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Abstract. This work studies intensively the flow in fractures
with finite hydraulic conductivity intersected by a well
injecting or producing at constant pressure, either during
an injection or production well test or the operation of a
production well. Previous investigations showed that for
a certain time the reciprocal of flow rate is proportional
to the fourth root of time, which is characteristic of the
flow regime known as bilinear flow. Using a 2D numerical
model, we demonstrated that during the bilinear flow regime
the transient propagation of isobars along the fracture is
proportional to the fourth root of time. Moreover, we present
relations to calculate the termination time of bilinear flow
under constant injection or production well pressure as well
as an expression for the bilinear hydraulic diffusivity of
fractures with finite hydraulic conductivity. To determine the
termination of bilinear flow regime, two different methods
were used: (a) numerically measuring the transient flow rate
in the well and (b) analyzing the propagation of isobars
along the fracture. Numerical results show that for low
dimensionless fracture conductivities the transition from
bilinear flow to another flow regime (e.g., pseudo-radial
flow) occurs before the pressure front reaches the fracture
tip, and for high dimensionless fracture conductivities it
occurs when the pressure front arrives at the fracture tip.
Hence, this work complements and advances previous
research on the interpretation and evaluation of well test
analysis under different reservoir conditions. Our results

aim to improve the understanding of the hydraulic diffusion
in fractured geologic media, and as a result they can be
utilized for the interpretation of hydraulic tests, for example
to estimate the fracture length.

Highlights.

– The reciprocal of flow rate is proportional to the fourth
root of time.

– The migration of isobars in the fracture is proportional
to the fourth root of time.

– For low dimensionless fracture conductivities, bilinear
flow ends before the pressure front reaches the fracture
tip.

– For high dimensionless fracture conductivities, bilinear
flow ends when the pressure front reaches the fracture
tip.

– Isobars accelerate when they approach the fracture tip.

Published by Copernicus Publications on behalf of the European Geosciences Union.



1424 P.-I. Pérez Donoso et al.: Bilinear pressure diffusion and termination of bilinear flow

1 Introduction

Understanding the different flow regimes in fractured reser-
voirs has always been key in the interpretation and evaluation
of hydraulic well tests as well as in the production optimiza-
tion of reservoirs. An in-depth description of the behavior
of multiple flow regimes in fractures is extremely important
to master the physics behind the modeling and simulation
and, hence, to reliably interpret the results. Models consid-
ering a double porosity were first examined by Barenblatt
et al. (1960). They introduced the basics of fluid dynamics in
fissured rocks by deriving general equations of the seepage of
liquid in porous media, taking into consideration its double-
porosity condition. Cinco-Ley and Samaniego-V. (1981) dif-
ferentiated clearly four flow regimes: fracture linear flow, bi-
linear flow (for the first time named in this way by them),
formation linear flow, and pseudo-radial flow.

Usually, reservoir properties are obtained from well test
or production data at a constant flow rate (pressure transient
analysis). However, in most cases, reservoir production is
performed at a constant pressure. This is illustrated, for in-
stance, by the case where fluid is produced from the reser-
voir by means of a separator or constant-pressure pipeline
(e.g., gas wells; Ehlig-Economides, 1979). Open wells flow
at constant atmospheric pressure, e.g., artesian water wells.
Geothermal fluid production may propel a back-pressure
steam turbine, where steam leaves the turbine at the atmo-
spheric pressure or at a higher constant pressure. Other oper-
ational conditions that require maintaining a constant pres-
sure are encountered in gas wells, where a fixed pressure
must be maintained for sales purposes, or in water injec-
tion wells, where the injection pressure is constant (Da Prat,
1990). In addition, reservoir production at constant pressure
is conducted during rate decline periods of reservoir deple-
tion (Da Prat, 1990; Ehlig-Economides, 1979). Although the
interpretation of data collected in well tests and production
at a constant flow rate (pressure transient analysis) has con-
siderably improved, the rate transient analysis has not expe-
rienced such development (Houzé et al., 2018). Lately, a sig-
nificant interest in the rate transient analysis has increased,
which is attributed to the exploitation of unconventional hy-
drocarbon plays due to the extremely slow and long transient
responses (Houzé et al., 2018). The production from uncon-
ventional plays has recently been made possible by creating
fractures, which has strengthened the importance of having
better tools and methods that allow us to obtain informa-
tion on the fractures considering either the transient anal-
ysis of pressure or flow rate or the combination of both.
It is exceedingly difficult to maintain a constant flow rate
over long times, especially in low-permeability formations
as in the case of unconventional plays (Kutasov and Eppel-
baum, 2005). It is worth mentioning that constant-pressure
tests have the advantage of minimizing changes in the well-
bore storage coefficient (Earlougher Jr., 1977). The wellbore
storage effects distort early-time pressure evolution; subse-

quently, the constant-pressure well tests allow the analysis
of early-time data, and in this way information of the reser-
voir in the vicinity of the wellbore can be obtained (Nashawi
and Malallah, 2007). Moreover, rate-transient tests are par-
ticularly suitable for the illustration of the long-term behav-
ior of formations (Torcuk et al., 2013). Conceivably, one of
the main reasons why constant-pressure tests are not a more
common technique in reservoir engineering is that no an-
alytical solutions are available for the pressure diffusivity
equation when considering injection or production at con-
stant pressure in fractured geologic media (Kutasov and Ep-
pelbaum, 2005).

Arps (1945) presented an empirical production correlation
for the rate history of a well during the boundary-dominated
flow regime. Later, Locke and Sawyer (1975) generated type
curves for a vertically fractured reservoir producing at con-
stant pressure with the objective of characterizing the behav-
ior of flow rate. In this context, Agarwal et al. (1979) pre-
sented type curves to analyze the early-time cases. In ad-
dition, they determined the dimensionless fracture conduc-
tivity TD by means of graphing the logarithm of the re-
ciprocal of flow rate vs. the logarithm of time and utiliz-
ing type-curve matching techniques (please also see the ta-
ble in the Appendix for a list of symbols used in this pa-
per). Fetkovich (1980) introduced the rate decline analysis
in the radial-flow system, similar to pressure transient analy-
sis; however, it was only applicable to circular homogeneous
reservoirs.

Guppy et al. (1981a) studied the effect of non-Darcy flow
within a fracture. They concluded that the dimensionless
fracture conductivity TD can be expressed as an apparent
conductivity that is not constant over time. Subsequently,
a major contribution was made by Guppy et al. (1981b),
which consisted of presenting semi-analytical solutions for
bilinear flow; both works considered constant-pressure pro-
duction. They demonstrated that the reciprocal of dimen-
sionless flow rate is proportional to the fourth root of di-
mensionless time when producing at constant wellbore pres-
sure. Guppy et al. (1988) contributed further to the previous
works investigating thoroughly the cases with turbulent flow
in the fracture, and for the first time they examined a tech-
nique that concerns both buildup and drawdown data when
the well is producing at constant pressure. Subsequently,
a direct method to estimate the turbulent term considering
high-velocity flow in variable rate tests was documented by
Samaniego-V. and Cinco-Ley (1991). In addition, Berumen
et al. (1997) developed a transient pressure analysis under
both constant wellhead and bottom-hole pressure conditions
considering high-velocity flow. Wattenbarger et al. (1998)
presented decline curve analysis methods for tight gas wells
producing at constant pressure with long-term linear behav-
ior (fracture flow). Pratikno et al. (2003) prepared rate–time
decline curves for fractured wells producing at constant pres-
sure, including fracture lineal and bilinear flow. Follow-up
investigations conducted by Nashawi (2006) presented semi-
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analytical solutions when considering non-Darcy flow in a
fracture and a method with which it is possible to quantify
the turbulence in a fracture. Nashawi and Malallah (2007) de-
veloped a direct method to determine the fracture and reser-
voir parameters without having to use type-curve matching
techniques. In this context, Heidari Sureshjani and Clark-
son (2015) concluded that plotting techniques overestimate
the fracture half-length, leading them to the formulation of an
analytical methodology with which the fracture half-length is
estimated more precisely.

Recently, Silva-López et al. (2018) introduced a new
method to obtain Laplace-transform solutions, and as a re-
sult, they predicted new regions of flow behavior. This latter
method is documented for injection at either constant flow
rate or pressure. In addition, the theory of well testing has
been improved by investigating the effects of non-uniform
properties of hydraulic fractures (He et al., 2018). Moreover,
Wang et al. (2018) presented an enhanced model to simu-
late the productivity of volume fractured wells and Dejam et
al. (2018) documented a new semi-analytical solution appli-
cable in dual-porosity formulations.

When it comes to studying the termination of bilinear flow
regime and the spatiotemporal propagations of isobars, there
is not much evidence of investigations considering injection
or production at constant pressure. To the best of our knowl-
edge, it has only been investigated when injecting at a con-
stant flow rate in the well (Cinco-Ley and Samaniego-V.,
1981; Weir, 1999). In this regard, new criteria to determine
the end of bilinear flow, which are also used in this inves-
tigation, were introduced by Ortiz R. et al. (2013). From
the industry point of view, accurately estimating the termi-
nation time of the bilinear flow is relevant since it can be
used to assess a minimum value of fracture length when
the dimensionless fracture conductivity TD ≥ 3 (Cinco-Ley
and Samaniego-V., 1981). To underpin the latter, Ortiz R.
et al. (2013) demonstrated that for TD approximately higher
than 10 the fracture half-length can be estimated as xF =

C(Dbtebl)
1/4, where C is a constant, Db is the bilinear hy-

draulic diffusivity, and tebl the termination time of the bilin-
ear flow. Moreover, for lower values of TD the termination
time of the bilinear flow can be used to restrict the minimum
fracture length. This information is important to character-
ize and model a fractured reservoir. Having reliable data on
fracture dimensions is critically important for production op-
timization strategies.

This work addresses the challenging task of gaining a
quantitative understanding of bilinear flow from rate tran-
sient analysis for wells producing at constant pressure, re-
quiring a multidisciplinary approach. Expanding the under-
standing of bilinear flow regime in fractured reservoirs leads
to a more precise analysis of well tests and production or
injection data. This, in turn, makes it possible to character-
ize a reservoir more accurately and consequently have more
reliable assessments of its behavior, leading to better con-
cepts of production optimization during operation. Some of

the methodologies used in this work are inspired by the study
conducted by Ortiz R. et al. (2013) for wells operating at a
constant flow rate (pressure transient analysis).

Taking into account injection at constant pressure, this in-
vestigation presents for the first time: (a) the propagation of
isobars PN along the fracture and the formation during bi-
linear flow regime, as well as the computation of the bilinear
hydraulic diffusivity of fracture, and (b) the study of termina-
tion of bilinear flow regime utilizing criteria previously pre-
sented and a criterion firstly documented here.

2 Background

2.1 Governing equations and parameters

This study is carried out considering that single-phase fluid
in both matrix and fracture obeys Darcy’s law in a two-
dimensional confined and saturated aquifer. In a general for-
mulation of a dual-porosity dual-permeability model, the
equation utilized to describe the hydraulics of a single-phase
compressible Newtonian fluid in a reservoir matrix is given
by

sm
∂p

∂t
=
km

ηf

(
∂2p

∂x2 +
∂2p

∂y2

)
, (1)

where sm (Pa−1) represents the specific storage capacity of
matrix, km (m2) the matrix permeability, ηf (Pa s) the dy-
namic fluid viscosity, and p (Pa) the fluid pressure. It is worth
noting that the storage coefficient depends on the porosity of
rock and compressibility of fluid and rock. For the fracture,
the equation is given by

sFbF
∂p

∂t
=
TF

ηf

∂2p

∂x2 +
qF (x, t)

h
, (2)

where sF (Pa−1) represents the specific storage capacity of
fracture, bF (m) the aperture of fracture, TF (m3) the frac-
ture conductivity, h (m) the fracture height, and qF(x, t) the
fluid flow between matrix and fracture (see Cinco L. et al.,
1978; Guppy et al., 1981b). In this study, sF is neglected be-
cause we assume that the fracture is non-deformable and the
amount of fluid in the fracture is small enough to consider
its compressibility as negligible. In addition, the porosity of
the fracture is negligible in comparison to the porosity of the
matrix. Note, however, that the pressure in the fracture is dic-
tated by an inhomogeneous diffusivity equation, which con-
tains a time-dependent source term qF(x, t), but it does not
involve an intrinsic transient term. Thus, Eq. (2) reads

TF

ηf

∂2p

∂x2 +
qF (x, t)

h
= 0. (3)

The pressure diffusivity equations for matrix and fracture are
coupled by the term qF (x, t), which is defined as

qF (x, t)

h
= 2

km

ηf

dp
dy

∣∣∣∣
y=0

, (4)
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where the factor 2 relates to the contact between matrix and
fracture via its two surfaces.

2.2 Dimensionless parameters

This study is conducted using dimensional properties, but the
analysis of results is performed utilizing the conventional di-
mensionless definitions. The dimensionless flow rate is given
by

1
qwD
=
kmh(pw−pi)

qwηf
, (5)

where qw (m3 s−1) represents the flow rate in the well, qwD
the dimensionless flow rate in the well, h (m) the fracture
height, pi (Pa) the initial pressure of the formation and frac-
ture, and pw (Pa) the constant injection pressure.

The dimensionless fracture conductivity is defined as

TD =
TF

kmxF
, (6)

where TF = kFbF (m3) denotes the fracture conductivity, xF
(m) the fracture half-length, and kF (m2) the fracture perme-
ability. Note that TD is the same as (kfbf)D used in Cinco-Ley
and Samaniego-V. (1981) or FCD used in Gidley et al. (1990).

Instead of using the conventional definition of dimension-
less time tD = tDm/x

2
F, we prefer to use a modified definition

presented by Ortiz R. et al. (2013):

τ =
tD

T 2
D
=
Dmk

2
m

T 2
F

t, (7)

where Dm = km/(ηfsm) (m2 s−1) represents the hydraulic
diffusivity of matrix and τ the dimensionless time. Finally,
the dimensionless x coordinate, which corresponds to the
fracture axis (see Fig. 1), is defined as

xD =
x

xF
; (8)

and the dimensionless y coordinate, which represents the
axis perpendicular to the fracture (see Fig. 1), is defined as

yD =
y

xF
. (9)

2.3 Previous solutions for bilinear flow at a constant
wellbore pressure

As mentioned earlier, a bilinear flow regime was firstly doc-
umented by Cinco-Ley and Samaniego-V. (1981). According
to their proposed definition, it consists of an incompressible
linear flow within the fracture and a slightly compressible
linear flow in the formation. Moreover, a semi-analytical so-
lution for a vertically fractured well producing at constant
pressure during bilinear flow regime was presented by Guppy
et al. (1981b). They demonstrated that the reciprocal of flow

rate is proportional to the fourth root of time and the govern-
ing equation is given in dimensionless form by

1
qwD

(τ )=
π0 (3/4)
√

2TD
t
1/4
D
∼= 2.722τ 1/4, (10)

where 0(3/4) represents the gamma function evaluated in
3/4. Silva-López et al. (2018) presented an analytical solu-
tion for an infinite fracture considering the case of variable
flow rate for a long time in dimensionless form:

1
qwD

(tD)=
1

f (tD)

π1/4√TD

2δ
t
1/4
D . (11)

Note that Eq. (11) is written in the notation used in this pa-
per. f (tD) represents a function that describes the transient
behavior of pressure in the well and δ denotes a constant.

2.4 Description of the model setup

We ran the numerical simulations in the Subsurface Flow
Module of COMSOL Multiphysics® software program. The
space- and time-dependent balance equations, described in
Sect. 2.1, together with their initial and boundary condi-
tions are numerically solved in the entire modeling domain
employing the finite-element method (FEM) in a weak for-
mulation. The discretization of the partial differential equa-
tions (PDEs) results in a large system of sparse linear al-
gebraic equations, which are solved using the linear system
solver MUMPS (MUltifrontal Massively Parallel Sparse di-
rect Solver), implemented in the finite-element simulation
software COMSOL Multiphysics®. Utilizing the Galerkin
approach, Lagrange quadratic shape functions have been se-
lected to solve the discretized diffusivity equations for the
pressure process variable. For the time discretization, a back-
ward differentiation formula (BDF, implicit method) of vari-
able order has been chosen.

The two-dimensional model setup in this work is com-
posed of a vertical fracture embedded in a confined hori-
zontal reservoir. The matrix and fracture are porous geologic
media considered saturated, continuous, isotropic, and ho-
mogeneous. The gravity effects are neglected. Fluid flow en-
ters or abandons the matrix–fracture system only through the
well. This investigation is symmetric, i.e., the flow rate cal-
culated in the well qw corresponds to the half of total flow
rate for the case of studying the complete fracture length (see
Fig. 1). The pressure in the well pw is set to 1 MPa during
the entire simulation and the initial conditions for pressure
in the matrix and the fracture pi is set to 100 kPa. We use
these pressure conditions in order to ensure an injection of
fluid from the well to the matrix–fracture system. The or-
der of magnitude of (pw−pi) is similar to that utilized by
Nashawi and Malallah (2007). No-flow boundary conditions
are assigned to the boundaries of the reservoir since it is con-
sidered as confined. In order to ensure that the boundary con-
ditions do not affect the modeling outcome, the system size
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Figure 1. (a) Two-dimensional representation of model structure; (b) mesh utilized for simulation; and (c) 3D representation of model
structure.

was consecutively enlarged to double, triple, and quadruple,
and the results were compared to each other and, in fact, they
were identical. Additional studies have been conducted to
further examine the independency of simulation results from
the boundary conditions set for the simulation time consid-
ered. The pressure has been monitored at the boundary of the
model for the case of imposing a no-flow boundary condition
(closed reservoir). No pressure variation has been detected
at the boundaries of the model, which corroborates the pre-
vious observation that the simulation results have not been
affected by the boundary condition set. Further, the bound-
ary condition has been changed to constant pressure (open
reservoir). Also, for this latter case, no changes were rec-
ognized in the simulation results. That way, boundary con-
dition independency of the solution has been guaranteed in
the computational subdomain of the most interest. During
the entire simulation the following parameters remained con-
stant: km = 1 µD, kF = 1.5×10−13 m2, sm = 1×10−11 Pa−1,
bF = 1× 10−3 m, and ηf = 2.5× 10−4 Pa s. Similarly as in
Ortiz R. et al. (2013), the fracture half-length takes different
values from 1.5 m up to 1500 m, with the objective of vary-
ing the dimensionless fracture conductivity TD from 0.1 up
to 100 (see Eq. 6). The time steps used in these numerical
simulations were 0.01 s from the start until the first 40 s, 20 s
from 40 until 600 s, 60 s from 600 until 12000 s, 300 s from

12000 until 72000 s, 1000 s from 72000 until 5× 105 s, and
5× 105 s from 5× 105 until 2× 108 s (or until 6× 108 s em-
ployed for the master curve; Fig. 2).

The mesh, composed of triangular elements, is relatively
fine in the vicinity of the fracture and the well, and it be-
comes gradually coarser when moving away from the frac-
ture, since there is an extremely large hydraulic gradient near
the fracture and the well (see Fig. 1b). The minimum element
size is 0.0045 m near the well, the maximum element size is
80 m close to the boundaries of the reservoir, and the maxi-
mum element growth rate is 1.3 m. The number of elements
varies according to the different size and mesh structure used
to describe the respective model scenario. The minimum and
maximum number of elements is 12929 and 1358697, re-
spectively. We performed mesh convergence studies refining
the mesh, particularly, in the computational subdomain that
contains steep hydraulic gradients, until the solution became
mesh-independent.

3 Results

Numerical simulations show that during a time interval, the
reciprocal of dimensionless flow rate in the well 1/qwD is
proportional to the fourth root of dimensionless time τ 1/4
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Figure 2. Model results displayed as 1/qwD vs. τ on a log–log
scale. Bilinear fit curve (green line), master curve (orange line), and
type curves (black lines).

(Fig. 2). This proportionality is in accordance with the be-
havior documented by Guppy et al. (1981b) and Silva-López
et al. (2018). In particular, we can describe the variation in
dimensionless flow rate in the well during the bilinear flow
regime as

1
qwD

(τ )= A · τ 1/4, (12)

where the constant A is equal to 2.60. From now on, we will
refer to this equation as the bilinear fit curve (green line in
Fig. 2). Note that the coefficient A obtained by Guppy et
al. (1981b) employing a semi-analytical solution is approx-
imately A= 2.722 (see Eq. 10). This slight difference be-
tween our and their result for Amight be due to the temporal
and spatial discretization utilized by them. The reciprocal of
dimensionless flow rate exhibits a behavior proportional to
the fourth root of time (Eq. 12), which is characteristic of bi-
linear flow regime; hence we can corroborate the occurrence
of it.

We define the master curve as the one that describes the
behavior of an infinitely long fracture (orange line in Fig. 2).
The curves describing the behavior of the reciprocal of di-
mensionless flow rate over time for different dimensionless
fracture conductivities, from TD = 0.1 up to TD = 100, are
addressed as type curves (black lines in Fig. 2).

Taking into account all the aspects previously described,
when type curves start departing from the bilinear fit curve
(Fig. 2), this indicates that the transition from bilinear flow
regime to formation linear flow regime (cases with high TD)
or to pseudo-radial flow regime (cases with low TD) begins
(Ortiz R. et al., 2013).

3.1 Propagation of isobars along the fracture and the
formation

In order to characterize the different isobars, the following
definition is used (Ortiz R. et al., 2013):

PN =
p(x,y, t)−pi

pw−pi
, (13)

where p(x,y, t) denotes the pressure at the position (x,y)
in the fracture or the matrix at time t . The values of PN uti-
lized in this study are 0.01 and 0.05, which are equivalent to
the isobars of 109 and 145 kPa, respectively. The isobars be-
have differently depending on the value of TD. For cases with
low TD, it is noticeable that after the termination of bilinear
flow, the isobars reveal a tendency of progressing toward an
elliptical or pseudo-radial flow while still propagating along
the fracture (see, for example, TD = 0.3 in Fig. 3a, b, c). The
lower the value of TD, the more pronounced this tendency
becomes. On the other hand, for high TD the behavior of
the isobars is similar to the formation linear flow beyond the
fracture (see TD = 6.3 in Fig. 3d, e, f). Although the behavior
of isobars after the termination of bilinear flow is also highly
interesting, this aspect is not addressed in further detail in this
work. It remains to be studied in a follow-up investigation.

The results of this investigation show that initially the mi-
gration of isobars PN along the fracture (see Fig. 1) is pro-
portional to the fourth root of time:

xiD = αbTDτ
1/4, (14)

where xiD represents the dimensionless distance of normal-
ized isobars PN from the well along the xD axis and αb is a
constant that depends on the studied isobar PN (see Fig. 4).

In addition, the migration of isobars PN in the matrix (per-
pendicular to the fracture and at xD = 0; see Fig. 1) for short
times may be described by

yiD = αmTDτ
1/2, (15)

where yiD denotes the dimensionless distance of normalized
isobars PN from the well along the yD axis and αm is a con-
stant for pressure diffusion in the matrix, which depends on
the isobar under investigation.

When expressing Eqs. (14) and (15) in dimensional form,
for the x axis, Eq. (14) is given by

xi (t)= αb(Dbt)
1/4
; (16)

and for the y axis, Eq. (15) is given by

yi (t)= αm(Dmt)
1/2. (17)

In Eq. (17),Dm = km/(ηfsm) (m2 s−1) is known as hydraulic
diffusivity of matrix and is analogous to the definition of ther-
mal diffusivity. Additionally, in Eq. (16) Db = T

2
F /kmηfsm

(m4 s−1) is referred to as effective hydraulic diffusivity of
fracture in a bilinear flow regime (Ortiz R. et al., 2013).
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Figure 3. Spatial evolution of isobars PN = 0.01 and PN = 0.05 over time through the modeling domain, for the dimensionless fracture
conductivities TD = 0.3 (a, b, c) and TD = 6.3 (d, e, f). Note that for the case of TD = 0.3, the scale of the graph (a) is different from that
used for the graphs (b) and (c). Read text in Sect. 3.1 for a more detailed description of the graphs.

The numerical results are specified as migration type
curves (see black lines in Figs. 4, 5, and 6), and the fit equa-
tions for the propagation of isobars are referred to as migra-
tion fit curves (see grey lines in Figs. 4, 5, and 6). It can
be noted qualitatively throughout the cases under study that
for low dimensionless fracture conductivities, i.e., TD = 0.1
and TD = 0.3, the migration type curves, which describe the
migration of isobars PN along both the xD and the yD axis,
start departing from migration fit curves before the studied
isobars reach the fracture tip (Figs. 4a, b, c, d, and 5). In con-
trast, for the cases considering high dimensionless fracture
conductivities, i.e., TD = 1.1, TD = 6.3, and TD = 9.4, there
is no qualitative evidence of migration type curves departing
from migration fit curves before the studied isobars PN ar-
rive at the fracture tip (Figs. 4e, f, g, h, i, j and 5). The latter
results, however, show some exceptions for a slight accel-
eration exhibited by the isobars PN at times shortly before
they reach the fracture tip. It is important to mention that this
relatively small acceleration also occurs for cases with low
dimensionless fracture conductivities (see Fig. 4c, d). The
same behavior was observed by Ortiz R. et al. (2013) for the
injection at a constant flow rate. The classic definition for
acceleration was considered, which is the rate of change of
velocity with respect to time.

On the one hand, when discussing the early time qualita-
tively, we notice that the higher the value of the isobar PN,
the sooner it starts behaving proportional to the fourth root of
time (Fig. 6). For example, at the same time (τ = 5 · 10−10)
the isobar PN = 0.66 (the greater isobar under investigation)
starts to migrate along the fracture proportional to the fourth
root of time, whereas the isobar PN = 0.01 (the smaller iso-
bar under study) has not yet started to propagate proportion-
ally to the fourth root of time. Moreover, the greater the iso-
bar PN, the shorter its distance from the well xiD in com-
parison to other smaller isobars when considering the same
time τ , which is logical since the isobars migrate one after the
other. On the other hand, when discussing the long time qual-
itatively, we notice that the smaller isobar PN = 0.01 departs
from the migration fit curve when it reaches the fracture tip.
In contrast, the greater isobar PN = 0.66 departs from the mi-
gration fit curve before its arrival at the fracture tip (Fig. 6).
Additionally, it can be seen that the higher the value of iso-
bar PN, the farther from the fracture tip or, closer to the well,
it starts departing from the migration fit curve. Thus, taking
into consideration the migration of isobars, it is reasonable
to conclude that for high dimensionless fracture conductivi-
ties TD, the bilinear flow regime ends when the pressure front
reaches the fracture tip.
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Figure 4. Model results display xiD and yiD vs. τ on a log–log scale.
Propagation of isobars PN = 0.01 (a, c, e, g, i) and PN = 0.05 (b,
d, f, h, j) along the fracture and the formation considering the fol-
lowing dimensionless fracture conductivities: TD = 0.1 (a, b), 0.3
(c, d), 1.1 (e, f), 6.3 (g, h), and 9.4 (i, j). The dashed lines represent
the arrival at the fracture tip of the specific isobars indicated in the
graphs.

Previously, we referred to the observation concerning the
acceleration that isobars experience at times shortly before
they arrive at the fracture tip (see Figs. 4, 6), which was also
documented in Ortiz R. et al. (2013) for the case of fluid in-
jection at a constant flow rate. To prove that it is truly an
acceleration, the velocity of isobars is determined by calcu-
lating 1xiD/1τ , and it is graphed versus time τ as well as
versus the distance of isobars from the well xiD (see Fig. 7).
The existence of this acceleration in xiD = 1 (fracture tip; see
Fig. 7) can be clearly seen. The velocity of isobars viD dur-
ing their migration along the fracture decreases almost for
the complete intervals of time considered (Fig. 7a, c), ex-
cept for its evident increase at times shortly before the iso-
bars reach the fracture tip. The velocity of isobars can be
described within the intervals of time used as

viD(τ )= βbTDτ
−3/4, (18)

where βb is a constant that depends on the isobar under study.
The velocity of isobars in terms of their distances from a well
and within the ranges of distance used can be described as

viD(xiD)= γbTDx
−3
iD , (19)

where γb is a constant that depends on the isobar under study.
Before the isobars reach the fracture tip and at the same

time τ , the velocity of isobar PN = 0.01 is higher than the ve-
locity of PN = 0.05 (Fig. 7a, c). Furthermore, we can see that
the arrival at the fracture tip of PN = 0.05 occurs after the ar-
rival of PN = 0.01, what is also distinguishable in Figs. 4 and
6. The latter modeling results make sense since isobars mi-
grate one after the other, PN = 0.01 first in the propagation
along the fracture as it is the smallest among them. More-
over, before the arrival of isobars at the fracture tip and at
a certain point belonging to the fracture, the velocity of the
isobar PN = 0.01 is higher than the velocity of PN = 0.05
(Fig. 7b, d).

3.2 Termination of bilinear flow

Concerning the study related to the termination of bilinear
flow considering fluid injection at a constant flow rate, Or-
tiz R. et al. (2013) introduced three criteria: the transition cri-
terion, the reflection criterion, and the arrival criterion. The
transition and reflection criteria take into account measure-
ments of flow rate in the well, and the arrival criterion con-
siders measurements of the migration of isobars PN along
the fracture. In this work, a fracture criterion is presented
for the first time. This criterion quantifies the separation be-
tween the migration type curves and the migration fit curves
(see Fig. 4). The time at which this separation occurs is de-
fined as the fracture time. It is important to mention that only
one criterion can be fulfilled at a time. To sum up, there exist
two methodologies to quantitatively identify the termination
of bilinear flow: (a) considering the transition of the pres-
sure or flow rate in the well and (b) considering the prop-
agation of isobars PN along the fracture. It is noteworthy
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Figure 5. Model results in terms of xiD vs. TD · τ
1/4 on a log–log scale. Propagation of isobars PN along the fracture considering the

following dimensionless fracture conductivities: TD = 0.1, 0.3, 1.1, 3.1, 6.3, 9.4, 20, 31, and 50. (a) Model scenarios with PN = 0.01 and
αb = 3.25; (b) model scenarios with PN = 0.05 and αb = 2.23. The dashed lines represent the arrival at the fracture tip of the specific isobars
indicated in the graphs.

Figure 6. Modeling results in terms of xiD vs. τ on a log–log scale.
Propagation of isobars PN = 0.01, 0.05, 0.22, 0.44, and 0.66 with
TD = 6.3. The dashed line represents the arrival at the fracture tip
of the specific isobars indicated in the graph.

that the termination time is referred to differently, accord-
ing to the criterion used to identify the time at which the bi-
linear flow regime ceases (e.g., transition time τt, reflection
time τr, arrival time τa, and fracture time τF, introduced in
Sect. 3.2.1, 3.2.2, 3.2.3, and 3.2.4, respectively). Further, cri-
teria generally aim to define the deviation of curves obtained
by numerical simulations from analytical fit curves that cor-
respond to bilinear flow. The deviation is quantified by intro-
ducing the quantity ε (see Sect. 3.2.1, 3.2.2, and 3.2.4). That
is, the numerical results differ from the analytical bilinear fit
curves by a value of ε due to the transition to another flow
regime. Throughout the paper we use, for instance, ε = 0.01
or ε = 0.05 corresponding to 1% and 5% deviation, respec-
tively. That means when a separation between numerical re-

sults and fit curves is greater than 0.01 or 0.05, the termina-
tion of bilinear flow is identified.

3.2.1 Transition criterion

This criterion quantifies the clockwise deviation of type
curves from the bilinear fit curve in Fig. 2, and it is funda-
mentally utilized for low dimensionless fracture conductivi-
ties of TD = 1.1 down to TD = 0.1:

ε < 1−

 log
(

1
qwDt

)
log

(
2.60τ 1/4

)
 , (20)

whereqwDt represents the dimensionless flow rate qwD of the
specific type curve under study (Fig. 2). Note that 1/qwD vs.
τ is associated with equation 2.60τ 1/4 on a log–log plot (bi-
linear fit curve). The cases to which this criterion is applied
are not affected by the fracture tip, and the transition time is
similar for all type curves for which this criterion is suitable
(see τt in Fig. 8). The transition time τt defines the end of
bilinear flow when 1/qw is no longer proportional to t1/4.

3.2.2 Reflection criterion

The reflection criterion quantifies the counterclockwise de-
viation of type curves from the master curve in Fig. 2 due
to isobar reflection at the fracture tip (Ortiz R. et al., 2013).
When lower isobars than the isobar under study have already
reached the fracture tip, these isobars are partly reflected
from the fracture tip toward the well, due to the hydraulic
conductivity contrast experienced at the interphase between
the fracture tip and the matrix. This hydraulic conductivity
structure causes the isobar reflection at the fracture tip to
move back toward the well and the isobar transmission fur-
ther into the matrix. Thus, the propagation velocity of all iso-
bars decelerates when they leave the fracture tip and start to
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Figure 7. Model results showing viD vs. τ and viD vs. xiD on a log–log scale. Velocity of isobars PN = 0.01 and 0.05 considering TD = 0.3
(a, b) and 3.1 (c, d). The dashed lines represent the arrival of the specific isobars at the fracture tip. (a) The circle and triangle symbols
represent the transition time τt for PN = 0.01 and 0.05, respectively (see Eq. 20). (c) The circle and triangle symbols represent the arrival
time τa for PN = 0.01 and 0.05, respectively (see Fig. 8).

propagate through the matrix. This criterion is used for high
dimensionless fracture conductivities:

ε < 1−

 log
(

1
qwD∞

)
log

(
1

qwDt

)
 , (21)

where qwD∞ denotes the dimensionless flow rate of the mas-
ter curve (Fig. 2), which describes the behavior for the case
of an infinitely long fracture. The cases to which this criterion
is applicable are affected by the fracture tip; hence the higher
TD, the shorter the reflection time (see τr in Fig. 8). The re-
flection time τr refers to the time at which a first variation in
pressure is evident in the fracture tip.

3.2.3 Arrival criterion

The arrival criterion represents the moment at which the iso-
bars arrive at the fracture tip. The cases to which this criterion
is applicable are affected by the fracture tip; hence the higher
TD, the shorter the arrival time (see τa in Fig. 8).

3.2.4 Fracture criterion

Basically, the fracture criterion states that the separation be-
tween the migration type curves and the migration fit curves
(see Fig. 4) is representative of the end of bilinear flow
regime, and it is applicable to low dimensionless fracture
conductivities. In this work, the propagation along yD is not a
criterion for the termination of bilinear flow; it is only a con-
tribution to the study of its behavior. Usually, for the analy-
sis of bilinear flow at constant injection or production flow
rate the transient wellbore pressure is studied; thus the bilin-
ear flow occurs when the wellbore pressure is proportional to
the fourth root of time (Cinco-Ley and Samaniego-V., 1981;
Ortiz R. et al., 2013; Weir, 1999). Similarly, for constant
wellbore pressure as in this work, the bilinear flow can be
recognized by the proportionality between 1/qwD and τ 1/4.
The fracture criterion, instead of considering the variation in
1/qwD vs. time in the well, quantifies the separation of mi-
gration type curves from migration fit curves (Fig. 4), and it
is defined as

ε < 1−
(

log(xiDf)

log(xiDt)

)
, (22)
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where xiDf and xiDt represent the propagation of the migra-
tion fit curves and the migration type curves, respectively.
The latter have the form αbTDτ

1/4 (see Eq. 14 and Fig. 4).
The cases to which this criterion is applied are not affected
by the fracture tip, and the fracture time is similar for all mi-
gration type curves for which this criterion is suitable (see τF
in Fig. 8). Summarizing, this criterion takes into considera-
tion only the movement of isobars PN along the fracture and
not the change of 1/qwD in the well, and it is suitable for low
dimensionless fracture conductivities TD.

In the framework of this study, when we consider the tran-
sition of flow rate in the well, the criteria that can be utilized
are the transition criterion (see Sect. 3.2.1) and the reflection
criterion (see Sect. 3.2.2). When we consider the propagation
of isobars along the fracture, the criteria that can be used are
the arrival criterion (see Sect. 3.2.3) and the fracture criterion
(see Sect. 3.2.4).

Despite the values for the transition criterion and the frac-
ture criterion being different, their behaviors are similar.
They present almost constant values within the range of TD
in which these criteria are applied. Note that the values of
the fracture criterion are always higher than the values of the
transition criterion. The fracture criterion can give us a reli-
able estimate of the termination of bilinear flow when con-
sidering the low dimensionless fracture conductivities TD for
which this criterion is applicable. The transition and fracture
criteria make sense only until the isobars PN reach the frac-
ture tip (see Fig. 8).

As we showed earlier, it does not make sense to discuss
the occurrence of bilinear flow after the pressure front has
already arrived at the fracture tip. Nevertheless, the results
show (Fig. 8) that the reflection time τr (related to the flow
rate calculated in the well) is greater than the arrival time τa
(related to the moment at which the isobars reach the fracture
tip). It means that the reciprocal of dimensionless flow rate
calculated in the well is proportional to the fourth root of time
even when the pressure front has already reached the fracture
tip.

4 Discussion

Dimensionless time was not defined using the conventional
definition tD; instead, a modified definition τ presented by
Ortiz R. et al. (2013) was used. It turned out to be convenient
in terms of interpreting the results for bilinear flow since it
was possible to graph the behavior of 1/qwD vs. τ for all
dimensionless fracture conductivities TD in the same graph
(Fig. 2).

As for the comparison between the coefficientA= 2.6 ob-
tained by us (Eq. 12) and the coefficient A= 2.772 docu-
mented by Guppy et al. (1981b), we can observe a discrep-
ancy between these results of approximately 6%. This dis-
crepancy can be considered rather low.

Some type curves bend clockwise and some others bend
counterclockwise from the bilinear fit curve (Fig. 2). Among
the cases of dimensionless fracture conductivities TD studied,
the type curves that bend clockwise are TD = 0.1, 0.3 and
1.1, and those that bend counterclockwise are TD = 3.1, 6.3,
9.4, 20, 31, 50, and 100. Similar results were obtained by Or-
tiz R. et al. (2013) for the case of injection at a constant flow
rate. For the interval of time utilized in the simulation, the
behavior of 1/qwD versus τ for dimensionless fracture con-
ductivities TD = 0.1 and 0.3 is identical to the behavior of an
infinitely long fracture (master curve, orange line in Fig. 2)
since the separation of the mentioned type curves from the
master curve should occur at a time greater than the simula-
tion time utilized here.

Our results concerning the propagation of isobars along
the fracture and the matrix (Eqs. 14, 15) are similar to the
results previously presented by Ortiz R. et al. (2013) regard-
ing the migration of isobars. The values of αb obtained by us
for PN = 0.01 and 0.05 are quantitatively different from the
values documented by them in 4.6% and 5.8%, respectively.

At times, shortly before the isobars reach the fracture tip,
they exhibit an acceleration along the fracture (see Figs. 4,
6). Subsequently, once the isobars arrive at the fracture tip,
they no longer progress through the matrix over a certain pe-
riod of time. Afterward, they experience another acceleration
along the fracture, with which the migration of isobars seems
to approach a propagation proportional to the square root of
time (see Fig. 4). An identical behavior was observed by Or-
tiz R. et al. (2013), and they attributed it to the reflection
of isobars at the fracture tip, which makes sense and could
be confirmed in this study. The acceleration nearby the frac-
ture tip can be observed more clearly when analyzing the
velocity along the fracture (see Fig. 7b, d). During the in-
tervals of time used, the migration of isobars along the frac-
ture experiences a constant deceleration, except when they
approach the fracture tip. This deceleration is qualitatively
identical for PN = 0.01 and PN = 0.05 (see Fig. 7a, c). It is
evident that for all fixed dimensionless positions in the frac-
ture and considering the same dimensionless fracture con-
ductivity TD, the velocity viD is higher for low values of nor-
malized isobars PN (see Fig. 7b, d). One reason of this obser-
vation is that once the deceleration begins, PN = 0.01 prop-
agates faster than PN = 0.05 since the initial velocity (when
the isobar leaves the well) of the isobar PN = 0.01 is higher
than the initial velocity of the isobar PN = 0.05. This behav-
ior is explained based on the fact that the pressure gradient
between the well and the fracture is bigger when PN = 0.01
is leaving the well than when PN = 0.05 is leaving it. Fur-
thermore, for all fixed dimensionless positions in the fracture
and considering the same isobar PN, the velocity viD is higher
for high dimensionless fracture conductivities (see Fig. 7b,
d).
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Figure 8. Model results displaying τt, τr, τF, and τa vs. TD on a log–log scale. τt , τr, τF, and τa denote the transition time, the reflection
time, the fracture time, and the arrival time, respectively. The fit curves for reflection time and arrival time are represented by black lines,
for transition time by dashed lines, and for fracture time by grey lines. (a) Numerical simulations with ε and PN = 0.01; and (b) numerical
simulations with ε and PN = 0.05 (see Eqs. 20, 21, and 22).

Using Eqs. (18) and (19), the migration of isobars along
the fracture can be described as

xiD =

(
βb

γb

)−1/3

τ 1/4. (23)

Note that Eq. (23) has the same form that Eq. (14); thus(
βb

γb

)−1/3

= αbTD. (24)

It is possible to verify the validity of Eq. (24) by introducing
the required values.

For the case of injection at a constant flow rate the results
obtained by Ortiz R. et al. (2013) for the arrival time, the re-
flection time, and the transition time are similar to ours (see
Table 1). It is worth noting that when using the expression
ε and PN = 0.01, it means that we are studying the case of
the isobar PN = 0.01, and we consider that for values of ε
greater than 0.01, the bilinear flow ends. Note further that
when considering ε and PN = 0.05, we are studying the iso-
bar PN = 0.05 and we are using a value of ε = 0.05 to deter-
mine the termination of bilinear flow, for all pertinent criteria.

When it comes to the criteria that consider the transition
of 1/qwD some observations can be made: (a) in the case of
Fig. 8a the transition criterion is fulfilled up to a value of TD
approximately of 2 and for values of TD above 3 the reflec-
tion criterion is fulfilled; and (b) in the case of Fig. 8b the
transition criterion is fulfilled up to a value of TD of approx-
imately 1.1 and for values of TD above 2 the reflection crite-
rion is fulfilled. Note that for the case ε and PN = 0.01 and
2< TD < 3 (see Fig. 8a), it is observed that values (non-filled
circles) depart from the fit curve linked to the transition crite-
rion and start converging toward the fit curve associated with
the reflection criterion. A similar behavior is also observed

Table 1. Comparison of coefficients of fit equations for the arrival
time, the reflection time, and the transition time, which have the
form τa = (ca · TD)

−4, τr = (cr · TD)
−4, and τt = (ct)

−4, respec-
tively (see Fig. 8).

Paper Coefficient With ε and With ε and
PN = 0.01 PN = 0.05

Ortiz R. et al. (2013) ca 3.40 2.49
cr 1.73 1.25
ct 6.44 2.53

This work ca 3.71 2.63
cr 1.82 1.37
ct 7.39 2.74

for the case ε and PN = 0.05 and 1.1< TD < 2 (see Fig. 8b).
A comprehensive study is required to unravel more precisely
what occurs within those ranges of TD. Based on their work,
Ortiz R. et al. (2013) came to the same conclusion.

Ultimately, there are two ways to determine the termina-
tion of bilinear flow: (I) by numerically measuring the tran-
sient flow rate in the well and obtaining the transition time τt
for low TD and the reflection time τr for high TD and (II) ac-
cording to the migration of isobars along the fracture (not
measurable in the well), obtaining the fracture time τF for
low TD and the arrival time τa for high TD (see Table 2).

In a follow-up study, it would be interesting to include
the effect of fracture storativity and, utilizing an analogue
method to that discussed in this work, investigate the behav-
ior of a fracture with conductivity high enough to lead to
fracture and formation linear flow.
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Table 2. Criteria utilized to calculate the termination of bilinear
flow. See discussion for the definition of the cases I and II.

Case Termination time With ε and With ε and
PN = 0.01 PN = 0.05

I τt TD < 2 TD < 1.1
τr TD > 3 TD > 2

II τF TD < 1.2 TD < 0.9
τa TD > 1.2 TD > 0.9

Application to well testing problems

In practical terms, when analyzing the transient flow rate in a
well, only the transition time τt and the reflection time τr can
be determined. With the current field methods, it is not possi-
ble to determine the termination of bilinear flow utilizing the
progress of the pressure front along the fracture, although
this is more physically reasonable. Nevertheless, the fracture
length can be constrained indirectly, for instance by comput-
ing the time at which the pressure arrives at the fracture tip
and its relation with respect to the reflection time. The rela-
tion between the arrival time τa and the reflection time τr is
given by

τa ∼= 0.0579τr (25)

for ε and PN = 0.01 (see Fig. 8a), and

τa ∼= 0.0736τr (26)

for ε and PN = 0.05 (see Fig. 8b).
In the following, we present two artificial cases in which

synthetic curves were constructed to illustrate how the mea-
surements of the flow rate in wells during hydraulic tests at
constant pressure are used to estimate or restrict the length
of fractures with finite hydraulic conductivity (bilinear flow).
The synthetic curves are not obtained from measurements
of realistic well tests but computed utilizing the validated
model concerning fractured porous geologic media, included
in COMSOL Multiphysics® and in previous papers.

Scenario A: high dimensionless fracture conductivities
TD

We proceed to elaborate a method to estimate the fracture
length using measurements of the flow rate in the well. This
is motivated by its usefulness for cases with high TD in
which the reflection criterion is applicable, i.e., provided that
the isobar that is under study reaches the fracture tip while
bilinear flow is still in progress. In this example, the val-
ues of the dimensional fracture conductivity TF as well as
the fracture length 2xF are restricted by a synthetic curve
representing the transient flow rate in the well. The syn-
thetic curve is performed assuming that pw = 1 MPa, pi =

100 kPa, km = 1 µD, TF = 1.5×10−16 m3, sm = 10−11 Pa−1,

ηF = 2.5×10−4 Pa s, and xF = 23.81 m (see Fig. 9). The pro-
cedure is described in series of steps as follows:

1. Dimensionally graphing the reciprocal of flow rate vs.
time. It is worthwhile noting that the counterclockwise
separation of the synthetic curve (red line) from the bi-
linear fit curve (grey line) represents the moment of ar-
rival of the pressure front at the fracture tip, defining the
end of bilinear flow.

2. Calculate TF as is typically done (see, e.g., Guppy et
al., 1981b), i.e., based on the slope of bilinear fit curve
1/qw =mt

1/4 (Eq. 12). The dimensional fracture con-
ductivity is determined as follows:

TF =

(
2.61η3/4

F

k
1/4
m s

1/4
m h(pw−pi)m

)2

. (27)

According to this example, TF is obtained as 1.5×
10−16 m3. This value is the same as the one employed
to perform the synthetic curve.

3. Read from the graph the termination of bilinear flow de-
fined by the separation of the curve that represents the
1/qw measured in the well (red curve) from the curve
proportional to t1/4 (grey curve). This time corresponds
to the reflection time. In practical terms, it is considered
a calculation error in the separation of 5%, which cor-
responds approximately to the visual estimation of the
point at which these curves start departing from each
other. In this case study, the reflection time tr is approx-
imately 104 s.

4. Introduce the value of reflection time tr calculated in the
previous step in the relation τa ∼= 0.0736τr and obtain
the arrival time of the isobars at the fracture tip. For the
example at hand, ta = 736 s.

5. Determine the value of Db from its definition:

Db =
T 2

F
kmηFsm

. (28)

For the present case study, taking into account the exam-
ple and the parameters of the simulation,Db is obtained
as 9 m4 s−1.

Introduce the value of ta, obtained at step 4, and the
value of Db, calculated at step 5, in the equation of mi-
gration of isobars along the fracture (Eq. 16), and, in this
way, calculate the fracture half-length. In this case, the
isobar under study is PN = 0.05; as a result the constant
αb = 2.23. Utilizing Eq. (16), we have

xF = αb(Dbta)
1/4. (29)

When introducing the corresponding values of the con-
sidered example, xF is obtained as 20.12 m.
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Figure 9. 1/qw (s m−3) vs. t (s) on a log–log scale. The synthetic
curve is represented by the red line and the bilinear fit curve is dis-
played with the grey line.

Figure 10. 1/qw (s m−3) vs. t (s) on a log–log scale. The synthetic
curve is represented by the blue line and the bilinear fit curve is
indicated with the grey line.

6. Finally, the fracture length is approximately 40.24 m
(2xF). It can be noted that this result is slightly lower
than 47.62 m, which is the value that denotes the real
magnitude used to represent the synthetic curve. It is
possible to obtain more accurate results by quantita-
tively calculating the separation between the curves of
the considered example instead of visually estimating
it. For instance, when calculating explicitly a counter-
clockwise 5% separation of the synthetic curve (red
line) from the bilinear fit curve (grey line), an arrival
time of 865.5 s and a fracture length of 41.9 m are ob-
tained.

Scenario B: low dimensionless fracture conductivities TD

In the case of low TD, it is not possible to estimate the frac-
ture length utilizing the bilinear flow theory, since this flow
regime ends before the isobar under study arrives at the frac-
ture tip. This is expressed in terms of the pressure field by

the observation of the premature occurrence of a significant
pressure change in the fracture tip. However, it is possible
to restrict the minimum fracture length. In the following ex-
ample, the values of the dimensional fracture conductivity
TF as well as the minimum fracture length 2xF are con-
strained by a synthetic curve representing the transient flow
rate in the well. This latter curve is computed assuming that
pw = 1 MPa, pi = 100 kPa, km = 1 µD, TF = 1.5×10−16 m3,
sm = 10−11 Pa−1, ηF = 2.5× 10−4 Pa s, and xF = 136.36 m
(see Fig. 10). The procedure is outlined in the following
steps:

1. Dimensionally graphing the reciprocal of flow rate vs.
time.

2. Calculate the value of TF as commonly conducted in the
related literature (see, e.g., Guppy et al., 1981b), i.e.,
based on the slope of bilinear fit curve 1/qw =mt

1/4

(Eq. 12). The dimensional fracture conductivity is de-
termined as follows:

TF =

(
2.61η3/4

F

k
1/4
m s

1/4
m h(pw−pi)m

)2

. (30)

According to this example, TF is obtained as 1.5×
10−16 m3. This value is the same as the one used to cal-
culate the synthetic curve.

3. Read from the graph the termination of bilinear flow de-
fined by the clockwise separation of the curve that rep-
resents the 1/qw measured in the well (blue curve) from
the curve proportional to t1/4 (grey curve). This time is
defined as transition time, and it is similar for all cases
with low TD. Similar to the previous case, a calcula-
tion error in the separation of 5% is considered, which
corresponds approximately to the visual estimation of
the point at which both curves start departing from each
other. In this example, the transition time tt is approxi-
mately 106 s.

4. Introduce the value of transition time tt, calculated in the
previous step, in the relation τa ∼= 0.0736τt and obtain
the fictitious arrival time of the isobars at the fracture
tip. For the contemplated case example, ta = 73600 s.

5. Determine the value of Db from its definition:

Db =
T 2

F
kmηFsm

. (31)

In the context of the example at hand and consider-
ing the parameters of the simulation, Db is obtained as
9 m4 s−1.

Introduce the value of ta, obtained at step 4, and the
value of Db computed at step 5, in the equation of mi-
gration of isobars along the fracture (Eq. 16) and, in this
way, calculate the fictitious fracture half-length. In this
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case, the isobar under study is PN = 0.05; as a conse-
quence the constant αb = 2.23. Utilizing Eq. (16) we
have

xF = αb(Dbta)
1/4. (32)

When incorporating the corresponding values of this ex-
ample, xF is obtained as 63.62 m.

6. Finally, the minimum fracture length is approximately
127.23 m (2xF), whereas the real value used to represent
the synthetic curve is 272.72 m.

In the cases described previously, the practical use of
Eq. (16) to constrain the length of a fracture with finite con-
ductivity has been demonstrated by analyzing the transient
behavior of flow rate in the well during a hydraulic test at
constant pressure.

The expressions obtained in this work for the end time of
bilinear flow, the pressure propagation, and the bilinear dif-
fusivity Db complement the limited theory that exists about
data analysis from wells producing or injecting at constant
pressure. The clarity and simplicity of these equations allow
these to be used quickly to estimate the length of fractures
with finite conductivity. The bilinear diffusivity Db, first in-
troduced by Ortiz R. et al. (2013) for constant well flow rate
and demonstrated in this work to also hold for the case of
constant well pressure, could in principle be estimated in the
laboratory by means of Eq. (16). In addition, this bilinear dif-
fusivity allows, on the one hand, for a relatively uncompli-
cated comparison between finite-conductivity fractures. On
the other hand, these equations could in one way or another
be integrated into more general methods such as the transient
rate analysis for the interpretation of production data. Finally,
the diffusivity equations of pressure in the matrix and the
fracture (Eqs. 16, 17) are also useful to reduce the associated
risks related to induced seismicity generated by changes of
pressure in fractured reservoirs or faults, as a consequence
of massive fluid injection (e.g. Shapiro, 2015; Shapiro and
Dinske, 2009). By knowing and understanding the physics
behind the migration of isobars it is possible to minimize the
associated risks with changes in pores pressure.

5 Conclusions

Numerical results obtained in this work corroborated the re-
lation of proportionality previously presented by Guppy et
al. (1981b) between the reciprocal of dimensionless flow rate
1/qwD and the fourth root of dimensionless time τ during the
bilinear flow regime for the case of injection at constant pres-
sure in the well. Guppy et al. (1981b) obtained the propor-
tionality factor A = 2.722 (Eq. 10), which is slightly greater
than the factor obtained here A = 2.60 (Eq. 12). This dis-
crepancy may be attributed to our finer spatial and temporal
discretization in comparison with the discretization used by
Guppy et al. (1981b).

The most significant findings of this work are as follows:

i. During the bilinear flow regime, the migration of isobars
along the fracture is described as xi (t)= αb(Dbt)

1/4,
where Db = T

2
F /kmηfsm (m4 s−1) is the effective hy-

draulic diffusivity of fracture during the bilinear flow
regime. In addition, the migration of isobars in the
matrix is given by yi (t)= αm(Dmt)

1/2, where Dm =

km/(ηfsm) (m2 s−1) denotes the hydraulic diffusivity of
matrix. This simulation results are in line with the study
conducted by Ortiz R. et al. (2013) for the case of wells
injecting or producing at a constant flow rate.

ii. The termination of bilinear flow obtained from transient
flow rate analysis is given by (a) the transition time τt
(circumferences in Fig. 8 and Eq. 20), valid for low
TD, and (b) the reflection time τr (squares in Fig. 8 and
Eq. 21), valid for high TD.

iii. From the physical point of view, it is of interest to study
the propagation of isobars along the fracture, for which
the termination of bilinear flow has been found in this
work to be given by (a) the fracture time τF (filled cir-
cles in Fig. 8 and Eq. 22), valid for low TD, and (b) the
arrival time τa (triangles in Fig. 8), valid for high TD.
However, this methodology may encounter technologi-
cal obstacles in real field situations.

iv. A new methodology is presented to constrain the frac-
ture length (Sect. 4), based on the end time of the bi-
linear flow and using Eq. (16), which describes the spa-
tiotemporal evolution of the isobars along the fracture
during the bilinear flow regime.

v. In terms of dimensionless parameters, the time at which
a specific isobar arrives at the fracture tip is dependent
only on TD (see Sect. 3.2.3 and τa in Fig. 8).

In agreement with Ortiz R. et al. (2013), we observe that
the isobars exhibit a peak of acceleration shortly before they
arrive at the fracture tip (Figs. 4, 6). This acceleration was
verified by studying the velocity of isobars using the graphs
viD vs. τ and viD vs. xiD (Fig. 7). We conclude that for a
fixed dimensionless position in the fracture xiD, the velocity
viD is higher for lower values of normalized isobars pN as
well as for higher dimensionless fracture conductivities TD
(see Fig. 7b, d).

https://doi.org/10.5194/se-11-1423-2020 Solid Earth, 11, 1423–1440, 2020



1438 P.-I. Pérez Donoso et al.: Bilinear pressure diffusion and termination of bilinear flow

Appendix A: Nomenclature

A constant (Eq. 12)
bF aperture of fracture (m)
ca coefficient of fit equation for the arrival time (Table 1 and Fig. 8)
cr coefficient of fit equation for the reflection time (Table 1 and Fig. 8)
ct coefficient of fit equation for the transition time (Table 1 and Fig. 8)
Db effective hydraulic diffusivity of fracture during bilinear flow regime (Eq. 16; m4 s−1)
Dm hydraulic diffusivity of matrix (Eq. 17; m2 s−1)
f (tD) transient behavior of pressure in the well (Eq. 11; Pa)
h height of the open well section; fracture height (Eq. 5; m)
kF fracture permeability (m2)
km matrix permeability (m2)
pi initial pressure of matrix and fracture (Eq. 5; Pa)
PN normalized pressure difference (Eq. 13)
pw constant injection pressure (Eq. 5; Pa)
p(x,y, t) pressure at the position (x,y) in the fracture or the matrix at time t (Eq. 13; Pa)
qw flow rate in the well (Eq. 5; m3 s−1)
qwD dimensionless flow rate in the well (Eq. 5)
qwDt dimensionless flow rate of type curves (Eqs. 20 and 21; Fig. 2)
qwD∞ dimensionless flow rate of the master curve (Eq. 21; Fig. 2)
qF(x, t) fluid flow between matrix and fracture (m2 s−1)
sF specific storage capacity of fracture (Pa−1)
sm specific storage capacity of matrix (Pa−1)
t dimensional time (Eq. 7; s)
ta dimensional arrival time (s)
tD conventional dimensionless time (Eq. 7)
TD dimensionless fracture conductivity (Eq. 6)
TF fracture conductivity (Eq. 6; m3)
viD dimensionless velocity of isobars along the fracture (Eqs. 18 and 19)
xy spatial coordinates along and normal to the fracture with origin at the well (Eqs. 8 and 9, respectively; m)
xF fracture half-length (Eq. 6; m)
xDyD dimensionless coordinates (Eqs. 8 and 9, respectively)
xiDyiD dimensionless distances of isobars from the well (along the xD and yD axis (Eqs. 14 and 15, respectively)
xiDf dimensionless propagation of migration fit curves (Eq. 22; Fig. 4)
xiDt dimensionless propagation of migration type curves (Eq. 22; Fig. 4)
αb constant for pressure diffusion in the fracture during bilinear flow (Eqs. 14 and 16)
αm constant for pressure diffusion in the matrix (Eqs. 15 and 17)
βb constant for velocity in the fracture depending on time (Eq. 18)
γb constant for velocity in the fracture depending on space (Eq. 19)
δ constant (Eq. 11)
ε quantification of error in the termination of bilinear flow (Eqs. 20, 21, and 22; Fig. 8)
ηf dynamic fluid viscosity (Pa s)
τ dimensionless time (Eq. 7)
τa dimensionless arrival time (Fig. 8)
τF dimensionless fracture time (Fig. 8)
τr dimensionless reflection time (Fig. 8)
τt dimensionless transition time (Fig. 8)
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