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a b s t r a c t 

Latent Class Cluster Analysis (LCCA) is an advanced model-based clustering method, which is increasingly used 

in social, psychological, and educational research. Selecting the number of clusters in LCCA is a challenging 

task involving inevitable subjectivity of analytical choices. Researchers often rely excessively on fit indices, 

as model fit is the main selection criterion in model-based clustering; it was shown, however, that a wider 

spectrum of criteria needs to be taken into account. In this paper, we suggest an extended analytical strategy for 

selecting the number of clusters in LCCA based on model fit, cluster separation, and stability of partitions. The 

suggested procedure is illustrated on simulated data and a real world dataset from the International Computer 

and Information Literacy Study (ICILS) 2018. For the latter, we provide an example of end-to-end LCCA including 

data preprocessing. The researcher can use our R script to conduct LCCA in a few easily reproducible steps, or 

implement the strategy with any other software suitable for clustering. We show that the extended strategy, in 

comparison to fit indices-based strategy, facilitates the selection of more stable and well-separated clusters in the 

data. 
• The suggested strategy aids researchers to select the number of clusters in LCCA 

• It is based on model fit, cluster separation, and stability of partitions 
• The strategy is useful for finding separable generalizable clusters in the data 
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Resource availability; The script in R (free downloadable software) is available on GitHub and in 

Supplementary Materials. 

Background and rationale 

Latent Class Cluster Analysis (LCCA) is a clustering method for categorical variables with assumed 

multinomial distributions. LCCA belongs to model-based clustering methods, which fit probabilistic 

models to the data, in contrast to distance-based methods, which conduct partitions of observations 

based on a dissimilarity criterion [6] . In the frame of statistical analysis, LCCA (or Latent Class Analysis,

LCA) is defined as an approach to modelling a discrete latent variable using multiple, discrete observed

variables as indicators; in this paper, we consider LCCA exclusively from the clustering perspective, 

so that the discrete latent variable represents the cluster assignment. As a flexible tool, LCCA is

the method of choice in many real-world circumstances, e.g., unequal covariance matrices, unequal 

numbers of observations in clusters, and poorly separated clusters [1] and therefore is increasingly

used in psychological, social, and educational research [5] . 

Selecting the number of clusters in any clustering method, including LCCA, is a rather controversial

topic [11] . Decisions on the number of clusters are inevitably subjective: clustering is “in the eye of

the beholder” ( [6] , p. 65), as “true” clusters do not exist [14] . Therefore, the number of clusters in any

clustering method is selected based on pre-specified criteria. For distance-based methods, these are 

dissimilarity criteria, such as the Average Silhouette Width (ASW). For model-based approaches, model 

fit indices are used, such as the Bayesian Information Criterion (BIC) or the Integrated Completed

Likelihood (ICL) criterion. In LCCA, the BIC is frequently used as the single criterion, with the lowest

value of the BIC indicating the best fitting model. Petersen et al. [21] reported that the BIC was the

single criterion in majority of studies they analyzed, and Qiu & Malthouse [22] emphasized that the

BIC was the only criterion implemented in commercial software, such as Latent Gold. The BIC, indeed,

has a number of advantages over other information criteria [19] , but it was shown that overreliance

on the BIC as the single criterion could be detrimental for analysis [4] , and an integrative approach to

selection is required [ 14,20 ]. Therefore, researchers include other criteria in their analysis. However,

there is still no consensus on which criteria could be most useful for selecting the number of clusters

in LCCA. 

Most frequently, additional fit indices are applied, such as the ICL, which takes into account

entropy and thus aims at finding well-separated clusters [ 2 ]. Marbac and Sedki [18] took an extension

of the ICL called MICL (Maximum Integrated Complete-data Likelihood) for their implementation of 

LCCA in an R package. Flynt and Dean [8] supplemented their analysis with the elbow heuristic for

the BIC plot. The elbow heuristic means finding the “elbow” of the plot, after which the change in

successive values becomes less noticeable. This heuristic is effective and simple, and therefore typical 

for cluster analysis [3] . Meanwhile, other authors [1] applied the ASW, a criterion traditionally used

for selecting the number of clusters in distance-based methods, to LCCA models, and showed that

LCCA can perform at least as well in terms of the ASW as distance-based methods. It was shown

that distance-based criteria employed in the frame of model-based clustering are useful for checking 

whether clusters have relatively small within-cluster dissimilarities [14] . 

A new strategy should go one step further than integration of model fit and cluster separation

to include the bootstrap stability assessment [ 7,13 ]. This procedure is typically conducted to check
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hether the chosen cluster solution depends on a specific dataset or can be generalized to new data

3] . For the final choice of the number of clusters, parsimony of a cluster solution, interpretability of

lusters, and sizes of population shares should be taken into account [ 11 , 21 ]. 

In accordance with these considerations, an extended selecting strategy that we suggest involves

ssessing cluster solutions in terms of model fit and cluster separation and conducting the bootstrap

ssessment to select the most stable solution. The details of the strategy are outlined in the next

ection. Formulae of the BIC, the ICL, and the ASW, as well as a more detailed explanation of the

tability assessment, can be found in the Additional Information section. 

ethod details 

reprocessing the data 

Prior to LCCA, a few preprocessing procedures should be conducted that influence further

nalysis. Firstly, a hierarchical structure of the data needs to be explored to decide whether LCCA

s sufficient, or multilevel LCA is needed. Then, missing data should be explored, and if necessary,

he imputation procedures chosen. For imputation, we recommend the random forest algorithm,

hich was shown to be an effective and unbiased imputation method [10] ; other analytical choices

re also possible. Variable selection is an important step of the data preprocessing, but we do not

well on different approaches here, as models in our illustration include all variables of interest.

ormalization of variables is not required for LCCA, so this step, common for other techniques, can

e omitted. Dichotomization of response options, although not infrequent in LCCA research [5] , might

e considered objectionable [16] . We recommend making a decision on dichotomization based on

requencies of response categories. 

electing the number of clusters 

The extended selecting strategy for LCCA includes criteria based on model fit, cluster separation,

nd stability of partitions. Other considerations, such as parsimony, the size of population shares,

nd interpretability of clusters need to be taken into account for the final choice of the number of

lusters. 

In order to provide the researcher with detailed information on model fit and cluster separation,

e wrote an easy-to-use custom function (LCCAselection) based on the VarSelClust function from the

arSelLCM package [18] . The function returns a data frame with information criteria and silhouette

ndices for one- to ten-cluster solutions. As visualization tools were shown to be important for

eciding on the number of clusters [ 8 , 11 ], we included graphical output in the custom function to

id the cluster selection. The function produces a plot that integrates (i) the BIC plot for all cluster

olutions to apply the elbow heuristic, (ii) the ASW plot for all cluster solutions, and (iii) vertical lines

ndicating the minimal BIC and the minimal ICL. Thus, the researcher can make informed decisions

egarding model fit and cluster separation. 

After two or three best solutions are chosen, their stability can be checked with another custom

unction (valfunc). The function accepts the data, the number of clusters, and the number of bootstrap

amples as arguments to return the Jaccard coefficient and the adjusted Rand index (ARI) for bootstrap

tability assessment of the cluster solution. The ARI and the Jaccard coefficient were chosen as they

re two most widely used and easily interpretable metrics [12] ; their formulae are given in the

dditional Information section. 

The most parsimonious cluster solution is preferable in case it satisfies other requirements, and

lusters with excessively small population shares are considered inadequate regardless of the fit of

he model [21] . Clusters should be interpretable from the perspective of domain knowledge of the

esearcher. 

The selected clusters can be explored and visualised. In our R script, the researcher can find

he item probability plot, the principal component analysis visualisation, the silhouette plot for

lusters, and the barplot for the discriminative power of the variables. The discriminative power

f the variables is defined as the logarithm of the ratio between the probability that the variable
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Table 1 

Cluster selection results for the simulated datasets. 

Dataset Clusters BIC ICL ASW ARI Jaccard 

A 4/1 14622/- −7351/- .19/- .05/- .28/- 

B 4/3 15252/15308 −7711/ −7652 .31/.39 .80/.67 .76/.65 

C 4/4 8316 −4109 .85 1 1 

D 6/4 14752/14655 −7402/ −7279 .63/.74 .61/.51 .52/.47 

E 6/4 16141/16614 −8064/ −8290 .53/.64 .91/.73 .86/.66 

F 6/6 13148 −6521 .61 1 1 

Note . BIC = Bayesian Information Criterion, ICL = Integrated Completed Likelihood 

criterion, ASW = Average Silhouette Width, ARI = Adjusted Rand Index. The number of 

clusters is given as total/separated, and the values of coefficients are given accordingly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is relevant for the clustering and the probability that the variable is irrelevant for the clustering,

given the best partition [18] . The greater value indicates that the variable is more important for the

clustering. 

Method validation 

To illustrate the strategy, we applied it (i) to simulated data with known cluster structure and (ii)

to the data on teachers’ positive and negative views on information and communication technology 

(ICT) from the International Computer and Information Literacy Study (ICILS). With the simulated 

data example, we showed how model fit and cluster separation could be considered in terms of

the trade-off between them. With the ICILS data, we provided end-to-end LCCA with the selection

procedure. The data analysis was conducted with R, version 4.0.2 [23] . The R script (the LCCA.R and

LCCA_Simulated.R files) is available at https://github.com/OlgaLezhnina/LCCA and in Supplementary 

Materials. 

Simulated data: model fit and cluster separation 

Firstly, we show the work of the strategy on simulated data. The ordinal clustered data was

simulated with the clusterSim package [25] . The datasets contained the known structure of clusters.

We generated three datasets with four clusters (N = 1550) and three datasets with six clusters

(N = 2250), each with four response categories and six variables. The number of separable clusters

in the datasets was varying (see Table 1 ). As the influence of the number of variables, the number

of categories, sample size and unequal cluster sizes on LCCA performance was explored in large-scale

simulation experiments [1] , in our illustration we focused on cluster separation issues relevant to

selecting the number of clusters. The clusters had unequal covariance matrices and unequal number 

of objects in them, which is typical for real-world data (for more information on the datasets, see the

R script). We applied the LCCAselection function to the simulated datasets. The output of the function

showing the fit indices and the ASW is presented in Fig. 1 . 

In Fig. 1 we see that the minimal BIC (vertical dotted lines in the plots) tended to indicate the

“true” number of clusters in the data. The minimal ICL (dot-dashed lines) favoured well-separated 

clusters in datasets B and D, but not in dataset E. For well-separated clusters in datasets C and F,

all criteria coincided in pointing at the correct cluster solution, and for the dataset A, LCCA was able

to detect the problem of non-separated clusters in the data. The most interesting situations were

presented by datasets B, D and E, in which the number of “true” clusters did not coincide with the

number of separable clusters. The BIC elbow heuristic, together with the maximal ASW, indicated the

number of separable clusters in all these datasets. 

The values of the BIC, the ICL, the ASW, the ARI, and the Jaccard coefficient for each dataset

(total/separated clusters) are given in Table 1 . We can see how the trade-off between model fit and

cluster separation works in LCCA: for dataset E, for instance, if we choose the minimal BIC and ICL

solution, we will have the ARI = .91 and the ASW = .53, and if we prefer the BIC elbow solution, we

will obtain better separated clusters with the ASW = .64 but the decrease in the ARI = .73. When the

https://github.com/OlgaLezhnina/LCCA
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Fig. 1. The graphic output of the LCCAselection function for six simulated datasets. 
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esearcher aims for compact and well-separated clusters, the BIC elbow heuristics with the maximal

SW might be preferable to the minimal BIC value. Thus, the extended strategy is useful for finding

ell-separated clusters in the data. 

he ICILS data: End-to-end LCCA on teachers’ positive views dataset 

The ICILS 2018 dataset (German sample) was retrieved from the International Association for the

valuation of Educational Achievement (IEA) website [15] . 1 The scores were on Likert scale from

 (strongly agree) to 4 (strongly disagree). For our analysis, the positive views scores were recoded

reversed), so that higher scores represent more positive attitude to the ICT. Prior to the analysis, 57

ows with 100% missing variables were removed (.024 of the dataset). The resulting sample consisted
f N = 2271 teachers from 182 German schools. 

1 To retrieve the data from the IEA website https://www.iea.nl/data-tools/repository/icils , it is necessary to agree to the terms 

nd conditions associated with their use. For the German sample, see file BTGDEUI2.sav . 

https://www.iea.nl/data-tools/repository/icils
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Fig. 2. The graphic output of the LCCAselection function for the ICILS positive views dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The hierarchical structure of the data was explored. Multilevel intraclass correlation coefficients for 

variables were from .002 to .039, and thus, non-multilevel methods could be used. Missing data (.01

of the dataset) was explored and visualized with the aggregation plot. Patterns of missingness that

would imply that the data was missing not at random were not detected. Imputation was conducted

with the random forest algorithm, and the resulting dataset was used for the further analysis. We

did not select (or deselect) variables in the process of LCCA but included all variables of interest in

the analysis and explored their relative importance. Frequencies of endorsements of different answer 

options for each item were explored. The extreme options ( strongly agree and strongly disagree ) were

not underrepresented, and merging them with agree and disagree would lead to a substantial loss of

information. Thus, it was preferable not to dichotomize the data. 

The custom function LCCAselection was applied to the positive views dataset and the negative

views dataset to select the number of clusters. For the negative views dataset, all criteria indicated

the four-cluster solution. Thus, we proceeded with the analysis of the positive views dataset and left

further analysis of the negative views dataset for the interested reader. In Fig. 2 , the graphical output

of the LCCAselection function for the positive views dataset is presented. The BIC elbow heuristic and

the maximal ASW pointed at the four-cluster solution, while the minimal BIC indicated the six-cluster

solution. The minimal ICL, though, pointed at the seven-cluster solution. 

The values of the criteria are reported in Table 2 . It can be seen that for the seven-cluster solution

indicated by the ICL, the ASW (.16) was lower than for other options we considered (.26 or .17). In

addition to the parsimony considerations, it meant that we needed to reject the seven-cluster solution.

The four- and the six-cluster solutions were compared in terms of their stability. The bootstrap

stability assessment with 100 bootstrap samples was used. For the four-cluster solution, the ARI was

.88 and the Jaccard coefficient .85, while for the six-cluster solution, the ARI was .76 and the Jaccard

coefficient .70. Thus, the four-cluster solution was more stable. We calculated cluster population 

shares and discovered that the six-cluster solution had a very low population share in one of the
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Table 2 

Cluster selection results for the ICILS positive views dataset. 

N clusters BIC ICL ASW ARI Jaccard 

1 33639.57 –16816.52 —

2 30843.22 –15598.33 .24 

3 29648.88 –14998.36 .23 

4 28985.07 –14684.43 .26 .88 .85 

5 28902.88 –14655.55 .24 

6 28880.90 –14693.07 .17 .76 .70 

7 28925.91 –14651.72 .16 

8 29016.39 –14767.68 .16 

9 29115.62 –14736.12 .15 

10 29217.73 –14804.14 .17 

Note. BIC = Bayesian Information Criterion, ICL = Integrated 

Completed Likelihood criterion, ASW = Average Silhouette Width, 

ARI = Adjusted Rand Index. 

Fig. 3. Cluster visualization and silhouette plot for the four-cluster solution. 
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lusters (.03 of the sample). Therefore, the more parsimonious four-cluster solution was selected as

he final cluster model. 

In Fig. 3 A, the results of principal component analysis for selected clusters are visualized. Such

isualizations can be misleading, though, as more than two dimensions of the data are presented

n the two-dimensional projection. The values of silhouette widths for all clusters, which are shown

n Fig. 3 B, are more reliable indicators of cluster separation (we can see that the clusters are still

uboptimal in terms of separation). 

The item probability plot for the selected solution is presented in Fig. 4 . The order of the classes

as changed to convey the ordinal information. The discriminative power of the variables was

alculated (see the R script). 

To summarise, we showed that the extended strategy is more comprehensive than strategies based

n fit indices, such as the most commonly used BIC or the ICL. With the simulated data example,

e showed that the combination of the fit indices and the ASW gives the clearest picture of the

eparable clusters. In case of the ICILS data, the strategy led to finding separable stable clusters, while

verreliance on fit indices could have resulted in the choice of the six- or seven-cluster solution,

hich would be less beneficial in regard to cluster separation, and, more importantly, in regard to

tability of partitions. 

There are three levels of implementation of the strategy, so that researchers can either (i) rely

n its conceptual background, or (ii) follow our recommendations on specific criteria and procedures,

r (iii) use our R script in any way they find appropriate for their research goals. The limitation of

he strategy is that both LCCA and the bootstrap stability assessment are computationally expensive,

hich might be inconvenient with very large datasets. In addition, we need to stress again that the
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Fig. 4. Item probability plot for the four-cluster solution. 

 

 

 

 

quality of clustering is substantially influenced by variable selection, and this topic was not covered

in the paper. We refer the interested reader to literature on variable selection. 2 

The extended strategy suggested in the paper widens the scope of tools for conducting LCCA. With

a few easily reproducible steps, the researcher can select a cluster solution with optimal model fit,

cluster separation, and stability of partitions. Thus, generalizable interpretable clusters can be more 

effectively found in the data. 
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Additional Information 

In this section, the reader can find the definitions of the BIC, the ICL, the ASW, the ARI and the

Jaccard coefficient. We also explain in detail how to conduct the bootstrap stability assessment. 

The BIC is defined as follows: 

BIC = −2 log L + p log n 
2 See Fop and Murphy [9] , Maguire and Manuel [17] , and Seo et al. [24] . In these papers, advantages and pitfalls of variable 

selection are outlined, well-performing algorithms (such as random forest and hidden Markov model on variables blocks) are 

discussed, and their implementations in R packages are suggested. 
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here p is the number of free parameters in the model, n is the number of observations, and L is

he maximized likelihood function of the model. For a large n , minimizing the BIC corresponds to

aximizing the posterior model probability. The BIC is useful when the sample size is sufficiently

arge, and for small samples, the Akaike’s Information Criterion (AIC) is appropriate [4] . 

The ICL is defined as follows: 

ICL ( m, K ) = max 
θ

log f (x, ˜ z | m, K, θ ) − υm,K 

2 
log n 

here x is the data, 
∼
z is the estimated cluster membership for observations in the model m with K as

he number of clusters, θ refers to the estimated mixture parameters, and υm,K is the number of free

arameters in the model. The ICL is equal to the BIC penalized by the estimated mean entropy, which

eans that it aims at finding well-separated clusters and thus should not overestimate the number

f clusters [2,11] . 

The ASW is the averaged value of silhouette widths for observations, which are defined as follows: 

s ( i ) = 

b ( i ) − a ( i ) 

max { a ( i ) , b ( i ) } 
here a(i) is average dissimilarity between observation i and all other points of the cluster to which

 belongs, and b(i) is average dissimilarity between i and all observations of the nearest cluster to

hich i does not belong. The ASW values range from –1 to 1, and higher positive values indicate

etter defined clusters characterized by within-cluster compactness and between-cluster separation,

hile values close to 0 or negative values show that the clusters are not well-separated. 

Stability of partitions is calculated as follows. We cluster the original data and apply the cluster

olution to a bootstrap sample, which is also clustered anew. Thus, we have two cluster partitions

or each bootstrap sample: the partition created by the original solution on the new sample and

he new partition of this sample. They are compared using an external metric of our choice; this

alue is averaged over multiple repetitions to indicate the stability of the clustering [13] . To compare

artitions, external measures should be used, such as the ARI and Jaccard coefficient [11,13] . These

easures can be explained as follows. We need to compare two different cluster partitions U = {U 1 ,

 2 , …U r } and V = {V 1 , V 2 , …V s } conducted on the same data. Let n be the total number of observations,

nd n ij the number of objects in common between two partitions U i and V j , which sums as n i. = 

∑ 

j 

n i j

nd n . j = 

∑ 

i 

n i j . There will be pairs of observations placed in the same cluster in both partitions: 

a = 

∑ 

i, j 

(
n i j 

2 

)

Other pairs of observations will be placed in the same cluster in one partition but in different

lusters in the other: 

b = 

∑ 

i 

(
n i. 
2 

)
−

∑ 

i, j 

(
n i j 

2 

)

Still other pairs of observations will be in different clusters in both partitions: 

c = 

∑ 

j 

(
n . j 

2 

)
−

∑ 

i, j 

(
n i j 

2 

)
. 

In this case, the Jaccard coefficient is defined as 

J = 

a 

a + b + c 

And the ARI is defined as 

ARI = 

∑ 

i, j 

(
n i j 

2 

)
−

[∑ 

i 

(
n i. 
2 

)∑ 

j 

(
n . j 

2 

)]
/ 

(
n 

2 

)

1 
2 

[∑ 

i 

(
n i. 

)
+ 

∑ 

j 

(
n . j 

)]
−

[∑ 

i 

(
n i. 

)∑ 

j 

(
n . j 

)]
/ 

(
n 
)

2 2 2 2 2 
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Supplementary materials 

Supplementary material associated with this article can be found, in the online version, at doi: 10.

1016/j.mex.2022.101747 . 
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