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Abstract. This paper presents an effective analytical simulation to solve population balance
equation (PBE), involving particulate aggregation and breakage, by making use of appropriate solu-
tion(s) of associated complementary equation via auxiliary equation method (AEM). Travelling
wave solutions of the complementary equation of a nonlinear PBE with appropriately chosen
parameters is taken to be analogous to the description of the dynamic behaviour of the particulate
processes. For an initial proof-of-concept, a general case when the number of particles varies with
respect to time is chosen. Three cases, i.e. (1) balanced aggregation and breakage, (2) when aggre-
gation can dominate and (3) breakage can dominate, are selected and solved for their corresponding
analytical solutions. The results are then compared with the available analytical solution, based on
Laplace transform obtained from literature. In this communication, it is shown that the solution
approach proposed via AEM is flexible and therefore more efficient than the analytical approach
used in the literature.

Keywords. Population balance; aggregation; breakage; auxiliary equation method; Laplace
transform.
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1. Introduction

A significant property of most of the particulate processes is the particle size, and the dis-
tribution of this property is a major characteristic of such processes which, as a result, af-
fects the behaviour and performance of the final product. In general, particulate processes
are characterized by size distributions that are assumed to vary strongly in time with
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respect to the mean particle size and the shape of the particle size distribution (PSD). As a
result, particulate phenomena like aggregation and breakage may occur during these pro-
cesses which may result in momentous changes manifested through its PSD [1]. The time
evolution of this PSD is determined by solving the so-called population balance equation
(PBE) which governs the dynamic behaviour of particulate processes [2]. As a model,
PBE essentially consists of a nonlinear partial integrodifferential equation encountered
in numerous scientific and engineering disciplines with certain source and/or sink terms,
typically referred to as kernels [2]. The numerical solution of such a dynamic popula-
tion balance model (PBM), is a remarkably complex mathematical problem, due to both
numerical complications and uncertainties of the model regarding the particulate mecha-
nisms that are frequently weakly approximated. On the other hand, the essence of any
numerical solution of a PBE requires the discretization of particle diameter/volume
domain by means of certain numerical approximations that result in a system of stiff,
nonlinear differential or algebraic/differential equations.

Since the early 1960s, various numerical methods have been developed to solve PBMs,
involving both time-dependent and time-independent formulations. The fully discrete
method [3–5], method of classes [6,7], fixed and moving pivot method [8,9], higher-order
discretized method [10–13], orthogonal collocation on finite elements [14,15], Monte
Carlo method [16], least squares method [17,18] are to name only a few. Despite numer-
ous published papers on the numerical solution of the PBEs, the choice of the most
appropriate method for calculating time evaluation of a PSD in processes undergoing
aggregation and breakage is not straightforward and simple. In reality, a large number of
published papers only refer to a limited range of variation of particle breakage and aggre-
gation rates. Therefore, the wide-ranging application of a numerical method to solve a
specific problem cannot be assured. What is more complicated is the fact that, exact ana-
lytical solutions cannot be obtained for most of the nonlinear differential problems that
occur in nature. Broadly speaking, by an exact analytical solution it is meant that the solu-
tion is given in terms of functions whose properties are known or tabulated. Even when
such a solution is present, it may not be particularly useful from either a computational or
an analytical point of view. On the other hand, formulation of a large number of differ-
ent numerical approaches also underlines the intrinsic problem in obtaining a precise and
consistent solution method.

In this study, the analytical solution of a batch PBE as suggested by McCoy and Madras
[19], in which the number of particles varies with respect to time, is compared with the
analytical solution proposed by Pinar and Öziş [20,21]. The validity of the proposed
method is established through case studies using relative weights of aggregation and
breakage. The proposed analytical method involves the target solution of a nonlinear
evolution equation to be expressed as a polynomial in an elementary function which sat-
isfies a particular ordinary differential equation termed as auxiliary equation, in general,
and is more flexible and thereby more efficient than the analytical approach used in the
literature.

2. Problem formulation

Population balance equation (PBE) is a nonlinear partial integrodifferential equation
encountered in numerous scientific and engineering disciplines [2]. The PBE describes
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the evolution of a density function, representing the behaviour of population of a state
vector such as solid particles, liquid droplets or gas bubbles. The evolution of this density
function takes into account different processes such as aggregation, breakage, growth and
advective transport of the state vector that control the population. The batch PBE without
considering spatial dependence and growth, based on the so-called LPA formulation as
mentioned in McCoy and Madras [19] (analytical formulations of Lage [22], Patil and
Andrews [23] are denoted here as LPA) can be written as

∂n(v, t )

∂t
= 1

2

∫ v

0
C(v′, v − v′)n(v′, t)n(v − v′, t)dv′

︸ ︷︷ ︸
BIRTH due to aggregation

− n(v, t)

∫ ∞

0
C(v, v′)n(v′, t)dv′

︸ ︷︷ ︸
DEATH due to aggregation

+ 2
∫ ∞

v

�(v, v′)S(v′)n(v′, t)dv′

︸ ︷︷ ︸
BIRTH due to breakage

− S(v)n(v, t )︸ ︷︷ ︸
DEATH due to breakage

, (1)

where n(v, t) is the number density function in terms of the particle volume v. C(v, v′) is
the volume-based aggregation kernel that describes the frequency at which particles with
volume v and v′ collide to form a particle of volume v + v′, S(v) is the volume-based
breakage function and the stoichiometric kernel �(v, v′), satisfying the symmetry and
normalization conditions, gives the product size distribution for binary breakage through
the probability of formation of particles with volume v from the breakage of particles of
volume v′. The consistency conditions can be written as

n(v, 0) ≥ 0,

0 ≤ C(v, v′) = C(v′, v),

∫ v′

0
�(v, v′)dv = 1,

2
∫ v′

0
�(v, v′)v dv = v′. (2)

Furthermore, eq. (1) is subject to the following initial conditions:

n(v, 0) = N(0)
N(0)

V
exp

(
N(0)

V
v

)
(3)

and

n(v, 0) = N(0)

[
2
N(0)

V

]2

v exp

(
−2

N(0)

V
v

)
. (4)
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The analytical solution proposed by the LPA formulation is only valid when the total num-
ber of particles is constant with respect to time, although in reality the PSD continuously
changes with time. The following kernels are assumed to satisfy the constraints given in
LPA formulation:

C(v, v′) = C,

S(v) = Sv,

�(v, v′) = 1

v′ . (5)

Based on the LPA solution, McCoy and Madras [19] derived the so-called more gen-
eral analytical solution for the PBE with simultaneous aggregation and breakage. They
claim that their analytical solution is applicable for the more general case where the
number of particles is not constant, and thus when breakage and aggregation rates
are not equal. Thus it represents a more general reversible case, where either aggre-
gation or breakage can dominate. Next to the assumptions made in eq. (5), C is
considered to be equal to unity and satisfy the normalization condition both in terms
of initial total number of particles and total volume of particles. Equation (1) can be
simplified to

∂n(v, t )

∂t
= 1

2

∫ v

0
n(v′, t)n(v − v′, t)dv′ − n(v, t )

∫ ∞

0
n(v′, t)dv′

+2S

∫ ∞

v

n(v′, t)dv′ − Svn (v, t ) (6)

and the analytical solution is given by McCoy and Madras [19]:

n(v, t ) = [�(t)]2 exp [−v�(t)] , (7a)

where

�(t) = �(∞)
1 + �(∞) tanh (�(∞) (t/2))

�(∞) + tanh (�(∞) (t/2))

and

� (∞) = √
2S. (7b)

The parameter �(∞) allows defining the relative weight between breakage and aggre-
gation S/C, by choosing suitable values of the breakage constant S and the aggregation
constant C. Setting t = 0 in eq. (7b) and inserting the value of �(t) in eq. (7a), the initial
conditon, for any value of S, becomes

n(v, 0) = exp (−v) . (8)
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Investigating the analytical solution mentioned above in particular, and the related works
of McCoy and Madras [19], Lage [22] and Patil and Andrews [23] in general, one can
make the following remarks:

Remark 1. The so-called analytical solution in eqs (7a) and (7b) is the conversion of the
solution derived by Patil and Andrews [23]. Note that eq. (7) in McCoy and Madras [19]
naturally satisfies the initial conditions (eq. (6)) which is similar to the solution suggested
by Patil and Andrews [23].

Remark 2. Therefore, the so-called analytical solution in eqs (7a) and (7b) has no closed-
form solution for the initial conditions (3) and (4) as expected.

Remark 3. McCoy and Madras [19] overcame this drawback by replacing �(t) with
�(∞) in eq. (7a) to obtain long-time asymptotic solution for initial conditons given by
eqs (3) and (4) (for example, see eq. (12) in the same paper).

In the following section, we adapt the analytical solution obtained by Pinar and Öziş
[20,21] to find the solution of the batch PBE problem considered.

3. The auxiliary equation method approach

The auxiliary equation method (AEM) suggested recently by Pinar and Öziş [20,21] has
been successfully applied in nonlinear physical models to develop new analytical solu-
tions with appropriately chosen parameters. In this paper, we expand the methodology to
a batch PBE which is inherently a nonlinear partial integrodifferential equation within a
mathematical framework. The detailed features of this method can be read from Pinar and
Öziş [20,21]. However, for the sake of brevity, the adjustment of the analytical method for
the proposed solution is mentioned. In the previous section, the batch PBE is introduced
briefly. For the problem considered in this paper, it is worth mentioning that the time
coordinate has a more dominating role. This means that the proposed analytical solution
should essentially be time-dependent (transient) with other physical parameters. Transient
solutions are characterized by distributions that evolve over several orders of magnitude
in volume, often through very steep fronts, before converging to a final steady-state [24].
Therefore, the proposed analytical solution should also hold the vessel volume v at time
t in the volume range (v, v + dv) as an effective parameter to make the simulation more
realistic. But the particle size distribution is defined so that n(v, t) dx is the number of
particles per vessel volume at time t in the volume range (v, v + dv). Therefore, the total
volume = ∫ +∞

0 n(v, t)v dv must also be conserved.
Following the methodology in Pinar and Öziş [20,21], the nonlinear partial integrodif-

ferential population balance equation can be readily reduced to

∂2n (ζ )

∂ζ 2
= 1

2

∫ ζ

0
n(ζ ′)

∂n(ζ−ζ ′)
∂ζ

dζ ′+ 1

2
n(ζ )− ∂n (ζ )

∂ζ

∫ ζ

0
n(ζ ′)dζ ′−n2(ζ )

− 3Sn(ζ ) − Sv
∂n(ζ )

∂ζ
(9)
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ordinary integrodifferential equation in independent single variable ζ where ζ = ζ (v, t)

is a function of particle volume v and the time t . Consequently, the original eq. (1) and
the complementary eq. (9) are invariant under the appropriate transformation ζ = ζ (v, t)

and also their solutions.
To solve eq. (9) using the solution ansatz (see eq. (3) in Pinar and Öziş [20]) and

balancing the nonlinear term with the formula given in the same paper, one can easily
determine the solution series as a second-order polynomial

u(ζ ) = g0 + g1z(ζ ) + g2z
2(ζ ) (10)

in z (ζ ) and the coefficients g0, g1 and g2, the free parameters, can be further determined.
By means of balancing, one ensures that the order of the polynomial (eq. (10)) is opti-
mized in such a way that this polynomial spans the solution space entirely, namely, the
obtained solution is in closed form (i.e. exact solution) and there is no need to use higher-
order polynomials. It is because, as underlined above, the obtained solution is already an
exact one.

Referring to the initial condition, which is in the form of an exponential distribution,
the expected solution is therefore always exponential. Hence, the auxiliary equation (Case
6 in Table 1 of Pinar and Öziş [20] is selected) is expressed as

(
dz

dζ

)2

= a2z
2(ζ ) + a6z

6(ζ ) (11)

with the solution

z(ζ ) = e

(
− 1

4 LambertW

(
− 1a6e

(4
√

a2(−ζ+_CI))

2a2

)
−√

a2(ζ−_CI)

)
(12)

which behaves in an exponential form. Hence using the methodology in Pinar and Öziş
[20], the parametric general solution of the PBE reads as

n(v, t) = −3s

2
+g1e

⎛
⎜⎝− 1

4 LambertW

⎛
⎜⎝1

6
a6αμe

(
4
√

− 3S
αμ (−αv−μt+_CI)

)

S

⎞
⎟⎠−

√
− 3S

αμ
(−αv−μt)+

√
− 3S

αμ
_CI

⎞
⎟⎠

− 2

9

g2
1e

⎛
⎜⎝− 1

4 LambertW

⎛
⎜⎝ 1

6
a6αμe

(
4
√

− 3S
αμ (−αv−μt+_CI)

)

S

⎞
⎟⎠−

√
− 3S

αμ
(−αv−μt)+

√
− 3S

αμ
_CI

⎞
⎟⎠

S
.

(13)

Using the following case studies, the AEM solution (eq. (13)) will be tested with the
aforementioned restrictions.
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Case study 1: Predominant aggregation (S = 0.25)
For a predominant aggregation condition, the AEM solution can be written in its expanded
form as

n(v, t) = −3

2
+ (0.25e−4/v

+ 0.55)e− 1
4 LambertW(−0.02667(0.01+0.25 tanh(0.25v))e(−13.8564v+3.4641t−3.4641))−3.4641v+0.866t−0.866)

− 2

9
(−0.25e−4/v

+0.55)2e(− 1
4 LambertW(−0.02667(0.01+0.25 tanh(0.25v))e(−13.8564v+3.4641t−3.4641))−3.4641v+0.866t−0.866))2

,

(14)

where the parameters of the general PBE solution (see eq. (13)) are given below:

g1 = −0.25e−4/v + 0.55, α = 0.8, μ = −0.2, _CI = −0.2,

a6 = 0.01 + 0.25 tanh(0.25v).

Figure 1 shows the comparison of a particle volume-based number density distribution
at time t = 1 for AEM solution (eq. (14)) and the comparison with the analytical solu-
tion obtained by McCoy and Madras [19]. It can be clearly seen that for a predominant
aggregation (S = 0.25), the proposed solution with restrictions overlaps with the avail-
able analytical solution.
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0.3
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0.5

0.6

McCoy and Madras solution [19]

proposed AEM solution  

n(
v,

t)

volume v

Figure 1. Comparison of AEM solution with the analytical solution of McCoy and
Madras [19] at t = 1 for predominant aggregation S = 0.25.
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where the parameters of the general PBE solution (see eq. (13)) are given below:

g1 = √
2e

(
−(

√
2/2v2)−4

)2

+ 1.2, α = 0.6, μ = −3.5, _CI = v − 2

a2 = 10
√

2 tanh

(√
2

2
v

)
, a6 = 15 + 5

√
2 tanh

(√
2

2
v

)
.

Figure 3 shows the comparison of the AEM solution (eq. (16)) with the analytical solution
obtained by McCoy and Madras [19]. As can be seen from both figures 2 and 3, the AEM
solutions expectedly preserve the general trend of the exponential distribution form with
the analytical solutions presented in [19]. The minor deviations observed might be due to
the basic assumptions (i.e. the method of transformation in auxiliary equation approach)
that was made beforehand in the construction of the analytical solutions presented in this
paper, as compared to the LPA formulation used [19,22,23].

4. Results and discussions

It is important to note that a population balance equation is analogous to a mass balance
equation, solved in terms of moments. The PBE describes a balance law for the number
of individuals of a population. What makes PBEs more attractive than the ordinary mass
balance equations is the continuous change in population and the several mechanisms that
occur within the same control volume. Owing to several particulate phenomena, descrip-
tions of the dynamic behaviour of particulate processes involve specifying the temporal
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Figure 2. Comparison of AEM solution with the analytical solution of McCoy and
Madras [19] at t = 1 for balanced aggregation and breakage S = 0.5.
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Figure 3. Comparison of AEM solution with the analytical solution of McCoy and
Madras [19] at t = 1 for predominant breakage S = 0.1.

change in the distribution of properties of the particle. This distribution is a part of
the state of the system. Thus particulate processes are inherently distributed parameter
systems and the choice of these parameter(s) plays a dominant role in the tempo-
ral change of the particle. In the framework of population balances, the state of an
individual particle is represented by a particle state vector containing external coordi-
nates, such as the position of a particle in physical space, namely time and internal
coordinates representing the particle properties, i.e., particle size/volume. Therefore,
a ‘well-defined’ analytical solution for particle size distribution (PSD) must possess
these two dominant variables – time t and particle volume v in the volume range
(v, v + dv) – explicitly in their exact solutions along with other consequential param-
eters to make correct amendments. In figure 1, the analytical solution proposed using
AEM with the aforementioned restrictions overlaps with the analytical solution found
in [19] because in predominant aggregation (S = 0.25), the effect of the particle
volume is insignificant and the AEM solution is dominated only by time t which is
why the solution completely overlaps with the available analytical solution. For figures 2
and 3, i.e., balanced aggregation and breakage (S = 0.5) and predominant breakage
(S = 1.0), the effect of particle volume is predominant in our solutions due to the pre-
sumption of the derivation of the analytical solution whereas the effect of volume in the
analytical solution proposed by McCoy and Madras [19] is subsidiary. This fundamen-
tal difference explains the slight variation between the two solutions, and based on the
assumptions proposed earlier, a more realistic representation of the solutions is obtained
compared to the analytical solution proposed by McCoy and Madras [19] for the problem
considered.
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In this study, the proposed analytical solutions have been constructed on two leading
parameters t and v, so that at any time t , there is a distribution with a function of v. This
is because, as mentioned earlier, the population of particles is characterized by its particle
property distribution, which is described mathematically by a number density function
which in this case depends on ζ = ζ (v, t ) and is a function of time t and volume v,
while ζ may be taken as a state vector in general. It is believed that this function repre-
sents the (average) number of particles per volume of particle state space more correctly.
It is assumed that the deterministic approach is reasonable only if large populations are
considered. It is also further assumed that the number density function is sufficiently
smooth to be differentiated with respect to its arguments. This is why the actual number
of particles in a certain area of the particle state space is determined by the integral of
the number density function over this area, and it is this phenomenon that distinguishes
the analytical solution from spatially distributed systems. Indeed in McCoy and Madras
[19], the solution is given in terms of moments, and for this reason it is not possible to see
explicitly the effect of the particle volume v appearing in the analytical solution. Also,
as for these moments, there is no exact way to get back to the original distribution from
these moments. This is because when the moments of distribution are considered, average
properties such as the total number, total volume, etc. can only be obtained which might
cause a loss in information about the details of the distribution [25,26]. Moreover, our
solution function (eq. ((13)) is clearly an exponential function (fully analytical expres-
sion) to the base e. Hence the solution function has domain (−∞,∞) and the range of
the solution is (0,∞) which preserves all the mathematical and physical properties of
the batch PBE model as expected, whereas analytical solution proposed by McCoy and
Madras [19] artificially expand the solution domain as pointed out in Remark 3 in the
paper.

5. Conclusions

In this paper, an effective analytical simulation technique is proposed to solve batch PBE
involving particulate aggregation and breakage by making use of appropriate solution(s)
of associated complementary equation via AEM. Travelling wave solutions of the com-
plementary equation of nonlinear partial integrodifferential equation with appropriately
chosen parameters is taken to be analogous to the description of the dynamic behaviour
of the particulate processes of a PBE. Hence, using suitably chosen parameters, the analyt-
ical solution proposed in this paper reproduces the expected behaviour of the problem and
is compatible with the analytical solution available in literature. In addition, the present
approach is flexible, and thereby more efficient than the analytical approach obtained in
the literature.
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