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ABSTRACT
Avalanches with power-law distributed size parameters have
been observed in neuronal networks. This observation might be
a manifestation of self-organized criticality (SOC). Yet, the physio-
logical mechanisms of this behaviour are currently unknown.
Describing synaptic noise as transmission failures mainly originat-
ing from the probabilistic nature of neurotransmitter release, this
study investigates the potential of this noise as a mechanism for
driving the functional architecture of the neuronal networks
towards SOC. To this end, a simple finite state neuron model,
with activity dependent and synapse specific failure probabilities,
was built based on the known anatomical connectivity data of
the nematode Ceanorhabditis elegans. Beginning from random
values, it was observed that synaptic noise levels picked out a set
of synapses and consequently an active subnetwork that gener-
ates power-law distributed neuronal avalanches. The findings of
this study bring up the possibility that synaptic failuresmight be a
component of physiological processes underlying SOC in neuro-
nal networks.
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Introduction

Synaptic transmission in neurons exhibits a fair amount of randomness. This
random behaviour mainly originates from the probabilistic nature of quantal
release, the random nature of diffusion and chemical reactions within the
synaptic cleft, and the unpredictable responses of ligand-gated ion channels
(White and Rubinstein 2000). In most cases, a synapse is more likely to fail to
release transmitter in response to an incoming signal (Laughlin and
Sejnowski 2003). The influence of noise on communication systems is rather
complex and may lead to some unexpected improvements in system cap-
abilities (Jung and Hnggi 1991). In the same manner, the synaptic noise was
shown to advance learning capabilities of the neural network (Buhmann and
Schulten 1987), maximize information storage capacity (Varshney et al.
2006), and improve information transmission between neural populations
(Gatys et al. 2015). Based on this regulatory effects of synaptic noise in neural
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systems, the research described here set out to explore the influence of noise
on the self organized critical behaviour of neural systems.

SOC has been hypothesized to be a fundamental property of neural systems
(Hesse and Gross 2014). Activity in the brain displays many different scales of
organization, yet without a central executive. SOC theory (Bak and Wiesenfeld
1987) underlines the propensity of some systems, generally consisting of large
number of interacting entities, to drive themselves to criticality where they
function at the edge of phase transitions. This critical regime equips the
systems with the potential to develop extended correlations in time and
space, which, in the sequel, drives the emergence of global behaviour from
local interactions. The existence and emergence of SOC in the brain has been
investigated both experimentally (e.g., Beggs and Plenz 2003; Linkenkaer-
Hansen et al. 2001) and theoretically (e.g., Wang et al. 2011; Lin and Chen
2005). Activity-dependent synaptic plasticity has been investigated as a possible
mechanism of self tuning towards SOC (Levina 2008; Meisel and Gross 2009;
Droste et al. 2012). Neuron level synaptic plasticity generates a network level
dynamic topology (and vice versa) that provides the local neurons with global
information which is critical for SOC behaviour.

Avalanches whose size parameters are distributed according to power-law is
the main manifestation of the SOC. Models based on SOC was shown to be
able to reproduce the power-law behaviour of experimental data (de Arcangelis
et al. 2006). Power law is interesting because, from a qualitative perspective,
although the majority of the avalanches are small in size, there is a finite
possibility of observing middle and big sized, even reaching to the system size,
avalanches. This tailors a complex interaction among network members. In
subcritical systems the interactions are mainly local whereas in supracritical
systems local activations quickly spread out to the whole system. On the other
hand, in the critical systems there are both activations confined to a small
region and global cascades. This type of behaviour suits very well with the
observed segregation/integration balance (Tononi et al. 1994) and small-world
regime (Achard et al. 2006) of the neuronal networks. It has been conjectured
that topological properties of local cortical circuits governed by some simple
wiring rules might be important for the emergence of power-law statistics
(Teramae and Fukai 2007).

Caenorhabditis elegans is known to have a small-world neuronal network
(Amaral et al. 2000),, and small world networks exhibit a SOC behaviour (Lin
and Chen 2005). The present study aims at exploring the potential of
synaptic noise to drive neural systems, and particularly C. elegans neuronal
network, towards SOC. The starting hypothesis was that the plasticity
induced by an adaptive synaptic noise process might bring out a functional
network topology, which exhibited neuronal avalanches. Using a simple
discrete model based on the neuronal anatomical connectivity of C. elegans,
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the synaptic failures were shown to be indeed essential for sustaining the
network activity at a critical regime.

Methods

The anatomical network

A near complete description of the nematode C. elegans nervous system has
been achieved using electron microscopy reconstructions (Varshney et al.
2011), and is freely available online.1 C. elegans possesses 302 neurons of
which 282 are somatic and 20 are pharyngeal. Three of the somatic neurons
do not make any synapses. The remaining 279 somatic neurons make 514
gap junction connections and 2194 chemical synapses. In the current study,
the full network formed by bringing together both types of synapses, was
analysed. Since the directionality of gap junctions was not available these
contacts were treated as bidirectional whereas the directionality of chemical
synapses were conserved. In total, this procedure generated a network of 279
neurons with 2990 directed edges. Please note that this is the network
denoted as the full network in Varshney et al. (2011).

The model

The spreading of forest fires was one of the first applications of SOC analysis
(Drossel and Schwabl 1992). The forest fire model has been particularly
useful because it easily lends itself to describe dynamically similar albeit
different systems. Accordingly, similar models were used to describe activa-
tion spreading in a network of neurons (Muller-Linow et al. 2008; Droste
et al. 2012). The model is simplistic in the sense that a neuron, at any time,
can be in any one of the three states: susceptible (S), excited (E), and
refractory (R). In this study, synaptic failures were included in the model
with their corresponding probability. The evolution of the model is described
by the following rules:

● A susceptible neuron can go into the excited state spontaneously with
probability f.

● A neuron can also be activated by one of its incoming neighbours.
● A synapse may fail to transmit the activity with an adaptive probability g.
● After the excited state, a neuron enters into the refractory state.
● The neuron can recover from the refractory state and become a suscep-
tible neuron with probability q.

SOC is generally inspected through observing avalanche dynamics. After a
slow and long driving process, a fast avalanche event (in our case successive
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excitation of neurons) with short duration occurs. Several orders of magnitude
difference between time scales of the accumulation and avalanche periods is a
characteristic feature of SOC. This difference is reflected in the separation of
scales and is usually achieved by setting q � f . Introducing the parameter,

θ ¼ q=f ; (1)

this ratio was set to 10, 20, 50, 100, 200, 300, 500 and 1000 in this study. In the
implementation, this corresponds to making θ random attempts to carry
refractory neurons to susceptible state, i.e. the driving phase, which is followed
by a random selection of a neuron for excitation. If the selected node is a
susceptible node, then an avalanche starts, the constant driving stops and the
avalanche travels according to neighbourhood relations. This continues until
all network activations come to an end. Accordingly, θ determines the
expected time length between avalanches. The extent of the avalanche was
determined by a breadth-first search algorithm (Grassberger 2002).

The synaptic noise, reflected by the synaptic failure probability, g, is the
main driving force of the functional network topology. This probability was
allowed to vary depending on the avalanche formation. During an avalanche
an activated node may not be able to trigger an activation in any of its
outgoing susceptible neighbours because of two reasons: That node may have
been already activated by another neighbouring node or synaptic failure may
not allow the transmission of activity. Accordingly, when two neighbouring
nodes are both activated but the synapse between them is not the carrier of
this activity, the synaptic failure probability of this synapse is increased by

Δg ¼ μ1f1ðsÞð1� gÞ; (2)

where μ1 is the constant step parameter, and f1 is a function depending on
the avalanche size (s) and defined as f1 ¼ 1� 1=s. Consequently, when two
neighbouring susceptible nodes are both activated via their shared synapse,
the synaptic failure probability is updated as follows:

Δg ¼ �μ2f2ðsÞg; (3)

where μ2 is again the constant step parameter, and f2 is an avalanche size-
dependent function defined as f2 ¼ 1=s. The determination of f1 and f2 is mainly
heuristic: Consider that an avalanche is formed by activated neurons and the
synapses among them. Some synapses are the members of the avalanche because
they propagate the activation, whereas some others are not, because they are not
able to transmit the activity because of the aforementioned reasons. We con-
jectured that the failure probability increments of an omitted synapse should
grow with increasing avalanche size, whereas failure probability decrements
should get smaller with increasing avalanche sizes. In other words, small ava-
lanches should be more selective for successful synapses while large avalanches
should be more selective for failing synapses. However, with these choices of f1
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and f2, the failure probability increments would always be higher than those of
decrements for avalanches occupying more than 2 neurons. The constants μ1
and μ2 cope with this imbalance. μ2 values bigger than μ1 keep the update steps
of decrements larger than increments for a longer period. In this study μ1 and μ2
were set to 0:1 and 0:8, respectively. Rather than the absolute values, the ratio is
important for the performance. With these parameter settings, the change in the
update parameters with increasing avalanche size is shown in Figure 1.
Accordingly, our update rule depends on the avalanche size and hence is non-
local. It should also be noted that our selection of the update functions enable a
soft bound on the synaptic failure probability between 0 and 1 and the update
steps depend on the current value. Figure 2 shows the avalanche formation and
synaptic failure updates on a simple network.

Simulations and data analysis

Simulations and all related analyses were performed using Python with
Numpy, Scipy (Jones et al. 2001) and Matplotlib (Hunter 2007) packages.
Graph-theoretical analysis was used to relate the simulation results to the
network structure. For this purpose custom-written codes with Python
using Networkx package (Hagberg et al. 2008) were used. Each neuron was
defined as a node of the graph and each synapse was assigned to an edge.
The terms neuron/node and edge/synapse are used interchangeably
throughout this paper.

Figure 1. The change in total update parameter, μkfk with avalanche size (s).
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The assessment of SOC was done mainly via fitting a power-law distribu-
tion, (pðsÞ / s�α), to the two parameters estimated from the avalanche: First,
the avalanche size measured as the total number of neurons activated during
an avalanche and second the eccentricity, i.e. the longest path length between
any two nodes of the subnetwork. Additionally, it was checked whether the
avalanche size was comparable to the network size. For fitting power-law
distribution, the procedure described in the seminal paper of Clauset et al.
(2009) was adopted. In summary, the scaling parameter, α was estimated with
the method of maximum likelihood. A Kolmogorov–Smirnov (KS) statistic
was computed for this fit. After generating synthetic data sets using the same
scaling parameter, KS statistic was determined for each dataset. The null
hypothesis was that our original data came from a power-law distributed
variable. To be able to reject the null hypothesis, the original KS statistic of
the empirical data should be significantly higher than those of the synthetic

Figure 2. At t = 0, all the nodes but node G are in susceptible state, and let’s assume that failure
probabilities for all synapses are the same. At t = 1, node A becomes activated. At t = 2, nodes C
and B are activated via node A. But node G cannot be activated since it is in the refractory state.
At t = 3, nodes E and F are activated via node C, but synapse between B and D fails. At t = 4
node D is activated via node E. At t = 5 all the nodes but node H are in the refractory state. The
failure probabilities of synapses A–C, A–B, C–F, C–E and E–D get lower (synaptic connections get
stronger). The failure probabilities of C–A, F–A, E–F and B–D get higher, since they connect
activated nodes but they are not the carriers of these activations. Synaptic strengths of A–G, G–H
and H–B do not change, because they do not connect pairs of activated nodes.
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data. This is simply evaluated by determining what fraction of the time the
synthetic statistic is larger than the value for the empirical data. Denoting this
fraction as the p-value, the null hypothesis was rejected if p � 0:1.

Results

Case 1: No synaptic noise

Before beginning our exposition about the effect of noise on the SOC beha-
viour of C. elegans network, it would be informative to inspect the no-noise
case. For this purpose the failure probability was set to 0 for all synapses and
the simulation runs were repeated for 20 times. Figure 3 shows the avalanche
sizes for different θ values. It may be clearly observed that especially beginning
with θ ¼ 50 characteristic scale(s) for avalanches occur. Although, the relation
of these avalanche scales to network topology is a matter of interest, since the
primary concern of this paper is the emergence of SOC behaviour, we will
leave this topic for further studies and suffice by noting that when there is no
synaptic noise the network operates in the supercritical regime.

The parameter θ determines the number of nodes that will be in the
susceptible state after the driving period between the avalanches. If we denote

Figure 3. The avalanche sizes for no synaptic noise.
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total number of nodes by N, a refractory node will be in the excited state with
probability,

p ¼ 1� ðN � 1
N

Þθ: (4)

Since the node selection is independent and uniformly distributed, this
probability will also give the fraction of the nodes in the refractory state
(assuming all of the nodes are refractory in the beginning). Figure 4 quan-
tifies this role of θ and it makes clear why at θ ¼ 1000 avalanche sizes are
almost equal to the network size: Because almost all neurons are in the
susceptible state. In the actual simulations, the number of susceptible neu-
rons deviates from the numbers shown in this figure, because of the remain-
ing susceptible neurons from the previous avalanche. The values of Figure 4
actually constitute lower bounds.

Case 2: Adaptive synaptic noise

Simulations began with all nodes in the refractory state and failure prob-
abilities were initially assigned to random values from a Gaussian distribu-
tion with mean 0.5 and standard deviation 0.05. After the initialization,
failure probabilities were updated for 40.000 avalanches and the convergence

Figure 4. Assuming all nodes in the refractory state, the number of susceptible nodes after θ
random refractory-susceptible transition attempts.
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of these probabilities were observed. Afterwards, statistics of 10.000 ava-
lanches were collected with fixed failure probabilities.

The convergence of the failure probabilities and the resulting values for a
single run is presented in Figure 5. Defining G as the vector of individual
synaptic failure probabilities, g, after every 100 avalanches, the relative sum
squared change in the G were calculated. It may be observed that after about
30.000 avalanches convergence is attained. This convergence performance was
valid for all θ values. The figure also exhibits the final failure probabilities for
the corresponding run. Most of the resulting values converge to almost 1,
whereas most of the remaining values converge to 0 with few values in
between. In all the simulations, less than 400 (out of 2990) probability values
converge to values less than 1. Although values close to 1 actually pruned away
the corresponding edges, no node was excluded from the resulting network.

Figure 6 demonstrates the avalanche sizes measured as the total number of
activated neurons, for different θ values. For small θ values, (< 100), the
avalanche sizes begin to diverge earlier from the power law which is a
manifestation of the subcritical dynamics. For θ values over 100, critical
regime is attained (KS statistics with p ¼ 0:1). The cut-off observed in the

Figure 5. For a single run with θ ¼ 300, A. relative total change in the synaptic failure prob-
ability values, B. (sorted) final failure probability values.
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avalanche size is due to the finite size of the network. For values close to 1000
the avalanche distribution begins to exhibit a sharp positive deflection close
to the network size. We do not conceive this as an indication of the network
entering into the supracritical regime, but rather again as a result of the
limiting effect of the network size. To make this point clear, we carried the θ
value to its utmost level, so as to make all neurons susceptible after each
avalanche. The result was qualitatively similar and this observation corrobo-
rated our conjecture on the limiting effect of the network size. The difference
between these three behaviours is more evidenced in Figure 7.

The second size parameter investigated for the power-law was eccentricity.
The activated nodes during an avalanche and the active synapses among

Figure 6. Empirical avalanche size (s versus probability (p(s) and the power-law fit, (pðsÞ ¼ s�α),
graphs for different θ values.
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them form a subgraph of the original graph. This subgraph was extracted at
each avalanche event and the eccentricity, maximum path length between
any two nodes, in this reduced network was determined. The results are
presented in Figure 8. The results are again indicative of a critical behaviour
in the C. elegans network. Noting that the full network has an eccentricity
value of 7, observed big eccentricity values point out to the long chains of
neurons shaped by the synaptic noise levels.

The small size of C. elegans network poses some extra challenges to our
ability to observe the critical dynamics. To corroborate the validity of our
results, we resorted to a sensitivity analysis that was shown to be effective for
small size social systems (Daniels et al. 2017). To this end, after their values
converged, small perturbations were applied to the synaptic failure probabil-
ities. Particularly, 1% of the synapses were randomly selected and their
failure probabilities were altered 10% in absolute value. Then, the
Kullback–Leibler divergence between the original neuronal activity distribu-
tion and the distribution of the perturbed network was calculated, and was
normalized with the absolute change in the total failure probability. If the
network is indeed driven into a critical regime with increasing θ values, then
this should be also evident with the increasing sensitivity to perturbations.
Figure 9 shows that this is actually the case, with the sensitivity reaching a
plateau at about θ ¼ 200.

Figure 7. Redrawing of the avalanche size distributions for θ equal to 50, 500, and 1000.
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Relationships between neural dynamics and structure

A very important concern in neuroscience is the relationship between neural
dynamics and the underlying structure. To be able to investigate these relations
in our particular model, we made a series of analyses. To reiterate our
simulation procedure, at each iteration a neuron is randomly selected and if
it is in the susceptible state, it becomes activated and an avalanche begins.
However, if the selected neuron is a refractory one, then no avalanche forms.
Accordingly, we denoted avalanche initiation rate for a node as the ratio of
actually starting an avalanche over total number of times being selected. Then,
we inspected the correlation between the activation rate, i.e. average activation
level for each neuron during a simulation run, and avalanche initiation rate. In

Figure 8. The eccentricity (maximum path length) for the avalanche subgraph for different θ
values.
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the simulations θ was fixed at 100. Figure 10 shows that there is a significant
negative correlation between these two rates (r ¼ �0:92; p< 0:001). This is
because highly activated nodes are more probable to be in the refractory state
from the previous avalanches, and thus when selected, may not be able to

Figure 9. Change in the sensitivity of the network with increasing θ values. At each θ value, after
convergence, the failure probabilities were perturbed 10 times, and this process was repeated 30 times
for each θ. Figure shows the mean and the standard deviation of the normalized network sensitivity.

Figure 10. There is a negative correlation between rate of activation and rate of avalanche
initiation (r ¼ �0:92; p< 0:001).
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trigger an avalanche. We also determined that these highly activated nodes are
the high degree nodes, with a correlation coefficient of r ¼ 0:62 (p< 0:05)
between average degree and activation rate.

In a second series of analyses, we investigated the activation rates of
individual neurons and average avalanche lengths initiated by each neuron.
Avalanche length is the number of neurons activated during an avalanche.
Figure 11 shows the top 30 values. C. elegans is known to have a rich club
comprising of 14 neurons (Towlson et al. 2013), whose names are AVAL,
AVAR, AVBL, AVBR, AVER, AVDR, AVEL, PVCL, PVCR, DVA, AVDL,
AIBR, RIBL, RIAR. Rich club of a network is a set of high-degree nodes
with a preferential attachment to each other. Thus, the average path lengths
among these nodes are shorter than the average. It may be observed that 10
out of 14 rich club neurons are among the top 30 highly activated neurons
and the first 6 nodes are all rich club neurons. In terms of average avalanche
length, 7 rich club neurons are among the top 30. This tells us that some
neurons are more capable of generating long lasting avalanches whereas
some others initiate shorter avalanches, and all in all they make the scale

Figure 11. (A) Rate of activation. (B) average length of the avalanches initiated by a neuron.
Vertical axes denote neuron names. (Top 30 values are shown.)
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free avalanche distribution. However, further investigations should be made
to reveal the relationships between the functional and structural properties of
these neurons and their avalanche dynamics.

Discussion

Two assertions formed the basis of this study: first, noise controls the level of
activity and hence is of functional importance for the nervous system
(Buhman and Schulten 1987), and second, neuronal avalanches produced
by SOC might be a new mode of network activity (Beggs and Plenz 2003).
Motivated by these hypotheses, this study set out to explore the interactions
between these two processes for the C. elegans neuronal network. The main
finding is that an adaptive synaptic noise lends itself as a possible mechanism
that drives the network towards SOC. Considering that there are various
criticisms towards SOC theory (e.g., Frigg 2003). The results presented here
do not supply any positive or negative evidence towards the existence SOC,
but rather it claims that if SOC is indeed a mode of network activity, synaptic
noise might be a mechanism that allows the anatomical network to generate
dynamic functional topologies for SOC behaviour.

Experimental studies showed that synaptic failure probability is generally
above 0.5 and can be well in excess of 0.9 (Allen and Stevens 1994; Hessler
et al. 1993). The noise arising from the probabilistic nature of neurotrans-
mitter release is actually an important mechanism of plasticity (Rosenmund
and Clements 1993). The plasticity in terms of spike timing, its update rules,
parameters have been explored both experimentally and analytically (Van
Rossum et al. 2000). Consequently, we have a large set of feasible rules and
parameters which allow the researchers to search for neurobiologically rea-
listic determinants of SOC based on spike time-dependent plasticity
(Rubinov et al. 2011). Synaptic noise was also shown to have a nonrandom
component that modulates neuron function (Faure and Korn 1997). In this
study, an update rule for this noise is proposed and tested on the neuronal
network of C. elegans. The inclusion of the avalanche size as a synaptic failure
update parameter constitutes the weakest point in all our modelling effort.
The question of how a synapse gets information about the avalanche size is
left unanswered in this study. A neuron gets information from other neurons
that it has direct contact. Hence, a link between avalanche size and local
activity profile should be sought. Providing global information to neural
elements has also been a problem for neural models assigning spreading
cascades along shortest paths. In a recent study, hubs and central pathways
were shown to be dominating this shortest path activation (Mišic et al. 2015).

It should also be reiterated that the model used in this study is over
simplistic. Nevertheless, it has been already been demonstrated that this
type of simple models produced results in excellent agreement with more
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realistic simulations (Messe et al. 2015). By abstracting away microscopic
details, these types of simple models emphasize the emergence of global
patterns from local neural interactions (Mišic et al. 2015). Moreover, similar
models were efficiently employed to model the activity propagation in neural
networks (Stam et al. 2015). The inclusion of the noise term actually drives
our model closer to a variant of the forest fire model, in which immunity
against fire is given to trees with some fixed probability (Clar et al. 1996).

Avalanches were hypothesized to be transient formation of cell assemblies
(Plenz and Thiagarajan 2007). They represent spatially irregular patterns of
propagated synchrony, which are stable and exhibit recurrence. The neuron
chains shaped by the synaptic noise can be considered as a manifestation of
these assemblies. As a post-hoc investigation, the distribution of failure
probabilities were analysed to understand whether this distribution was
similar across simulations. There were no significant correlations among
the distributions. This observation indicates that neural networks might
include many different overlapping functional assemblies capable of generat-
ing complex activation patterns.

Robust statistical assessment of power-law statistics is problematic with
finite size systems (Taylor et al. 2013). In our model setting, since the driving
of the neurons, i.e. transition from refractory to susceptible, stops during an
avalanche, it is not possible for a neuron to reactivate within the same
avalanche. This means that the maximum avalanche size (in terms of the
number of activated neurons) is strictly limited by the network size. It is
known that finite size systems exhibit a cut-off dictated by the system size
(Plenz and Thiagarajan 2007). This was also evident in our results. However,
for the critical regime a strong power-law behaviour was observed up to
almost the network size.

Same model without the noise component and avalanche type activation
revealed that activity in the neural network of C. elegans were dominated by
central hub nodes (Muller-Linow et al. 2008). The well-defined activation
sizes in our no-noise networks should be reconsidered in the future within
this perspective. This behaviour might also be conceived as a manifestation of
network-shaped self organization (Hutt et al. 2014). It was also observed that
C. elegans neural network operated at a critical region rather than a certain
critical point (Moretti and Mun˜oz 2013). In the present work, the existence
of many different synaptic noise distributions each giving rise to critical
behaviour might also be evaluated in the same light. Another point of
concern is the structure-dynamics relationship of the C. elegans connectome.
Our analyses showed that rich club of C. elegans neuronal network is active
in creating the observed global avalanche dynamics, but further investiga-
tions are needed to explore these relationships. Relatedly, our analysis could
not fully reveal which properties of the observed neural dynamics is inherent
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to the neuronal network of C. elegans and which are not. Accordingly, proper
analysis methods should be developed to better explore these points.

Note

1. For example, from www.openconnectomeproject.org, www.wormatlas.org.
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