ing of the same metaphase plate ( fig. 1 N).

  FISH experiments with the (TTAGG) n  telomeric probe 
revealed bright signals at each telomere of all chromo-
somes, whilst no interstitial signals were detected ( fig. 1 O).

  The composition of heterochromatin was studied by 
the digestion of  A. nerii  genomic DNA with 30 endonu-
cleases ( Msp I , Hpa II , Bam HI , Sca I , Xma I , Sma I , Ava I , 
Mbo I , Sac I , Sac II , Dra I , Bgl I , Sph I , Fok I , Rsa I , Cfo I , Kpn I , 
Alu I , Eco RI , Not I , Sal I , Hha I , Xba I , Eco RV , Apa I , Nde I , 
Hae III , Hinf  I , PstI  and  Sca I) searching for satellite DNAs 
that are generally common components of constitutive 
heterochromatin. Four restriction enzymes ( Mbo I , Rsa I , 
EcoR I   and  Alu I) showed electrophoretic band ladders 
that are a typical feature of clustered satellite DNAs.

  Monomeric fragments of the  Mbo I , Rsa I , Eco RI   and  
Alu I ladders have been used as hybridization probes in 

Southern blotting experiments showing a regular ladder 
of multimers of basic length, which is typical of clustered 
satellite DNA confirming that these restriction enzymes 
isolated highly repeated and clustered DNA sequences 
( fig. 2 A–D). 

A B C

D E F

G H I

L M N

O P Q

  Fig. 1.  Mitotic chromosomes of  Aphis nerii : DAPI (blue) ( A ,  D ), 
CMA 3  (yellow-green) ( B ,  E ) and silver staining ( C ,  F ,  P ) of  A. nerii 
 female ( A–C ,  P ) and male ( D–F ) unbanded chromosomes. DAPI 
( G ), CMA 3  ( H ) and silver staining ( I ) of female chromosomes after 
C-banding. FISH with fluorescein-labeled (green) 28S rDNA ( L ), 
5S rDNA ( M ) and telomeric probes ( N ) on  A. nerii  female chromo-
somes stained with propidium iodide (red). DAPI-stained karyo-
type ( O ) and karyogram ( Q ) showing the distribution of GC-rich 
heterochromatin/NORs (black band), AT-rich heterochromatin 
(dark gray) and 5S cluster (light gray) of  A. nerii . Arrows indicate 
X chromosomes. Bar corresponds to 10  � m.  
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  Both in situ nick translation, performed after diges-
tion of chromosomes with the endonucleases ( fig. 3 A, D, 
G, L), and in situ hybridization using the satellite DNAs 
as probes ( fig. 3 C, F, I, N) showed that the 4 highly re-
peated sequences co-localized with heterochromatic ar-
eas located in the X chromosomes, whilst no signals were 
detected on autosomes. In particular, MboSAT showed a 
bright labelling of the heterochromatic AT-rich telomere 
and in some of the interstitial heterochromatic bands of 
the X chromosomes ( fig.  3 A–C). EcoSAT was mainly 
 located in a single intercalary heterochromatic band 
( fig. 3 D–F), whereas both AluSAT ( fig. 3 G–I) and Rsa-
SAT ( fig. 3 L–N) were present in all the heterochromatic 
bands of the  A. nerii  X   chromosomes. 

  Dot blotting in 2 other aphids  (A. gossypii  and  A. spi-
raecola)  indicated that the 4  A. nerii  satellite DNAs were 
not present in these 2 co-generic species   ( fig. 2 E–F).

   A. nerii  satDNAs have been cloned ( fig. 4 ) and 5 clones 
sequenced for each satellite DNA ( table 1 ). Bioinformatic 
analyses showed that all the satDNAs presented con-
served sequences whose similarities ranged from 93 to 
100% ( table 1 ). The 4 satellite DNAs presented a high AT 
content (from 60.1 to 66.4%) with the only differences due 
to nucleotide mutations, whereas no sequence rearrange-
ments were detected .  A search for homology with other 
DNA sequences in GenBank and EMBL databases yield-
ed no significant results with all 4 satDNA consensus se-
quences. Similarly, no significant direct or inverted re-
peats were found.

  The curvature-propensity plot, calculated with the 
DNase I parameters of the bend.it server, clearly showed 
that  the  4  satDNAs   presented   at   least   one   region   with   
a high curvature propensity value, whose magnitude 
roughly corresponds to the value calculated for a highly 
curved motif described in a DNA satellite of the pigeon 
 Columba risoria  (GenBank ID: CRBENSAT).

  A transcription assay, carried out by RT-PCR together 
with the  � -tubulin gene (utilized in order to confirm 
both the presence and integrity of the mRNAs), did not 
give any product suggesting that the 4 satellite DNAs 
were not transcribed in  A. nerii  (data not shown). 

  In order to further characterize the  A. nerii  hetero-
chromatin, we also verified the presence of HP1 proteins, 
methylated H3 histones and methylcytosine residues. In 
situ immuno-detection clearly indicated that HP1 pro-
teins were not scattered along all  A. nerii  chromosomes, 
but mainly located on both X chromosomes which 
showed several bands that overlap with heterochromatic 
regions ( fig. 5 A). The same heterochromatic areas were 
also labeled with antibodies against mono-, di- and tri-
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  Fig. 2.  Southern blotting with the AluSAT ( A ), RsaSAT ( B ), Eco-
SAT ( C ) and MboSAT ( D ) probes showed that these sequences are 
highly repeated and clustered in  A. nerii  genome.  A  Digestion of 
 A. nerii  genomic DNA with  Kpn I (1),  Hin dIII (2),  Alu I (3) and  Sca I 
(4) and hybridized with the AluSAT probe.  B  Digestion of  A. nerii  
genomic DNA with  Rsa I (1),  Hin dIII (2),  Alu I (3) and  Sca I (4) and 
hybridized with the RsaSAT probe.  C  Digestion of  A. nerii  ge-
nomic DNA with  EcoR I (1),  Sca I (2),  Not I (3) and  Sal I (4) and hy-
bridized with the EcoSAT probe.  D  Digestion of  A. nerii  genomic 
DNA with  Sau 3A (1),  Sal I (2),  Sca I (3) and  Mbo I (4) and hybrid-
ized with the MboSAT probe.  E, F  Dot blot experiments have been 
performed in order to verify the species specificity of  A. nerii  (An) 
satellites showing that AluSAT (1), RsaSAT (2), EcoSAT (3) and 
RsaSAT (4) are not present in  A. spiraecola  (As,  E ) nor in  A. gos-
sypii  (Ag,  F ) genomes. Molecular weight is indicated near each 
blot in panels ( A–D ). 
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  Fig. 3.  Localization of the 4          A. nerii  satel-
lite DNAs evaluated by in situ nick transla-
tion carried out after digestion of chromo-
somes with the endonucleases  Mbo I ( A ), 
 Eco RI (         D ),  Alu I (         G ) and  Rsa I (         L ); f luores-
cence in situ hybridization using MboSAT 
( C ), EcoSAT ( F ), AluSAT ( I ) and RsaSAT 
( N ) as fluorescein-labeled probes (green) 
on  A. nerii  female chromosomes stained 
with propidium iodide (red). The identifi-
cation of X chromosomes has been per-
formed using silver staining (         B ,  E ,  H ,  M ). 
Arrows indicate X chromosomes. Bar cor-
responds to 10  � m.             

Table 1.  Sequence analysis of the four satDNAs of A. nerii

SatDNA Length Sequence
similarity

AT con-
tent

Curvature
propensity

Curved 
region

Similarity in 
databases

Sequence ID in 
GenBank

EcoSAT 406 bp 96–100% 60.1% yes 100–150 none HM467647
AluSAT 198 bp 95–99% 63.6% yes 50–100 none HM467648
RsaSAT 164 bp 95–100% 66.4% yes 30–50/55–75/

85–105/108–138
none HM467649

MboSAT 107 bp 93–99% 64.4% yes 65–105 none HM467650

The analysis of the four satDNAs of A. nerii allowed to determine the length of the consensus sequence, the variability in sequence 
for each satDNA, the AT content, the curvature propensity, the localization of the curved satDNA portion in each sequence, the pres-
ence of similar sequence in GenBank and EMBL and the ID of the satDNA consensus sequences.
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methylated-K9 histone H3 ( fig. 5 B–D). On the contrary, 
heterochromatin was not labeled after immuno-detec-
tion of methylated cytosines using mouse anti-5-methyl-
cytosine antibodies ( fig. 5 E). In particular, the X chromo-
somes presented bright labeling limited to a large area 
close to the NOR-bearing telomere (as deduced by silver 
staining the same plate) ( fig. 5 F). According to previous 
analyses with C-banding, these portions of the X chro-
mosomes are euchromatic. A widespread occurrence of 
methylcytosine residues has been also observed in auto-
somes ( fig. 5 E).

  Discussion 

 Even if aphid chromosomes are highly variable in 
number in view of their holocentric nature [Blackman, 
1980; Blackman et al., 2000], our analysis of  A. nerii  
metaphases evidenced the presence of 8 chromosomes 
which is in accordance with a previous estimation pub-
lished by Khuda-Bukhsh and Pal [1985] confirming that 
aphids of the  Aphis  genus present a constant chromosome 

number [Khuda-Bukhsh and Pal, 1985; Manicardi et al., 
1998a, b; Criniti et al., 2005; Rivi et al., 2009] with only 
one exception,  A. farinose  [Blackman, 1980].  A.   nerii  also 
presents a stable chromosome number among different 
geographic populations, as demonstrated by the compar-
ison of our data with that reported for  A. nerii  strains col-
lected more than 20 years ago in India [Khuda-Bukhsh 
and Pal, 1985].

EcoSAT
GGAAAAACGTTGTTCGCCTTCCTAGTCTGGAGCCTCAGTAGTTCTCAA
CAATCACGACTGATTGGAATATAATATTGACAAAGGGAATGGGTAGAT
TATATACCAAAAATAGTGAAGAATGTAGCTTAATAGTCTAGGGAGAGC
AGGATAATCTTCGTTTTTGTTCATTAACGGCAATTGTATCCTGTTCGT
CAATCAGTGTACATGATGTCCATTGCTCGAGATATGCATTAGTTCCGC
ACTTCTAATCTTAAACCATTCTTCACTCTTCCAGGAATATTCTTCGCA
TTCCTCCTTGTGAAATTATTCCATTCACCCGTGACGTTGATGAAAGAC
GTGAAAAACCAAGACCTCAATTGGCAACTGTGGAAGTTCTCCTTTTGA
AGCTGCACATCAGGTCTGCTTA

AluSAT 
CAAGATAAGACATATTAAGTGTGGCATACGTTTTGTTGAAGCTCTCAC
ATCCCACAAACATAATGCAAAAGTCATGAAAATTCTCTTGGCATCTGG
TATAGATTTGCCAATGATGCTACTAAAAATGTATTCTGAGGAATACAT
GGCGTTGAGTATTCGGCTCATGATATTTAAGTCTGTGGATGCTTTTTA
CTGTCA

RsaSAT
TTGCTTTCATCGATCTCTATAAATCATTTTATGAAGGAATGTACCCTA
AGTTTGGAGAACACGATATCGAAAACCCGAAGATATCAATTAATATCA
ATCATGCAACAGACCTTGTAAGAGCTAAGTTTGCGATCGGTGCACTTA
TCAAGAAGATAAATATTATA

MboSAT
AGGCGGAGTTAAAAAGACGCTAACTTCATAGTAAATTCTCTAGAAGAG
ATACTGTACGTATAAAAATTGCTTCCAGTTATCTCAAAAACGTTTCCT
ATCTCTGCACA

  Fig. 4.  Consensus sequences of the          A. nerii  satellite DNAs:
EcoSAT, AluSAT, RsaSAT and MboSAT.                                                                                 

  Fig. 5.           A. nerii  chromosomes (stained in red with propodium io-
dide) analyzed by immuno-staining with fluorescein-labeled an-
tibodies against HP1 (   A ), monomethylated-K9 H3 histones ( B ), 
dimethylated-K9 H3 histones ( C ), trimethylated-K9 H3 histones 
( D ) and methylcytosine residues ( E ). In order to verify if the large 
band labeled after immuno-labeling with the anti-methylcyto-
sine antibodies was near the NOR-bearing telomere, silver stain-
ing of the same plate has been done ( F ). Arrows indicate sex chro-
mosomes. Bar corresponds to 10                                                                � m.             
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  The production of males in  A. nerii  is noteworthy 
since this species has frequently been reported as being 
obligate parthenogenetic in Europe [e.g. Groeters and 
Dingle, 1989; Blackman and Eastop, 2006]. However, the 
occurrence of sexual generations of  A. nerii  has already 
been reported in the literature [Takada and Miyazaki, 
1992] suggesting that this species could be a mosaic of 
holocyclic and obligate parthenogenetic populations, as 
reported in other aphid species [Blackman and Eastop, 
2007]. 

  C-banding and FISH utilizing 5SrDNA as a probe 
 allow clear-cut identification of X and chromosomes 1 
within the  A. nerii  complement thus improving the con-
struction of a non-ambiguous karyotype. Indeed, holo-
centric chromosomes lack primary conscription, where-
as attempts to identify homologue chromosomes only
on the basis of their length can be misleading due to the 
phenomenon of allocyclia (see  fig. 1 N and in particular 
 fig. 1 M in which the autosome pair 1 appears longer than 
the X chromosome), 

  Aphid X chromosomes present strong structural con-
straints since all the aphid species analysed to date have 
both a large load of heterochromatin at the telomeric and 
interstitial level and a single rDNA cluster located at one 
telomere (with the unique exceptions of  Schoutedenia ra-
lumensis  and  Maculachnus submacula  that present auto-
somal NORs and  Amphorophora idaei  showing intersti-
tial NORs at X chromosomes) [Mandrioli et al., 1999a, b; 
Manicardi et al., 2002]. This peculiar feature of X chro-
mosomes could be related to the sex determination mech-
anism, which, in aphids, is generally based on the pres-
ence of females with 2 X chromosomes (XX) and males 
with only one X chromosome (X0). Aphid males are pro-
duced by parthenogenetic females as a consequence of an 
X chromosome loss occurring in the course of a single 
maturation division [Blackman and Spence, 1996]. In-
deed, the large blocks of heterochromatin may be in-
volved in the delayed separation of X chromosomes dur-
ing maturation of parthenogenetic aphid oocytes [Orlan-
do, 1974; Blackman, 1987]. 

  Furthermore, all the parthenogenetic eggs during pro-
phase present a connection between the 2 NOR-bearing 
telomeres of the X chromosomes [Schrader, 1940; Orlan-
do, 1974; Hales and Mitler, 1983; Blackman and Hales, 
1986] that is quickly lost in females, whereas in male gen-
erating eggs the X chromosomes remain attached by 
sticky NORs and undergo a sort of non-canonic reduc-
tional division [Blackman and Hales, 1986]. At the end of 
this peculiar division the egg has one X chromosome only 
and is thereby determined as male. Aphid rDNA genes 

contain specific sequences that present high similarity 
with the consensus core region of human hypervariable 
minisatellites [Jeffreys et al., 1985] and with the  �  se-
quence of  Escherichia coli  [Smith, 1983] that are involved 
in rDNA pairing, as also previously reported in  D. mela-
nogaster  [Ault et al., 1982; Park and Yamamoto, 1995]. 
The occurrence of X chromosome pairing at NORs is 
supported by the frequent observation (also in  A. nerii , 
data not shown) of intra- and inter-individual NOR het-
eromorphism, already reported in several aphid species 
[Mandrioli et al., 1999b, c] as the result of unequal cross-
ing over between the 2 X chromosomes.

  NOR number and position have been reported as 
highly variable in insects and rDNA genes have been fre-
quently found also (or mostly) on autosomes, including 
several species with multiple NORs [e.g. Postiglioni and 
Brum-Zorrilla, 1981, 1988; Juan et al., 1993; Mandrioli, 
2002; Rocha et al., 2002; Loreto et al., 2008; Nguyen et al., 
2010] making aphids an interesting exception among in-
sects. 

  FISH experiments with 5S rDNA probe revealed a sin-
gle cluster located on autosome pair 1 indicating that 5S 
localization is not linked to the other rDNA genes. This 
is not surprising considering that the absence of linkage 
between the 5S and 28S rDNA genes has already been re-
ported in other insects [Drouin et al., 1992]. Up till now, 
5S rDNA localization in aphids has only been evaluated 
in  A. pisum  [Bizzaro et al., 2000], where the 5S genes are 
located in 2 interstitial clusters on X chromosomes indi-
cating that, contrarily to what is observed for the 28S 
rDNA genes, 5S gene localization in the aphid chromo-
somes is not under constraints.

  The telomere of each chromosome consisted of the 
telomeric (TTAGG) n  repeat, as already reported not only 
in aphids, but also in other insects [Lorite et al., 2002; 
Robertson and Gordon, 2006; Frydrychová et al., 2004; 
Vítková et al., 2005]. In accordance with the stability of 
the chromosome number observed in  A. nerii , no inter-
stitial (TTAGG) n  sequence was detected. However, more 
sensitive FISH procedures would have to be used in order 
to verify if no chromosome fusion occurred in  A. nerii , 
or alternatively, if fusions occurred in the past so that in-
terstitial telomeric sequences have been progressively 
eroded.

  Several satellite DNAs have been isolated in organisms 
possessing monocentric chromosomes, whereas only a 
few studies were published on highly repeated DNAs in 
invertebrates with holocentric chromosomes with the ex-
ception of nematodes [Grenier et al., 1997]. To date, satel-
lite DNAs have been isolated in only 2 aphid species,  My-
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zus persicae  [Spence et al., 1998; Mandrioli et al., 1999a] 
and  Megoura viciae  [Bizzaro et al., 1996], making difficult 
the identification of common properties of aphid satellite 
DNAs.

  The sequences of the  A. nerii  satDNAs were highly 
conserved and this could be due to processes of ‘concert-
ed evolution’ determined by molecular drive [Dover et al., 
1982; Dover and Tautz, 1986] or to the presence of con-
straints due to the interaction of satDNAs with specific 
proteins involved in heterochromatin formation [Talbert 
et al., 2004; Palomeque and Lorite, 2008]. Sequence vari-
ability of satDNAs depends on the ratio between muta-
tion and homogenization/fixation rates [Dover, 2002] 
and in insects falls in the range 1–13% even if very similar 
satDNAs are more frequent than variable ones [Lopez-
Leon et al., 1995; Mandrioli et al., 1999a; Landais et al., 
2000].

  The 4 sequenced satDNAs possess a conserved length 
and this feature was related to a possible role of the satel-
lite DNAs in the nucleosome phasing necessary during 
the process of heterochromatin condensation [Henikoff 
et al., 2001]. At the same time, however, the absence of 
internal repeats in all the  A. nerii  satDNAs could also ex-
plain this constancy since internal direct and inverted 
repeats are correlated to satellite DNA rearrangements 
[Palomeque and Lorite, 2008].

  The presence of a high AT content is a general feature 
of satellite DNAs identified in  A. nerii  and it is consistent 
with the AT richness reported in satDNA of several other 
animals [Palomeque and Lorite, 2008]. Besides this, the 
high AT content of the  A. nerii  satDNAs fits our cyto-
logical data which showed their localization into DAPI 
fluorescent C bands after FISH. Indeed, in situ hybridiza-
tion showed that they co-localize with heterochromatic 
bands of the X chromosomes, whereas no hybridization 
signals have been observed on autosomes. This distribu-
tion is similar to that observed in  M. persicae  and  M. vi-
ciae,  where the satellite DNAs labeled only intercalary 
heterochromatic bands of the 2 X chromosomes [Bizzaro 
et al., 1996; Mandrioli et al., 1999a].

  The transcription of insect satDNAs has been studied 
in a few species and just some of them present RNAs re-
lated to these repetitive DNA. RNAs related to the  A. ne-
rii  satDNAs have been searched by RT-PCR without pos-
itive results. However, in insects satDNA transcription is 
related to cell type, developmental stage and sex so that it 
may not be so easy to detect the transcripts [Palomeque 
and Lorite, 2008]. In addition, at least in  D. melanogaster  
[Palomeque and Lorite, 2008], satellite DNA-related tran-
scripts consist of small RNAs that cannot be detected by 

RT-PCR so that an exhaustive assessment of satellite 
transcription in aphids is worthy of further investiga-
tions. 

  As a whole,  A. nerii  satDNAs present several features 
that are typical of the other satellite DNAs isolated in the 
aphids since (i) they present a high degree of similarity 
among the sequenced repeats both in length and se-
quence (the percentage of similarity is greater than 90%), 
(ii) they show a high AT content (at least 60%), (iii) they 
contain an internal region with a high curvature propen-
sity and localize in AT-rich heterochromatic regions of 
the X chromosomes. 

  These data suggest that, in holocentric chromosomes 
also, constitutive heterochromatin is principally made of 
satellite DNAs in agreement with data repeatedly de-
scribed in monocentric chromosomes [John and Miklos, 
1979; John, 1988].

  According to previous studies in different animals, 
including the holocentric chromosomes of the coccid
 Planococcus citri  [Cowell et al., 2002; Bongiorni and 
Prantera, 2003; Kourmouli et al., 2004],  A. nerii  consti-
tutive heterochromatin is enriched in both bi- and tri-
methylated H3 histones and HP1 proteins. On the con-
trary, data about the localization of H3K9me1 are in
contrast with the    high-resolution    profiling    of    histone   
methylations   in the human genome which revealed that 
the higher H3K9me1  levels  were  mainly  detected  near  
the  5 �    end   of    actively    transcribed    genes    [Barski    et     al.,     
2007].     These results, previously observed in the aphid 
 Acyr thosiphon pisum  [Mandrioli and Borsatti, 2007], 
strongly resemble those reported for DNA methylation 
that is present both in silent and actively transcribed 
genes, and this double function is due to the different ef-
fector proteins that interact with DNA methylation at the 
promoter (where DNA methylation suppresses tran-
scription) [Mandrioli, 2004] and inside the coding re-
gions (where DNA methylation suppresses the transcrip-
tional background of active genes) [Mandrioli, 2004]. 
Similarly, H3K9me1 could be involved both in silencing 
and activation of transcription through a different loca-
tion and the recruitment of different proteins. Our cyto-
genetic data do not allow us to give a proper reply to this 
question since immunolabelling did not furnish infor-
mation at a molecular level but at a chromosomal level 
only. Further studies could be therefore prompted by our 
results.

  Our experiments showed that  A. nerii  heterochroma-
tin lacks DNA methylation since methylated cytosine res-
idues are widespread in euchromatic chromosomal re-
gions. This is very interesting since the results reported 
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in  A. pisum  and in the coccid  Planococcus citri  [Bongior-
ni et al., 1999] indicate that insect heterochromatin is 
poor in terms of DNA methylation, whereas euchromatin 
can be highly methylated. Hence, taken together with 
data in other insects and in the nematode  Caenorhabditis 
elegans  [Mandrioli, 2004; Mandrioli and Borsatti, 2006, 
2007], it emerges that in invertebrates, contrarily to what 
is reported in plants and mammals [Mandrioli and Bor-
satti, 2005], heterochromatin is assembled and condensed 
without any involvement of DNA methylation.

  This suggestion, even if apparently surprising in com-
parison to the canonical view of DNA methylation, is not 
unexpected in insects where it has been previously sug-
gested that methylated genes can be actively transcribed 
[Field et al., 2004; Mandrioli, 2004; Walsh et al., 2010]. In 
particular, it has been suggested that DNA methylation 
has been recruited in insects not for silencing gene tran-
scription, but to avoid transcription initiation from spu-
rious promoters [Field et al., 2004; Mandrioli, 2004]. On 
the basis of this presumed function, DNA methylation in 
insects should be present in euchromatin rather than in 

heterochromatin, a hypothesis confirmed in the case of 
 A. nerii .

  In view of such a scenario, it could be very intriguing 
to study the expression of genes coding for DNA methyl-
transferase and histone methyl-transferase in the aphid 
genome in order to better understand the roles played by 
these epigenetic processes and their interactions. The 
availability of the whole sequenced  A. pisum  genome 
(which has been recently annotated) will surely provide 
important replies to these questions, thereby making 
aphids good models for studying the evolution of histone 
and DNA methylation in insects.
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