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Graphs are mathematical objects composed of a col-
lection of “dots” called vertices, some of which are
joined by lines called edges. Graphs are ideal for visu-
ally representing relations between things, and math-
ematical properties of graphs can provide an insight
into real-life phenomena. One interesting property is
how connected a graph is, in the sense of how easy it
is to move between the vertices along the edges. The
topic dealt with here is the construction of particu-
larly well-connected graphs, and whether or not such
graphs can happily exist in worlds similar to ours.

1 Introducing graphs

In mathematics, we often invent abstract objects to study. These objects may be
inspired by aspects of real life, or invented to solve a real-life problem. Sometimes,
the concepts we invent have their roots in something concrete or “real”, but then
evolve in a way that makes this connection to the real world less visible. Take,
for example, the study of roots of polynomials, which has many applications to
physical problems. Once people had derived a formula to compute solutions
of quadratic equations from the coefficients, one natural question to ask was
whether there exist such formulas for higher-degree polynomials. This led to
the invention of completely new methods and objects called “groups”, which
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were used by the famous mathematician Galois in the early 19th century to
show that no such formula can exist for polynomials of degree ≥ 5. Group
theory, the study of these objects, is now a thriving branch of pure mathematics
that generates its own questions and methods no longer related to its origins in
polynomial equations.

Another abstract object in pure mathematics whose usefulness is rather
intuitive is a graph. A graph is defined to be a collection of “dots” called
vertices, some of which are joined by lines called edges, see Figure 1.

Figure 1: An example of a graph.

Graphs are good for representing relations between things. For example,
drawing a vertex for each of one’s friends and drawing an edge between two
vertices if the people represented by these vertices are friends with each other
gives a good idea of what one’s social network looks like.

A graph is a particular example of a metric space, which is a set X endowed
with a distance function d which tells us the distance between any two points
x, y in the set. The graph distance d(x, y) is defined to be the minimum number
of edges in a path from x to y. Note however that there may be more than one
possible shortest path between two vertices. A distance function d must satisfy
the following rules:

1. The distance is always positive: d(x, y) ≥ 0 for all x, y in X.
2. The distance is never zero, unless it’s the distance between a point and itself:

d(x, y) = 0 if and only if x = y.
3. The distance from x to y is the same as the distance from y to x: d(x, y) =

d(y, x) for all x, y in X.
4. It’s quicker to go from one point to another directly, rather than via some

third point: d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z in X.

These rules are intuitive for our notion of distance in real life, and are also
easy to check for the graph distance function. So we can use the distance,
the induced metric space structure and associated theory to learn more about
graphs and the relations they encode.
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2 OK, now what?

Once we have defined potentially interesting mathematical objects, we need to
see what we can do with them. Questions we can ask ourselves include:

• How restrictive are the rules that define our objects? Do we have many
different objects satisfying these rules? Can we classify them?

• What kind of properties can these objects have? How are the properties
related? Which properties imply others?

• How do our objects interact with other known mathematical structures?

For graphs, one property which naturally suggests itself is “connectedness”, as
we may hope that this will tell us about how well the things represented by the
vertices are interrelated.

Figure 2: Which graph is better connected?

Given the two graphs in Figure 2, which one is better connected? It is
intuitively clear that the graph on the left is better connected. Why is this?
One answer would be that the graph on the right can be “disconnected”, that
is, split into two distinct pieces, by removing just one edge.

Figure 3: Which of these is better connected?

Now consider the two graphs in Figure 3. Both of these can be disconnected
by removing one edge, but the parts we can disconnect from each other are much
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bigger for the graph on the right. Suppose now that this graph represented an
electrical network: the vertices correspond to houses that are connected to each
other via edges that represent the power lines that provide them with electricity.
If a region is disconnected (due to failures in the power lines, which for us is
represented by the removal of edges), it will be left without power. If this can
happen to a very large region because of the failure of only a few power lines,
it seems that the electrical network was not very well connected. With this
example in mind, when we search for a good notion of connectedness, it seems
reasonable to also take into account how big a region we can disconnect with
how small a set of edges.

Thus, given a graph X and some subset of vertices A of X, we will look at
the number of edges needed to disconnect A from the rest of the graph relative
to the size of A. This set of edges will be called the boundary of A, and will be
denoted by ∂A; see Figure 4 for an example.

Figure 4: The boundary of a subset of vertices.

We will divide the number of edges in ∂A, which we write |∂A|, by the
number of vertices in A, which we write |A|. What we get is |∂A|

|A| , which is just
a number. We would like this quantity to be large, regardless of the subset of
vertices that we choose. This leads us to the following definition. The Cheeger
constant, denoted by h(X), is defined to be

h(X) = min
A

|∂A|
|A|

,

where this means that we calculate |∂A|
|A| for every possible subset A of vertices

at most half the size of X and set h(X) to be the smallest of these values. We
only consider subsets at most half the size of X so that each time the graph
X is split into two by removing edges, we consider the smaller part to be the
subset A. This is to avoid cases such as taking the whole of X as the subset A,
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because this case doesn’t tell us anything about the connectedness of the graph.
Our interpretation of the Cheeger constant is that the bigger it is, the better
connected is the graph.

Now that we have defined what is hopefully a good measure of connectedness,
we can explore how it behaves for different graphs and how it is linked to other
properties of graphs. For example, if the degree of a vertex is the number of
edges connected to it, we have

h(X) ≤ minimal degree of a vertex in X.

This is because if we let the subset A be a single vertex of minimal degree, we
obtain
|∂A|
|A|

= min. degree of a vertex in X
1 = min. degree of a vertex in X.

This is of course bigger than or equal to the minimum over all subsets A in
X, which is the Cheeger constant h(X). We have thus proved a simple upper
bound on h(X).

It can be calculated that for a complete graph with n vertices, that is, a graph
where there is an edge between every pair of vertices, the Cheeger constant is
given by n/2 if n is even and (n+ 1)/2 if n is odd. This gives us a whole family
of very well-connected graphs, but at the high cost of connecting each vertex to
every other vertex! Recalling the motivating example of the electrical network,
connecting houses to each other via power cables in this way is definitely not a
practical solution for ensuring the network is well-connected (power cables are
expensive!).

3 Can it even exist?

It is useful and interesting to search for a whole family of graphs with more
and more vertices and good connectedness properties. Firstly, it allows us to
create a network of any size which is guaranteed to be well-connected. Secondly,
it helps us understand what well-connected really means. This is because for
any given graph, the Cheeger constant is a number that we know measures
connectedness, but is perhaps difficult to interpret without comparing it to the
Cheeger constants of other similar graphs (of the same size, say). So, given
some constraint, such as a bound on the number of edges, what is the best way
of connecting n vertices in order to maximize the Cheeger constant?

We can of course solve this for a given number of vertices n by simply
enumerating all the possible graphs satisfying the constraint and checking their
Cheeger constants. But for large n this may be difficult to compute, and
moreover, boring! We would prefer to have a recipe to make bigger and bigger
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graphs that satisfy the constraints and that are guaranteed to have at least a
certain amount of well-connectedness. Thus, what we are searching for is an
infinite family of graphs (Xi) such that for every number n, we can find a graph
in our family with at least n vertices, the graphs are all well-connected, and
there are not too many edges.

Figure 5: Some sequences of graphs.

While the first of these conditions is already formulated precisely, the others
need translating into a more mathematical form. For the third assumption, a
reasonable thing to try would be to impose the condition that each vertex can
only be connected to at most a certain number D of other vertices, where D is
independent of the size of the graph. This will help us avoid the expensive case
of the family of complete graphs.

For the well-connectedness condition, we could try imposing the relatively
benign-looking condition that the Cheeger constant always be bounded away
from zero, that is, h(Xi) ≥ ε > 0 for all i, where the constant ε may be small,
but is strictly greater than zero and, importantly, is independent of i. This will
guarantee that even if we pick a very large graph in our family, it is guaranteed
to have a certain level of connectedness that is independent of its size.

Our requirements on the family of graphs (Xi) now take the following form:

• For every n, there exists an i such that |Xi| ≥ n;
• There exists an ε > 0 such that h(Xi) ≥ ε for all i;
• There exists D > 0 such that the degree of all vertices in the family (Xi) is

at most D.

A family (Xi) of graphs that satisfy all three of the above conditions is called
an expander. This definition was first given by Pinsker in [14], but graphs with
properties equivalent to expansion had already been studied by Kolmogorov and
Barzdin in [5] in the context of neural networks. Now that we have the definition
of this object with desirable properties, we would like to have an example. But
where should we look? We could test some easy-to-define families of graphs, or
ones which we may already have come across for other mathematical reasons.
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In the examples in Figure 5, we can see that if we continue the sequences
of graphs, the degree of the vertices does indeed remain bounded, but the
Cheeger constant will actually get closer and closer to zero. This means the
connectedness condition cannot be satisfied for these graphs. Indeed, it is not
clear at first glance how to construct 1 even a single example of an expander,
and one may wonder whether such examples can exist at all: after all, being
well-connected and not containing too many edges may well be contradictory
properties!

If mathematicians are not able to construct a certain object, the next best
thing is to prove that it exists without constructing it. While non-constructive
existence proofs may be difficult to use in applications, it is still interesting
to know that there is some hope of constructing the object of interest in the
future. Pinsker was the first to achieve this for expanders in [14]. He used
techniques from probability theory to show that expanders exist long before
explicit examples were given. The explicit examples came later, and in an
interesting form: bringing together algebra and geometry.

4 Thanks, algebra!

Before we explain how to find a rich source of examples of expanders, we must
return to groups, as mentioned in the introduction. A group is defined to be a
set of elements, endowed with a way to compose them which satisfies certain
rules. For a concrete example, let us consider the set of symmetries of an
equilateral triangle. One quickly verifies that the triangle is symmetric with
respect to rotation clockwise by 120◦, rotation by 240◦ and reflection in each of
the straight lines that pass through a vertex and the midpoint of the opposite
side. We include in the set of symmetries the rotation by 0◦, or rather, the
symmetry that consists of leaving the triangle unchanged. Observe that if we
compose two symmetries (that is, perform one and then another), as in Figure
6, we always obtain another symmetry. We also see that every symmetry can be
“undone” by another, for instance, the rotation by 120◦ followed by the rotation
by 240◦ leaves us with the original triangle.

Let us now give the formal definition of a group. Call the set of elements
of our group G, and for two elements g and h in G, let us write g ∗ h for the
composition of g and h. The rules that G and ∗ have to satisfy in order to form
a group are:

• g ∗ h must be an element of G;

1 By “construct” here we mean to have a recipe that is guaranteed to give us infinitely
many graphs with the desired properties, even if we cannot actually construct infinitely many
graphs.
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Figure 6: A reflection followed by a rotation.

• there must be an identity element e in G, such that g ∗ e = e ∗ g = g for all
g in G;

• for each g in G, there is an inverse element g−1 in G such that g ∗ g−1 =
g−1 ∗ g = e;

• we must have (g ∗ h) ∗ k = g ∗ (h ∗ k) for all g, h, k in G.

The first rule ensures that the composition of two elements is always in the
group, we call this property closure. The second and third rules mean we must
always include the “do nothing” and “undoing” elements, just as we did with
the triangle example. The fourth rule, in words, means that composing g and
h, and then composing the result with k gives the same thing as composing g
with the composition of h and k (this is called associativity of the operation ∗).

We can check that taking G to be the set of symmetries of a triangle, with
the composition ∗ being applying one symmetry after another, we obtain a
group. Note that the order in which we compose elements matters: composing
a clockwise rotation by 120◦ with a reflection, or a reflection with a clockwise
rotation by 120◦, we obtain different symmetries! Actually, the symmetries
of any object will form a group, making this a fundamental example in the
field. Readers are encouraged to check the rules for some other examples with
which they may already be familiar: the set of all integers with the operation of
addition; the set of numbers {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} with the operation
of addition modulo 12 (recognisable as clock arithmetic); the set of non-zero
real numbers with the operation of multiplication (can you see why we need to
exclude zero?).

The study of groups is extremely rich, with many elegant results, varied
techniques, and connections to other areas of mathematics to explore. One such
connection is with geometry via the following construction, for which we first
need to explain the notion of a generating set of a group.

Given a group G, we say that a subset S of its elements generates G if
every element of G can be obtained via some composition of elements of S (we
are allowed to use elements of S more than once). For example, the group of
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symmetries of the triangle above can be generated using only the clockwise
rotations by 120◦ and 240◦, and a reflection. See Figure 6 for an example of an
element not in this set as a composition of elements in this set.

The resulting expression of an element as a composition of elements of the
generating set S may not be unique, and there may be many choices of the
generating set S itself. Once we have fixed one such set S, we can view our
group geometrically by turning it into a graph. As the set of vertices, we take
the set of elements of our group G. For the edges, we will use the set S by
connecting two elements g and h whenever we can get directly from one to the
other by composing with an element of S. In other words, the pairs of elements
connected by edges will be those of the form (g, g ∗ s) where g is an element of
G, and s is an element of S. This graph is called the Cayley graph of G with
respect to S. Figure 7 shows an example of a Cayley graph of the group of
symmetries of the triangle with the generating set given above. The generators
are the elements with an edge joining them to the identity (the original triangle
having the vertex at the top labeled “A”, with “B” and “C” coming in clockwise
succession). Note that we only draw at most one edge between the same pair of
vertices, even when there could in fact be two, for simplicity.

Figure 7: A Cayley graph of the group of symmetries of the triangle.

Recall from the first chapter that graphs are metric spaces – they are endowed
with a notion of distance. This means that we can now view a group as a
metric space, and use existing techniques in geometry in order to study groups.
The field of geometric group theory is devoted to exploiting exactly these
connections between algebra and geometry, and has been very successful in
providing beautiful examples of the interplay between these two subjects.

Let us return to the question of the existence of expanders. In fact, imbuing
groups with geometry in the above way is not only a useful tool for studying
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the groups themselves, but can also serve as a way to create metric spaces
with desired properties. This is exactly what happened in the history of
expanders, when Margulis proved in [10] that Cayley graphs of groups with
certain properties can be used to construct explicit examples of expanders.

A basic but important concept from group theory, that of a quotient, is used
here. The word “quotient” may conjure up the image of division, and indeed in
some sense it is a way to divide groups by other groups. While we can divide
any number by any other (non-zero) number, for groups the situation is slightly
more subtle. To take the quotient of a group G by another group H, we need H
to sit inside G as a normal subgroup. A subgroup of a group G is a subset of its
elements that also forms a group (so satisfies the four rules concerning closure,
identity, inverses, and associativity). As an example, consider the subset of
symmetries of the triangle consisting of the rotations {R120, R240, R360 = Id}.
A subgroup H of a group G is said to be normal in G if for any fixed g in G,
the following two sets are equal:

{g ∗ h : h ∈ H} = {h ∗ g : h ∈ H}.

As an example, one can check that the above-mentioned subgroup of rotations
of the triangle is normal. One may also wish to check, as a counterexample, that
the two-element subgroup formed of the identity symmetry and any reflection
is not normal.

For a normal subgroup H of G, we can form a group called the quotient of
G by H, written as G/H. Its elements are subsets of the group G of the form
gH = {g ∗ h : h in H}. The operation on our new quotient group is defined
by g1H ∗ g2H = g1g2H, and the interested reader can check that the set of all
subsets of the form gH for g in G forms a group with respect to this operation.
Intuitively, one can think of G as consisting of many translated copies of the
subgroup H, and the quotienting process as simply shrinking each of these
copies to one element, as illustrated in Figure 8.

Figure 8: Quotienting by a normal subgroup H.
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What Margulis proved is that if we take an infinite group that satisfies
“Kazhdan’s property (T)”, then we can obtain an expander by looking at the
Cayley graphs of an infinite sequence of finite quotients of this group. Obviously
we are sweeping almost all of the details under the carpet, but these Cayley
graphs do get bigger and bigger, and have bounded degree.

Let us briefly look at property (T); we shall first state it and then unpack
what it means. A group G satisfies property (T) if every affine isometric action
of G on a Hilbert space has a fixed point. There is a lot to unpack! Firstly, for
a group to act on a space means that we think of the elements of the group
as functions on that space that satisfy certain conditions. For example, the
rotation R120 of the triangle can be thought of as a function on the plane R2

that rotates every point clockwise by 120◦ around the origin. A fixed point is a
point that is left unchanged by the action. An action is affine if it is a linear
map composed with a translation and it is isometric if it doesn’t change the
distance between points in our space:

d(g(x), g(y)) = d(x, y), for all g ∈ G.

Finally, a Hilbert space, named after the German mathematician David Hilbert
(1862–1943), is a generalisation of the familiar Euclidean spaces. Hilbert spaces
can have any number of dimensions, even infinitely many, and their defining
characteristic is a geometric one: they admit an “inner product”, which is a
generalisation of the scalar product of two vectors that allows the measurement
of distances and angles between the points of the space. Note that every
Euclidean space Rn is a Hilbert space, in particular the plane R2 is an example.

It is a remarkable result that taking Cayley graphs of finite quotients of
groups satisfying property (T) produces expanders – not because of any difficulty
in the proof, but rather because of the idea that this is where one should look!

Since Margulis’ result, several other ways of constructing expanders have
appeared. For example, a purely combinatorial “zig-zag” construction was
found by Reingold, Vadhan and Wigderson in [15], and asymptotically optimal
expanders called Ramanujan graphs were constructed in [9] by Lubotzky, Phillips
and Sarnak. One may also wish to consult [4], [6], or [2] for a more expository
approach to these topics, as well as applications of expanders.

5 Expanders and their habi tats

Now that we have explicit examples of expanders, we can further explore their
properties. There are many aspects we could study, but here we will focus on
the interaction of expanders with other spaces. To explain what we mean by
this, consider the following example.
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Let us take a network of stations connected by rail. We can model this as
a graph, where the vertices are the stations and there is an edge between two
stations when there is a direct rail line (with no intermediate stops) between
them. Let us suppose for simplicity that the rail lines corresponding to edges
are all of the same length.

Figure 9: A graph representing a rail network.

In Figure 9, we can see that to travel by rail from Stansted Airport to
Colchester, one would need to pass through London, the shortest path in
our graph being Stansted Airport – Bishops Stortford – London – Stratford –
Chelmsworth – Colchester. Thus, the distance in our graph between Stansted
Airport and Colchester is 5.

On the other hand, looking at a map of the UK, we see that Stansted Airport
is actually very close to Colchester “as the crow flies”. A crow would never
consider flying from Stansted Airport to Colchester via London! What we are
seeing here is a difference in the metrics we can put on the set of stations: we
have the metric that is induced by the rail network graph, and the metric that is
induced by the location of the stations on land. This brings us to the question,
for a given graph drawn on a plane, how different is the graph metric from the
induced plane metric? In other words, how badly is the graph metric distorted
by this embedding of the graph in the plane? Is there a way to draw it in the
plane so that there is not too much difference between the metrics?

In fact, we can go ahead and ask a more general version of this question. For
a given graph or sequence of graphs, in which spaces can they be embedded
so that the graph metric is not too different from the metric induced on the
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vertices by the embedding in this space? To give a concrete meaning to “not
too different”, we will say that a sequence of graphs (Xi) coarsely embeds into
a metric space Y if there exists a sequence of mappings fi of Xi into Y and
increasing, unbounded functions ρ+ and ρ− from the positive real numbers to
the positive real numbers which control how the distances are distorted:

ρ−(di(x, y)) ≤ dY (fi(x), fi(y)) ≤ ρ+(di(x, y)), for all i, and x, y ∈ Xi,

where we have used di to denote the graph distance on Xi and dY to denote
the distance on Y . This condition means that the distance in the image is
bounded on both sides by (functions of) the original distance. As the name
suggests, a coarse embedding is a very rough notion of inclusion of one metric
space into another. Informally, it means that when we embed our graphs into
the space Y , we are allowed to change some small-scale structure of the graphs,
but the large-scale structure must be preserved in the image of the graphs in Y .
Luckily, it is often the large-scale information which is important. For example,
the Cheeger constant behaves well under coarse embeddings, so it is interesting
to find out into which spaces we can coarsely embed expanders.

A first result to observe in this direction is that expanders do not coarsely em-
bed into Hilbert spaces. 2 Intuitively, this is due to their connectivity properties:
the high connectivity forces too many vertices into a small neighbourhood in
the Hilbert space, which then violates the bounded degree assumption. Observe
that this means, in particular, that expanders do not coarsely embed into the
plane R2, as in our railway example.

So, if it is not possible for an expander to coarsely embed into a Hilbert space,
we can try asking the same question for other types of spaces. One possibility
is the family of “Banach spaces”, which are a generalisation of Hilbert spaces,
in that they have a distance function, but not an inner product (geometrically,
this means we can measure lengths but not angles). Every Hilbert space is a
Banach space, but not vice versa. A well-known class of Banach spaces are the
`p spaces. For p > 1, an `p space is the space of finite or infinite sequences (ai)
satisfying (∑

|ai|p
) 1

p

<∞,

where the expression on the left is the length of (ai) in this space. The space `2

is a Hilbert space, but this is not true for other values of p. To imagine what
these spaces look like, it is instructive to draw the unit circles (the set of vectors
of length 1) in such spaces of dimension 2, where the sequences consist of pairs
(a1, a2). This is shown in Figure 10.

2 A proof can be found in [16] or in [13], which also serves as a good introduction to the
topic of “coarse geometry”, that is, geometry of groups and spaces from a large-scale point of
view
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Figure 10: Unit circles for different values of p.

We can see in Figure 10 that as p gets bigger, the unit circle starts to look
more and more like a square. This gives us an idea of how the metric structure
changes as we explore `p for different p. The `p spaces for p > 1 are also
“uniformly convex”, which means that the midpoint of a line segment between
two points on the unit circle must lie uniformly deeply in the unit disk (here we
can see this is true from the picture).

It turns out that expanders cannot coarsely embed into any `p space (see
[11, 16]). But what about more general Banach spaces? Do there exist expanders
that can coarsely embed into some uniformly convex Banach space? Well, we
don’t know. This is still an important open question.

Expanders that do not coarsely embed into any uniformly convex Banach
space are called superexpanders. While we do not know of any examples of
expanders that embed into a uniformly convex Banach space, we also do not
know of many examples of superexpanders – this strange dichotomy is not
uncommon in mathematics, especially when the objects involved are difficult to
classify or to construct. The only known examples so far have been constructed
by Lafforgue in [8] using Cayley graphs of quotients of certain groups which
have very particular properties related to their actions on spaces, by Mendel
and Naor in [12] using “zig-zag products”, and by de Laat and Vigolo in [7]
using group actions on compact spaces (see also work by Fisher, Nguyen and
van Limbeek in [3]).
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