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On the containment problem

Tomasz Szemberg e Justyna Szpond

Mathematicians routinely speak two languages: the
language of geometry and the language of algebra.
When translating between these languages, curves
and lines become sets of polynomials called “ideals”.
Often there are several possible translations. Then
the mystery is how these possible translations relate
to each other. We present how geometry itself gives
insights into this question.

1 Introduction

Computers dominate our everyday life. They handle finite data efficiently,
but even though data sets can be huge, they are always finite. For example,
computers cannot perform any exact calculation involving the number 7, which
has no finite decimal representation. In other words, no matter how many digits
of the number m we write down, we are always just approximating w. Along
the same lines, scientists describe the physical world by equations, or rather
by their solutions which are functions. These functions, in their exact form,
can be very complicated. However, thanks to the celebrated Stone—Weierstrass
Theorem, any function appearing in the real world can be nicely approximated
by polynomials. These mathematical objects are the main heroes of this story.

For details, see for example http://en.wikipedia.org/wiki/Stone-Weierstrass_
theorem.
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2 Polynomials and ideals

Polynomials are powerful objects in mathematics. They are put together (like
Lego bricks) from simple building blocks called monomials. For example,

T 2y

ATk
are four different monomials. The first one, z, is very simple. It contains just
one variable, namely x, and this variable appears there with power 1 (remember
that z = 2'). The sum of all powers in a monomial is called the degree of the
monomial. Thus z is a monomial of degree 1 in one variable z. Similarly 22y
is a monomial of degree 2 4+ 1 = 3 in two variables x and y. Sometimes it is
useful to enumerate variables by indices (especially when there are thousands of
variables around, which easily happens in actual applications like modeling car
motors). Our third example, 172323, is a monomial of degree 17 + 2 + 5 = 24
in the variables x1, 2, and x3. The last example, 1, is also a monomial and its
degree is 0 by definition.

We can multiply a monomial by a coefficient, which is just a number. For
example, 522 is the monomial 22 multiplied by the coefficient 5. Polynomials
are sums of monomials with coefficients. We encounter simple polynomials in
school, such as

2x — 3.

Indeed 2z — 3 = 22 + (—3) - 1 is the sum of two monomials with coefficients:
and 1 with coefficients 2 and —3, respectively.

This polynomial can be considered as a function and then its graph is a
straight line, as shown in Figure 1.

The point where the line intersects the horizontal axis is of particular interest.
It is the zero of the polynomial. We also say — somewhat colloquially — that the
polynomial vanishes at that point.

There are many polynomials with a zero at the same point, for example

g(x) =22% — 2% — 2z — 3.

Computing f(2) =0 and g(2) = 0 shows that f and g vanish at 2.



On the other hand, not all polynomials vanish at that point. For example,
none of the polynomials
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vanishes at x = % The graphs of two of these examples are shown in Figure 2.
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Figure 1: The graph of the polynomial 2z — 3 with its zero 5 marked.

We would like to distinguish those polynomials that vanish on a certain
set of points from those that do not, but at first, we make two fundamental
observations. Take three polynomials f, g, and A, such that « is a common
zero of f and g, that is f(«) = 0 and g(a) = 0. Then calculating

(f+9)(@) = fla) +9(a) =0+0=0 (1)
shows that « is also a zero of f + g, and
(hf)(@) = h(a)f(a) = h(a) -0 = 0 (2)
shows that « is also a zero of hf. As an example of the latter case, take
flx)=22-3
hz)=x+7.

Then (hf)(z) = (2z — 3)(x + 7) vanishes at 2 = 3 even though z + 7 alone does
not.



Figure 2: The graphs of two polynomials: 22 — % with zeroes —% and %, and
%xg — %xQ — %x + % with zeroes —2, 1, and 3.

Motivated by our observations (1) and (2), algebraists® introduced the
concept of ideals: an ideal of polynomials T is a set such that

1. Every element of 7 is a polynomial.

2. The sum of any two elements of Z is again an element of Z.

3. The product of an element of Z with another arbitrary polynomial is again
an element of 7.

Now let Z be the set of all polynomials vanishing at %,
Z = {f is a polynomial | f (3) =0} . (3)

It follows from (1) and (2) that Z is an ideal of polynomials!®l Here are some

Algebraists are mathematicians working in “algebra”, a branch of mathematics that deals,
for example, with polynomials.

Mathematicians define ideals in the more general context of “rings”, but in this snapshot,
only ideals of polynomials are important. For more information about rings, see for example
http://en.wikipedia.org/wiki/Ring_(mathematics).
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examples of elements of 7

fz) =22 -3,
3
g(.T)—l' §a
h(x) = 422 — 9,
j(x) =22° —2* —x -3

Here, f and g have degree 1, while h has degree 2 and j has degree 3. One
can check that all elements of Z are products of f with another polynomial. In
particular, we have

h(z) = (2z — 3)(2x + 3)
j(x) = 2 —3)(z* + . +1).

We say that f(x) = 2x — 3 generates .
Now we consider polynomials with more than one variable. For example

flay)=a"+y* -1,

3
g(z,y,2) =2 — 2 — zzg,

h(x1, T2, T3, T4, 25) = 27 — Tox374 + 207212225 — 900.

An important class of polynomials is given by homogeneous polynomials. These
are polynomials which contain only monomials of the same degree, for example
the polynomials

J(w,y,2) = a® + 2y — 327

k(z,y, 2) = 622yz — Tz +y2° — 24
Here, j is homogeneous of degree 2 and k is homogeneous of degree 4, whereas
none of the polynomials f, g, or h above is homogeneous. When there are many
variables, ideals become more complicated, in particular they typically have
more than one generator. However, no matter how complicated an ideal is, it
always has a finite number of generators. This was proved by David Hilbert in
1890 and is very important in applications.

We write Z = (fi1, f2,..., fx) to indicate that the polynomials f1,..., fx

generate the ideal Z. Thus in example (3) on page 4 we have 7 = (2z — 3), with
just one generator.

For a proof of Hilbert’s Basis Theorem, see for example [7, Theorem 1.2].



To be clear, saying that f1,..., fx generate T means that every polynomial
g in Z can be written as the sum of products of the generators with some other
polynomials. For example, if Z = (z,y), then every polynomial f in Z can be
written in the form

f(x,y) = zg(x,y) + yh(z,y), (4)

for some polynomials g and h. Thus we see that fi(x,y) = 23 — 22y + 7 is
not an element of Z, because 7 is divisible by neither x nor y. In contrast,
fo(x,y) = 23 — 2zy + Ty* is contained in Z since we can write fo(x,y) as

fo(@,y) = x(z® — 2y) + y(7y°).

But we can as well write fa(z,y) as

folz,y) = x(a® —y) + y(—x + 7°).

Thus the presentation in (4) is not unique.

3 The order of vanishing

There is a natural interplay between algebra and geometry which plays a central
role in many branches of mathematics. This allows translating from the world
of polynomials to the world of lines, planes and other geometrical objects. So
how does this interplay work?

Consider again the ideal Z = (22 — 3). It determines the point % on the real
line, given as the solution of the equation 2z — 3 = 0. In fact % is the common
zero of all polynomials in Z, because as we saw all elements of Z are multiples

of 2x — 3.
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Figure 3: The zero set of a polynomial.

Similarly J = (x) determines the point 0, since this is the unique solution
to the equation = 0. But an ideal may determine more than one point. For
example, K = (z(z — 1)) determines the set {0,1}.



Any finite subset
{ag,...,as}

of the line can easily be represented as the common zeros of an ideal, namely

((x—ar) ... (z—ay)).

Does this mean that there is a perfect correspondence between points on the
line and ideals? No!

For example: which set of points is determined by the ideal £ = <x2>? The
equation 22 = 0 has only one solution = 0. So £ determines the same point
as the ideal J = (z)!

However, the ideals £ and J differ: all elements of £ are also in J, but not
all elements of J are also in L.

Expressed in formulas, the inclusion

(2%) € (x)

holds since
2

T° = xx,
where one x is the generator of J and the other x is a polynomial coefficient as
in (4).

The reverse inclusion does not hold since it is impossible to write = in the
form

r = f(zx)z*

The reason is that f(z)z? has degree at least 2, whereas x has degree 1.

Taking a closer look at the equation 22 = 0, we see that 0 is a double solution
of this equation or equivalently: the polynomial g(x) = 2% vanishes at 0 to order
2. We see that polynomials vanishing to the second order at a point are among
those which just vanish there but not vice versa, that is, not all polynomials
vanishing at a point vanish there to order two.

For example, divisibility by z? is clearly a more restrictive condition than
divisibility by z. Similarly, divisibility by z3 is more restrictive than divisibility
by 22 and so on. This leads to a sequence of containments

LC{a™) C (@) € ... C{a®) C (2?) C (z) C(1).

Given a set V, we say that a polynomial f vanishes along V if f(z) =0 for
all elements x in V. If we denote the ideal of all polynomials vanishing along V'
to order m by Z("™), we have

ezt e L cI® cI® CcTC(1).



The ideals Z("™) are called symbolic powers of the ideal Z. This name is used
in order to distinguish them from ordinary powers of Z, which are denoted
simply by Z". These ordinary powers are defined by taking all products of r
elements in Z, with repetitions allowed. It is a very convenient feature of ideals
of polynomials that it suffices to take products of generators.

For example, the second ordinary power of Z is the ideal generated by
products of any two generators of Z. More specifically, if Z = (f,g), then
7% = (f?, fg,9*) and similarly 7% = (f3, f2g, fg*,g*). We see that there is
again a sequence of containments, as taking higher and higher powers, the ideals
get smaller and smaller.

L CIM I CL..CTPCTPC T C ().
In the example with J = (), it is now clear that
Jr =g (5)

for any n > 1.

We saw above that ideals 7 in one variable determine points on the real line,
given as the common zeroes of all polynomials in Z. When we turn to the more
interesting case of ideals in several variables, what do the common zeroes look
like? So take an ideal Z of polynomials in n variables x1, ..., x,. Now consider
the set along which all polynomials in Z vanish, which we denote by V(Z). In
formulas,

V(Z)={(z1,...,2n) | f(x1,...,25) =0 for every finZ}.

We call V(Z) the vanishing set or zero set of Z. Fortunately, it suffices to
check f(x1,...,2,) =0 just for the generators of Z. By design, all polynomials
in Z vanish along V(Z) — we just say that Z vanishes along V(7). The vanishing
sets of ideals in more than one variable can have interesting shapes, two examples
are displayed in Figure 4: The vanishing set of the ideal <y2 N — 4> is a circle
with radius 2, and the vanishing set of the ideal <y2 — 22 (x + 1)> is a so-called

“cubic curve’ld,

Take another example: the ideal Z = (zy, zz,yz). The set of zeroes V(Z) is
the union of the coordinate axes in three-dimensional space. This example leads
us back to symbolic powers, because unlike (5), already the second ordinary
and symbolic powers differ:

72 £ 713,

For a more advanced introduction to symbolic powers, see for example (7, Section 3.9].
6] For more information on cubic curves, see for example https://en.wikipedia.org/wiki/
Cubic_plane_curve.
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Figure 4: The vanishing sets of two ideals in two variables: a circle and a cubic
curve.

Why is that the case? By what we have said above, it is clear that the least
degree of a polynomial in Z? is 4, since all generators of Z have degree 2. On the
other hand the monomial zyz is contained in Z(?). Indeed, the set of zeroes of
this monomial is the union of all three coordinate planes. Now, every coordinate
axis is an intersection of two coordinate planes (for example, the z-axis is the
intersection of the planes x = 0 and y = 0), hence zyz vanishes doubly along
each axis (already zy vanishes doubly along the z-axis).

We saw above that <x2> C (x). But what is the important difference between
(z) and (2?)? Both ideals vanish at 0, but (z) is special because it is the largest
ideal that vanishes at 0, a property that we call radical: An ideal 7 is called
radical if it contains all polynomials that vanish along V(Z), in other words, if
7 is the largest ideal vanishing along V(Z). For example, V((2?)) = {0}. Since
x vanishes at 0 but is not in <ac2>, the ideal <:r2> is not radical.

Turning to powers of ideals again, if Z is a radical ideal in one variable, we
have Z™ = Z("). But we have seen that if we allow for more variables, the ideals
become more complicated. In fact, it happens rarely that the equality 7 = Z(")
holds. There is always the containment

for a radical ideal Z. This is evident since an n-fold product of polynomials
that all vanish along a set V' to order 1 vanishes there at least to order n. It



might however happen (as we saw in the example with (xy, zz,yz)) that there
are polynomials which vanish along V' to order n but are not products of n
elements of Z. On the contrary,

™) zI"

is the typical behavior! Naturally enough, this situation inspired mathematicians
to wonder about a more general containment problem:

Question 1 Given an ideal T, determine all integers m,r such that the con-
tainment
7m c 1" (6)

holds.

This question has occupied algebraists for quite a number of years. It is clear
that for a fixed m there is an r such that the containment in (6) holds, take
r = 1 for example. The difficulty of the problem lies in finding the largest
possible 7.

A surprisingly uniform answer has been found independently by two teams of
researchers: Lawrence Ein, Robert Lazarsfeld and Karen Smith [6] and Melvin
Hochster and Craig Huneke [10]. A somewhat simplified form of their results is
the following statement.

Theorem 1 Let T be a polynomial ideal in n + 1 variables. Then for all m
and r satisfying m > nr there is the containment

m 1. (7)

Examples show that this result cannot be improved in general, but these
examples are somewhat artificial.

This has led Craig Huneke to ask if one can improve the constants in (7) under
additional assumptions. In particular, he asked if the following containment
holds:

704 c 12 (8)
provided that 7 is a radical ideal in three variables with the following two

properties:

1. The generating polynomials of Z can be chosen to be homogeneous.
2. The set of common zeroes V(Z) consists of a finite number of lines through
the origin.

Note that Theorem 1 implies the inclusion Z(*) C 72. In this snapshot we
saw that 74 C I(3), so indeed the hard question is if the ideal Z®) also fits
into Z2.
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This question has been studied by a number of authors [3, 8], who ob-
tained partial results confirming the containment in (8). Recently, Marcin
Dumnicki, Halszka Tutaj-Gasiniska and Tomasz Szemberg constructed in [5]
the first counterexample to the containment in (8). The points appearing in
this counterexample come up as intersection points of a certain configuration
of lines (see Snapshot 5/2014 Arrangement of lines by Brian Harbourne and
Tomasz Szemberg for an introduction to arrangements of lines). Since then,
a number of further counterexamples has been constructed [2, 9, 4, 11]. All
these counterexamples revolve around configurations of lines, although a recent
paper gives evidence that some counterexamples come only from configurations
of curves other than lines [1]. One of the aims of a recent workshop in Ober-
wolfach was to explain how and why the two topics, containment of ideals and
configurations of lines, are related. This is an ongoing research project with
many possible variants and refinements, so that it presents a nice experimental
field in algebra and geometry with potentially interesting and powerful results
still waiting to be discovered.[D

Acknowledgments We would like to thank Thomas Bauer and Brian Har-
bourne for helpful comments on the first draft of this snapshot.

To learn about a different question related to zeroes of polynomials, see Snapshot 8/2015
Ideas of Newton—Okounkov bodies by Valentina Kiritchenko, Evgeny Smirnov, and Vladlen
Timorin.
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