
ARTICLE

Received 15 Aug 2014 | Accepted 3 Jun 2015 | Published 21 Jul 2015

Topological data analysis of contagion maps
for examining spreading processes on networks
Dane Taylor1,2, Florian Klimm3,4,5, Heather A. Harrington5, Miroslav Kramár6, Konstantin Mischaikow6,7,

Mason A. Porter5,8 & Peter J. Mucha2

Social and biological contagions are influenced by the spatial embeddedness of networks.

Historically, many epidemics spread as a wave across part of the Earth’s surface; however,

in modern contagions long-range edges—for example, due to airline transportation or

communication media—allow clusters of a contagion to appear in distant locations. Here we

study the spread of contagions on networks through a methodology grounded in topological

data analysis and nonlinear dimension reduction. We construct ‘contagion maps’ that use

multiple contagions on a network to map the nodes as a point cloud. By analysing the

topology, geometry and dimensionality of manifold structure in such point clouds, we reveal

insights to aid in the modelling, forecast and control of spreading processes. Our approach

highlights contagion maps also as a viable tool for inferring low-dimensional structure in

networks.
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C
onsiderable research during the past few decades
has aimed to understand spreading dynamics on
networks1–5—a widespread phenomenon that occurs in

diverse settings that range from biological epidemics6–8 to
collective social processes such as social movements9 and
innovation diffusion10. To study spreading, it is useful to
contrast two classes of networks: ‘geometric networks,’ in which
nodes lie in a metric space and are connected by short-range
‘geometric edges’ that are constrained by the nodes’ locations
(for example, lattices that describe discretized partial differential
equations11), and networks that are not geometric, in the sense
that their edges are not constrained or defined by distances
between nodes. Although the embedding of nodes in a metric
space is ubiquitous for spatial networks on Earth’s surface12,
recent studies have explored the mapping of nodes in a
network to locations in a (potentially) latent and (typically)
low-dimensional metric space for an extensive variety of
applications. Such applications include inferring missing and
spurious edges in networks13–16; efficiently routing information
across the internet17,18; identifying node-specific attributes that
are responsible for edge formation in social networks19; and
nonlinear dimension reduction of proximity networks inferred
from point-cloud data (for example, images, videos and time
series) for data storage and signal-processing applications20–27.

When dynamics such as contagions occur on a geometrically
embedded network, it is fundamental to question the extent to
which the dynamics follow the underlying low-dimensional
structure. This question is particularly important and difficult
for geometric networks that are supplemented with long-range
‘non-geometric edges,’ which directly connect nodes that are
distant from each other with respect to an underlying metric
space. Long-range edges arise in numerous applications, either by
chance (for example, subways that connect distant parts of
cities)12 or as a result of merging distinct layers in multilayer
networks28. In some scenarios, they can also be construed as a
source of ‘noise’ in an otherwise geometric network (for example,
when edges arise due to the presence of noise for inferred
proximity networks25,26). They also play important roles in
small-world network models29 such as Watts–Strogatz30,
Newman–Watts31 and Kleinberg32 networks. Because we are
interested in the geometric embeddedness of such networks,
we use the term ‘noisy geometric networks’ for networks that
include non-geometric edges as supplements to geometric edges.
(See Figs 1 and 2 for examples.)

The presence of long-range edges can significantly alter
how processes spread30–33. For example, it is traditional to

characterize contagions in a geometric setting using ‘wavefront
propagation’ (WFP)3, which agrees with the qualitative properties
of historical epidemics such as the Black Death34. By contrast,
refs 6–8 (and numerous other sources1) have highlighted that
modern biological epidemics tend to be dominated by long-range
transportation networks, such as airline networks or railway
networks, rather than by geographic proximity. Spreading across
long-range edges can result in the ‘appearance of new clusters’
(ANC) of a contagion that are spatially distant, which is an
important phenomenon in the dynamics of recent global
epidemics35. Indeed, it has been reported that prominent
strains of influenza (for example, H1N1/09) exhibited a pattern
of ‘skip-and-resurgence’ (in which some countries avoided
outbreaks in some years) during recent worldwide outbreaks36.
In addition, long-range edges can also have significant effects on
social contagions37–40. Given the (either implicit or explicit)
geometric embeddedness for so many of the networks on which
ideas and diseases spread1,12, an improved understanding of
contagions on noisy geometric networks is important for
numerous applications, which range from the identification of
influential spreaders of information41 to control of biological
epidemics42,43.

WFP and ANC can be very different in social versus biological
contagions. One important difference arises from phenomena
such as social reinforcement37–40, which occurs only for social
contagions. In Fig. 2, we illustrate the prominent effect of
social reinforcement for the Watts threshold model (WTM)44 of

Figure 1 | Examples of noisy geometric networks. Nodes are embedded in

three manifolds: (a) a ring (1D) embedded as a circle in R2; (b) a spherical

surface (2D) in R3; and (c) a bounded plane (2D) embedded (nonlinearly)

in R3 in a configuration known as the ‘swiss roll’22. Given a network with

‘geometric edges’ (blue), in a and b, we add ‘non-geometric edges’ (red)

uniformly at random. In c, by contrast, we add noise to the nodes’ locations

in the ambient space and place edges between nodes that are nearby in

that space. In this scenario, we interpret edges between nodes that are

nearby with respect to the ambient space, but not the manifold, as the

non-geometric edges.
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Figure 2 | Wavefront propagation and the appearance of new clusters.

(a) Contagions on a noisy geometric network containing geometric edges

along a manifold (in this case, a two-dimensional lattice, which we indicate

with the blue edges) and non-geometric edges (red edges), which introduce

shortcuts in the network. We study two phenomena in the evolution of

contagion clusters (shaded areas): ‘wavefront propagation’ (WFP)

describes the outward expansion of a contagion cluster’s boundary, and the

‘appearance of a new contagion cluster’ (ANC) occurs when a contagion

spreads exclusively along non-geometric edges (dashed arrow). (b,c) We

examine WFP and ANC for the Watts threshold model (WTM)44 for

complex contagions by studying node activation times (that is, the times at

which nodes adopt the contagion), which depend on the WTM thresholds

{Ti}, which we take to be identical for every node (that is, Ti¼ T for all i).

(b) For small T, frequent ANC leads to rapid dissemination of a contagion.

(c) For moderate T, little to no ANC occurs and WFP leads to slow

dissemination. For large T, there is no spreading. For a given network,

activation times across multiple realizations of a contagion (with varying

initial conditions) map the nodes to a point cloud via what we call a

‘WTM map’.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8723

2 NATURE COMMUNICATIONS | 6:7723 | DOI: 10.1038/ncomms8723 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


social contagions. The WTM is a generalization of bootstrap
percolation45 and is based on the idea that each node i has some
threshold TiZ0 (refs 46,47) for adopting a social contagion (that
is, for becoming infected). The threshold dynamics gives rise to
the characterization of the WTM as a so-called ‘complex’
contagion, because the dynamics at each node i depend on the
states of all neighbouring nodes, and it might be necessary for
multiple neighbours to be infected before node i adopts a
contagion. Importantly, for some threshold values, WFP can
dominate ANC even in the presence of many ‘noisy’ edges—a
phenomenon that has widespread applications (see Discussion
and our Supplementary Discussion).

In the present paper, we study bifurcations in WFP and ANC
dynamics by examining data that are generated by several con-
tagions on a given noisy geometric network. Our methodology is
grounded in the field of computational topology48,49, and we note
that there has been rapidly intensifying interest (see, for example
refs 50–53) in using tools from computational topology to study
structural features in networks and for machine learning54. In
taking this perspective, we introduce a map from the network
nodes to points in a metric space based on contagion dynamics.
By analogy to diffusion maps24 and similar ideas in nonlinear
dimension reduction and manifold learning20–27, we use the term
‘contagion maps’ for these maps. We investigate the topology,
geometry and dimensionality properties of these maps, and we
find for the contagion regime that predominantly exhibits WFP
versus ANC that these properties correspond to the manifold that
underlies the noisy geometric network. We examine both
synthetic and empirical networks, including a transit system in
London (see the section ‘Contagions on a London transit
network’, Supplementary Note 1 and Supplementary Figs 1–5).
Given that the manifold structure in a contagion map can reflect
the underlying manifold structure of a noisy geometric network,
contagion maps also help for the identification of such underlying
structure. This has numerous applications, including the
denoising of networks (see Supplementary Note 2 and
Supplementary Figs 6 and 7).

Results
Noisy geometric networks. Noisy geometric networks are a class
of networks that arise from geometric networks12 but also include
non-geometric, ‘noisy’ edges. Consider a set V of network nodes
that have intrinsic locations fwðiÞgi2V in a metric space. We
restrict our attention to nodes that lie on a manifold M that is
embedded in an ambient space A (that is, wðiÞ 2 M � A). We
use the term ‘node-to-node distance’ to refer to the distance
between nodes in this embedding space A, which we equip with
the Euclidean norm �k k2 (although one can also use other
metrics17). To create a noisy geometric network, we place the
nodes in the underlying manifold and add two families of edges:
(1) a set EðGÞ of geometric edges, such that ði; jÞ 2 EðGÞ when
nodes i and j are sufficiently close to one another (that is, the
length of shortest path along the manifold M that connects the
two nodes is less than some distance threshold); and (2) a set
EðNGÞ of non-geometric edges, which we place using some
random process between pairs of nodes (i, j), where i6¼j and
ði; jÞ =2EðGÞ. In Fig. 1a,b, we show examples of constructing noisy
geometric networks by adding non-geometric edges uniformly at
random. In Fig. 1c, we show a construction that is motivated by
nonlinear dimension reduction of point-cloud data22–26.

As an illustrative example, consider the noisy ring lattice in
Fig. 1a, which is similar to the Newman–Watts variant of the
Watts–Strogatz small-world model30,31. Specifically, we consider
N nodes that are uniformly spaced along the unit circle in R2. We
then add geometric edges so that every node i is connected to its

d(G) nearest-neighbour nodes. (Note that there are no self-edges.)
We then add d(NG) non-geometric edges to each node and
connect the ends of these edges (that is, the stubs) uniformly at
random while avoiding self-edges and multi-edges. The resulting
network is a (d(G)þ d(NG))-regular network that contains
Nd(G)/2 geometric edges and Nd(NG)/2 non-geometric edges.
We can thus specify this class of random networks using three
parameters: N, d(G) and d(NG). It is also useful to define the ratio
a¼ d(NG)/d(G) of non-geometric to geometric edges. Our
construction assumes that N and d(G) are even. In Fig. 1a, we
depict a noisy ring network with N¼ 20 and (d(G), d(NG))¼ (4, 2).
In Supplementary Note 3 (see also Supplementary Figs 8 and 9),
we study models of noisy geometric networks on a ring manifold
that incorporate heterogeneity in the nodes’ degrees and/or
locations.

Watts threshold model. We analyse a well-known dynamical
system for social contagions: the WTM for complex contagions44.
In addition to allowing analytical tractability, we have two
other motivations for using the WTM. First, WTM contagions
yield ‘filtrations’ of a network and thereby allow us to develop
a methodology grounded in computational topology48–53.
Second, the WTM is a simple-but-insightful model for social
influence that has the virtue of explicitly considering social
reinforcement37–39.

We define a WTM contagion as follows. Given an unweighted
network (which we represent using an adjacency matrix A) with a
set V of nodes and a set E of edges, we let Zi(t) denote the state of
node i 2 V at time t, where Zi(t)¼ 1 indicates adoption (that is,
infection) and Zi(t)¼ 0 indicates non-adoption. We initialize a
contagion at time t¼ 0 by choosing a set of nodes S � V and
setting Zi(0)¼ 1 for i 2 S and Zi(0)¼ 0 for all other nodes. We
refer to S as the ‘contagion seed.’ We consider synchronous
updating in discrete time4, so a node i that has not already
adopted the contagion at time t (that is, Zi(t)¼ 0) will adopt it
during the next time step (that is, Zi(tþ 1)¼ 1) if and only
if fi4Ti, where Ti is a node-specific adoption threshold,
fi ¼ d� 1

i

P
j AijZjðtÞ denotes the fraction of neighbours that are

infected and di ¼
P

j Aij is the degree of node i. (Note that this is
a slight modification from the original WTM44, which uses the
adoption criterion fiZTi.) We repeat this process until the system
reaches an equilibrium point at some time t*oN (that is, no
further adoptions occur). For each node i, we let x(i) denote the
node’s ‘activation time,’ which is the time t at which the node
adopts the contagion. Given {Ti} and the contagion seed, a WTM
contagion on a network is a deterministic process. In addition, a
node’s adoption of the contagion is irreversible (that is, there is
no unadoption in this model), so the dynamics are monotonic in
the sense that the subset IðtÞ � V of infected nodes at time t is
non-decreasing with time (that is, IðtÞ � Iðtþ 1Þ). One can thus
use the contagion to construct a ‘filtration’ of the network
nodes V. (See refs 48,49 and our discussion in Supplementary
Note 4.)

Contagion maps. We study contagion maps based on WTM
contagions, and we refer to these maps as ‘WTM maps.’ A WTM
map is a nonlinear map of nodes in a network to a point cloud in
a metric space, based on the activation times from several
realizations of a WTM contagion. Given J realizations of a WTM
contagion on a network with different initial conditions, the
associated WTM map is a function from V to RJ that records the
activation time xj(i) of the ith node in the jth realization. More
precisely, we define a ‘regular’ WTM map as V7!fxðiÞgi2V 2 RJ ,

where x
ið Þ ¼ ½xðiÞ1 ; xðiÞ2 ; . . . ; xðiÞJ �T . In practice, we enumerate the

contagions j¼ 1, 2, y, JrN, and we initialize the jth contagion
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at a contagion seed SðjÞ such that fjg � SðjÞ for each j. (Note that
one can select any J nodes as seeds by relabelling the nodes.)
In addition to the regular WTM map V7!fxðiÞgi2V ; we also
define ‘reflected’ and ‘symmetric’ versions of the WTM
map for the subset of nodes J ¼ f1; 2; . . . ; Jg � V . Letting
yðiÞj ¼ xðjÞi and zðiÞj ¼ xðiÞj þ xðjÞi , we define the reflected

WTM map J 7!fyðiÞgi2J 2 RN and symmetric WTM map
J 7!fzðiÞgi2J 2 RJ . For a given network and a given set {Ti} of
thresholds, the regular, reflected and symmetric WTM maps are
deterministic.

The choice of contagion seeds fSðjÞg plays a crucial role in
determining the dynamics of WTM contagions and a WTM map.
In practice, we use J¼N realizations of a WTM contagion for an
N-node network, for which we initialize the jth realization with a
contagion seed SðjÞ ¼ fjg[fk j Ajk 6¼ 0g that includes node j and
its network neighbours. We use the term ‘cluster seeding’ to
describe this type of initial condition, which we illustrate in Fig. 3.
By contrast, we use the term ‘node seeding’ to refer to the
initialization of a contagion at a single node: SðjÞ ¼ fjg. In
addition, note that setting J¼N yields J ¼ V, and then the
complete set of nodes is mapped by all versions of a WTM map.
In Supplementary Note 5 (see also Supplementary Fig. 10 and
Supplementary Table 1), we show that the typical computational
complexity for constructing a WTM map is OðNMÞ, where M is
the number of edges. We have made our code for constructing
WTM maps publicly available. (See the Methods section ‘Data
and code availability’.)

We now motivate our choice for contagion initialization. The
requirement that fjg � SðjÞ is convenient because it allows us to
think of the activation time xðiÞj as a notion of distance from node
j to node i (that is, it describes the time that is required for a
contagion to travel from node j to i). This choice is akin to the
diffusion distance24 and commute-time distance55 derived from
diffusion dynamics (although the latter is known to have
shortcomings for certain classes of networks56). To illustrate
this point, suppose that contagion seeds are individual nodes

(that is, SðjÞ ¼ fjg for j 2 V), and suppose that we construct the
WTM map V7!f~xðiÞgi2V with Ti¼T¼ 0 for each node i 2 V. In
this case, the activation time ~xðiÞj ¼ ~xðjÞi exactly recovers the length
of the shortest path between nodes i and j, and this in turn defines
a metric on the discrete space V. In fact, the N�N matrix
~X ¼ ½~xð1Þ; . . . ; ~xðNÞ� is a dissimilarity matrix, which is central to
many algorithms for dimension reduction22–26 (including
Isomap22, which implements the mapping of nodes based on
shortest paths). Letting T40 and still assuming that each ~xðiÞj is
finite, we show in Supplementary Note 4 that the symmetric
WTM map induces a metric on V. More generally, we show that a
set of ‘filtrations’ induces a metric under certain conditions.
Consequently, we find that one can also use topological data
analysis of networks to study the embedding geometry of
networks.

Although node seeding has wonderful mathematical properties,
cluster seeding is very useful in practice because it can allow a
contagion to infect a larger fraction of the nodes in a network.
When Ti40 for each i 2 V, it is common for WTM contagions
to reach equilibria that do not saturate the network
with a contagion. This implies that xðiÞj ¼ 1 for some i; j 2 V .
Activation times of infinity pose a problem, because WTM maps
are well defined only for activation times xðiÞj that are finite (see
the section Activation times of infinity in WTM maps).
Contagions initialized with clusters of a contagion are more
likely to spread than those that are initialized at a single node57,
so cluster seeding increases the range of threshold choices that
yield activation times that are finite. Although WTM maps that
we construct using cluster seeding no longer automatically induce
a metric on the node set V, one can still construe xðiÞj as a distance
from node j to i if the contagion seeds are sufficiently small,
j SðjÞ j�j V j.

WTM contagions on noisy ring lattices. To guide our experi-
ments on using WTM maps to study WFP and ANC on noisy
ring lattices, we conduct a bifurcation analysis for WTM con-
tagions with Ti¼T that are initialized with cluster seeding. We
present our analysis in detail in the section ‘Bifurcation analysis’
and in Supplementary Note 6, and we summarize our results
here.

Our primary results are two sequences of critical values for the
WTM threshold T that depend on the non-geometric degree
d(NG) and geometric degree d(G). These critical values determine
the presence versus absence of WFP and ANC, as well as their
rates. The qualitative features of ANC behaviour are determined
by the thresholds

TðANCÞ
k 9

dðNGÞ � k
dðGÞ þ dðNGÞ

; k ¼ 0; 1; . . . ; dðNGÞ: ð1Þ

Whenever T 2 ½TðANCÞ
kþ 1 ;TðANCÞ

k Þ, a node requires at least
(d(NG)� k) neighbours from non-geometric edges to be infected
before it adopts the contagion. This subsequently determines the

rate at which new clusters of contagion appear. For T 	 TðANCÞ
0 ,

there is no ANC. The qualitative features of WFP are determined
by the thresholds

TðWFPÞ
k 9

dðGÞ=2� k
dðGÞ þ dðNGÞ

; k ¼ 0; 1; . . . ;
dðGÞ

2
; ð2Þ

where a wavefront propagates at a speed of kþ 1 nodes per time

step for T 2 ½TðWFPÞ
kþ 1 ;TðWFPÞ

k Þ. For T 	 TðWFPÞ
0 , there is no WFP.

In Fig. 4a, we show a bifurcation diagram that summarizes the
WTM dynamics for various values of the contagion threshold
T and ratio a¼ d(NG)/d(G) of non-geometric edges to geometric
edges. The dashed and solid curves, respectively, describe

Wavefront propagation

C1

Geometrically distant
contagion cluster 

s a b c

Contagion at time t=0 Spread by WFP Spread by ANC

C2

Figure 3 | Contagion initialized with cluster seeding. A WTM contagion

on a noisy ring lattice in which each node has d(G)¼4 geometric edges and

d(NG)¼ 1 non-geometric edge. We initialize the contagion at time t¼0 by

setting node s and its network neighbours as infected (indicated by the

light-blue nodes and edges). This results in two contagion clusters: C1 and

C2. At time t¼ 1, depending on the WTM thresholds {Ti}, additional nodes

can adopt the contagion either via WFP and/or via ANC. As indicated by

the orange nodes and edges, nodes that are in the ‘boundary’ of C1 can

adopt the contagion via WFP travelling around the underlying ring lattice.

We illustrate this idea further in the magnifying box, where nodes a and b in

the boundary of C1 can potentially become infected in the first time step.

Alternatively, nodes that share only a non-geometric edge with a contagion

seed can potentially become infected via ANC (as indicated by the dark-

blue nodes and dashed edges).
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equations (1) and (2) for k¼ 0. That is, T0(WFP)¼ 1/(2þ 2a) and
TðANCÞ
0 ¼ a=ðaþ 1Þ, which intersect at (a, T)¼ (1/2, 1/3) and

yield four regimes of contagion dynamics that we characterize by
the presence versus absence of WFP and ANC. In Fig. 4b, we plot
equations (1) and (2) with other k values for d(G)¼ 6, where we
note that lower curves correspond to larger k. Observe that
increasing T for fixed a leads to slower WFP and less-frequent
ANC. In particular, for (d(G), d(NG))¼ (6, 2) (which implies that
a¼ 1/3), we find four qualitatively different regimes of WFP and
ANC traits (see the regions that we label I–IV).

In Fig. 4c,d, we illustrate dynamics from these regimes by
choosing TA{0.05, 0.2, 0.3, 0.45} and plotting the size q(t) of the
contagion (see Fig. 4c) and the number of contagion clusters C(t)
(see Fig. 4d) versus time t. Note that the number C(t) of
contagion clusters is equal to the number of connected
components in the subgraph of the original network that only
includes infected nodes and geometric edges. The values of q(t)
and C(t) that we determine numerically (for N¼ 200) agree with
our analysis. For T¼ 0.05, the WTM contagion saturates the
network (that is, q(t)-N) very rapidly due in part to the
appearance of many contagion clusters early in the contagion
process. For T¼ 0.2, the contagion saturates the network

relatively rapidly due to the appearance of some new contagion
clusters. For T¼ 0.3, the contagion saturates the network slowly,
as no new contagion clusters appear, and the contagion spreads
only via WFP. For T¼ 0.45, the contagion does not saturate the
network, as neither WFP nor ANC occurs.

Analysing WTM maps for noisy ring lattices. In this section, we
analyse symmetric WTM maps V7!fzðiÞg for noisy ring lattices in
several ways: geometrically, topologically and in terms of
dimensionality. Our point-cloud analytics identify parameter
regimes in which characteristics of a network’s underlying
manifold also appear in the WTM maps. This makes it possible to
do manifold learning and to assess the extent to which a con-
tagion exhibits WFP (along a network’s underlying manifold)
versus ANC.

In Fig. 5, we study WTM maps for a noisy ring lattice with
N¼ 200 and (d(G), d(NG))¼ (6, 2). We give each node i an
intrinsic location w(i)¼ [cos(2pi/N), sin(2pi/N)]T on the unit
circle M ¼ fða; bÞ j a2 þ b2 ¼ 1g � R2. In Fig. 5a, we illustrate
the point clouds fzðiÞgi2V 2 RN that result from WTM maps with
thresholds of TA{0.05, 0.2, 0.3, 0.45}, which correspond to the
four regimes of contagion dynamics that are predicted by
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into four qualitatively different contagion regimes, which we characterize by the presence versus absence of WFP and ANC. (b) Equations (1) and (2)

for other values of k further describe WFP and ANC, and we show them for d(G)¼6. Note that the curves become lower with increasing k. Fixing

(d(G), d(NG))¼ (6, 2), which yields a¼ 1/3, we find four contagion regimes (which we label using the symbols I–IV), where increasing T corresponds to

slower WFP and less-frequent ANC. (c) For N¼ 200 and TA{0.05, 0.2, 0.3, 0.45}, we plot the contagion size q(t) versus time t for one realization of a

WTM contagion with cluster seeding (that is, q(0)¼ 1þ d(G)þ d(NG)¼ 9). We observe, as expected, that the growth rate decreases with T. In particular, for
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counterclockwise along the ring) but eventually accelerates to d(G)/2 nodes per time step. As we show using the labelled black lines, we predict and

observe linear growth for q(t) when the contagion spreads by WFP and no ANC and either q(t)E1 or q(t)EN. (See the section ‘Bifurcation analysis’ and

Supplementary Note 6.) (d) We plot the number of contagion clusters C(t) versus t. As expected, C(t) only increases above its initial value of

C(0)¼ 1þ d(NG)¼ 3 for regimes I and II (for which ToT0
(ANC)). There is no spreading in regime IV.
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equations (1) and (2) for a¼ 1/3. (See labels I–IV in Fig. 4b.) To
visualize the N-dimensional point clouds fzðiÞgi2V , we use
principal component analysis (PCA) to project onto R2 (refs
22,26,58). The colour of each node at location w(i) and point z(i)

reflects the activation time for node i during one realization of the
WTM contagion that we use to generate the WTM map. In
particular, dark-blue nodes (points) indicate the contagion seed
under cluster seeding. Grey nodes (points) never adopt the
contagion and thus have activation times that are infinite.
For practical purposes, we set these activation times to be 2N
rather than N. (See the Methods section ‘Activation times of
infinity’ in WTM maps for additional discussion.) Regime III is
the regime for which the point cloud {z(i)} appears to best
resemble (up to rotation) the nodes’ intrinsic locations {w(i)}. This
is expected, as this regime corresponds to WFP and no ANC. (In
other words, the contagion follows the network’s underlying
manifold M.)

In Fig. 5c, we summarize the characteristics of WTM maps for
different thresholds TA[0,0.6]. For each threshold, we analyse
manifold structure in a point cloud by studying geometry through
a Pearson correlation coefficient r; dimensionality through an
approximate embedding dimension P; and topology through D,
which denote the difference in lifetimes for the two most
persistent 1-cycles in a Vietoris–Rips filtration48,49. Large values
of D indicate the presence of a single dominant 1-cycle (that is, a
ring) in a point cloud. See sections ‘Geometry of WTM maps’,
‘Dimensionality of WTM maps’ and ‘Topology of WTM maps’ as
well as Supplementary Note 7 and Supplementary Figs 11–13 for
additional discussion of our analysis of point clouds.

As expected by our analysis, for regime III (which exhibits
WFP but no ANC), we identify characteristics of the manifold M
in the point clouds that result from WTM maps. Namely, for
regime III, the point cloud has similar geometry (indicated by
large r), embedding dimension (indicated by P¼ 2) and
topology (indicated by large D) as the network’s underlying ring
manifold M.

In Fig. 6, we analyse WTM maps applied to noisy ring lattices
for various values of a¼ d(NG)/d(G). Specifically, we show values
for r, P and D for N¼ 200, d(G)¼ 20, various T and various

d(NG). We show using the dashed and solid curves, respectively,
that the transitions between the qualitatively different regions of
these properties closely resemble the bifurcation structure from
equations (1) and (2) with k¼ 0. In particular, when there is WFP
but no ANC, we are able to consistently identify the geometry,
embedding dimension and topology of the underlying manifold
of the noisy ring lattice using the WTM map. When there is both
WFP and ANC, the extent to which a contagion adheres to the
network’s underlying manifold depends on a and T, and we can
quantify this extent using the point-cloud measures r, P and D.
We illustrate our observations further in Fig. 6d by fixing a¼ 1/3
and plotting r, P and D as a function of the threshold T. We
show results for (d(G), d(NG))¼ (6, 2) (blue dashed curves) and
(d(G), d(NG))¼ (24, 8) (red solid curves). Observe that the latter
curve is smoother than the former one. The latter curve yields
values of r, P and D that better reflect the underlying ring
manifold M. By contrast, increasing the number N of nodes
increases the contrast (that is, as observed through r, P and D)
between the region that predominantly exhibits WFP and the
other regions.

To give some perspective on the performance of WTM maps
for identifying a noisy geometric network’s underlying manifold
even in the presence of many non-geometric edges, we use the
arrows in Fig. 6d to indicate the values of r, P and D for a
mapping of nodes based on shortest paths, which one can
construe as a variant of the dimension-reduction algorithm
Isomap22 (which we apply to an unweighted network rather than
to a point cloud). Specifically, we map V7!fxðiÞg with T¼ 0 (as
we discussed in the section ‘Contagion maps’).

In Supplementary Note 8, we describe additional numerical
results that compare a WTM map with Isomap22 and a Laplacian
eigenmap23 for generalizations of the noisy ring lattice by
(1) allowing the node locations to be a random sampling of points
on the unit circle and (2) allowing heterogeneity in their
geometric and non-geometric degrees. We define these other
network structures in Supplementary Note 2. Our results (see
Supplementary Figs 14–21) reveal large parameter regimes in
which the ring manifold that underlies the noisy ring lattice is
much more apparent (that is, as indicated by large r, small P and
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Figure 5 | Contagion maps applied to noisy ring lattices. Symmetric WTM maps were applied to a noisy ring lattice with N¼ 200 and

(d(G), d(NG))¼ (6, 2). (a) We show point clouds zðiÞ
� �

2 RN for WTM maps with TA{0.05, 0.2, 0.3, 0.45}, which correspond, respectively, to regimes I–IV

in Fig. 4b. For visualization purposes, we show two-dimensional projections of the N-dimensional point clouds after applying principal component analysis

(PCA)26,58. (b) We show one realization of the contagion that we used to construct the WTM maps in a. The colour of each point in a—and corresponding

node in b—indicates the node’s activation time from this one realization. Nodes in the contagion seed are dark blue, and nodes that never adopt the contagion

are grey. (c) As we discuss in the text, we analyse point clouds that result from WTM maps with respect to three criteria: geometry through a Pearson

correlation coefficient r; dimensionality through the embedding dimension P; and topology through the difference D of lifetimes. (See the main text as well as

the Methods section.) The vertical dashed lines in c indicate the predicted bifurcations in contagion dynamics from equations (1) and (2) (see Fig. 4b). Note that

there are activation times that are infinite for TZT0
(WFP)¼ 3/8 (shaded region in c). As expected for regime III, rE1, PE2 and large D indicate that the

geometry, dimensionality and topology, respectively, of the point cloud recover those of a ring manifold. See sections ‘Geometry of WTMmaps’, ‘Dimensionality

of WTM maps’ and ‘Topology of WTM maps’ as well as Supplementary Note 7 for discussions of these approaches for analyzing point clouds.
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large D) for maps based on WTM contagions versus those
based on shortest-path or diffusion dynamics (that is, as in the
Laplacian eigenmap). We stress that any applications of
dimension reduction (for example, manifold learning) in
networks should use an approach that is appropriate for the
question of interest. This is why we use contagions in this paper
instead of other types of spreading dynamics.

Contagions on a London transit network. In addition to
synthetic networks, we study WTM maps for a London transit
network (see Fig. 7a). Nodes in the network represent inter-
sections of known latitude and longitude (their coordinates are
{w(i)}), geometric edges represent roads (from data used in
ref. 59) and non-geometric edges represent metropolitan lines
(from data used in ref. 60). We have made the network publicly
available (see the Methods section ‘Data and code availability’).
We present our results in detail in Supplementary Note 1, and we
summarize them here.

Our central finding is that the qualitative dynamical regimes
that we observe for synthetic noisy geometric networks also occur
in the London transit network. More specifically, we observe both
WFP and ANC. In addition, as we illustrate in Fig. 7b,c, these
phenomena can be very sensitive to the WTM threshold T. We

study WFP and ANC by examining the geometry of WTM maps.
However, we do not study their one-dimensional (1D) homology,
as computations of homology (which remain a very active area of
research61,62) have a much higher computational cost than our
calculations of geometry and dimensionality.

In Fig. 7d, we plot the Pearson correlation coefficient r that
compares the distance between mapped nodes with their actual
distance from each other (according to latitude and longitude) for
various values of T. We show results for the regular, reflected and
symmetric versions of a WTM map (curves with symbols), and
the horizontal dotted and dashed lines, respectively, give r for the
mapping of nodes based on shortest-path distances (that is, as in
the Isomap algorithm22) and a two-dimensional Laplacian
eigenmap23. For each type of WTM map, we handle the
activation times that are infinite (see the Methods section
‘Activation times of infinity in WTM maps’) using two
methods. In the method that we label ‘full,’ we keep the entire
matrix that encodes activation times, and we set the activation
times that are infinite to be 2N. (Recall that we used this approach
when studying WTM maps for synthetic networks.) In the
method that we label ‘part,’ we neglect contagions that do not
saturate a network, so we use only a portion of the values in the
matrix that encode activation times. In Fig. 7d, we see that these
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(a) geometry through r, (b) dimensionality through P and (c) topology through D (see the text and the Methods section). The transitions between

qualitatively different structures in the WTM maps (that is, as seen through r, P and D) closely resemble the bifurcation structure from equations (1)

and (2), which we show for k¼0 using solid and dashed curves, respectively. In d, we fix a¼ 1/3 and plot r, P and D as a function of threshold T. We

show results for (d(G), d(NG))¼ (6, 2) (blue dashed curves) and (24, 8) (red solid curves). Note that there are activation times that are infinite for

TZT0
(WFP)¼ 3/8 (shaded region in d). The arrows indicate the r, P and D values that we obtain for the embedding of nodes based on shortest paths,

which (as we discuss in the text) one can construe as a variant of the dimension-reduction algorithm Isomap22.
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contrast, for moderate T, the contagion spreads via slow WFP. (d) Although not all contagions exhibit such extreme sensitivity to T (see Supplementary
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choices give contrasting results. For the ‘full’ option, activation
times of infinity (which arise when T]0:1) distort the WTM
map and lead to a drop in r. In contrast, the ‘part’ method
neglects activation times of infinity, and we find that there is a
range of T values for which there is a pronounced increase in r.
Such improved agreement between the geometry of WTM
contagions and the transit network’s inherent latitudinal and
longitudinal embedding on Earth’s surface is characteristic of an
increase in WFP versus ANC. Interestingly, we find that the small
node degrees (for example, hdiiE2.59) and the significant
heterogeneity (for example, with respect to node locations, node
degrees and the length of roads) in the London transit network
cause WFP and ANC to be extremely sensitive to the value of T
for only a few of the contagion seeds SðjÞ (see Supplementary
Note 1 and Supplementary Fig. 5). Nevertheless, as we have
demonstrated, such minority cases still have a significant effect on
WTM maps.

Our numerical experiments for the London transit network
highlight additional complexities that can arise for networks
that are constructed from empirical data, and they offer
complementary insights to our investigation of synthetic net-
works. In particular, the synthetic networks that we examine
either are homogeneous or are only slightly heterogeneous, so the
WFP and ANC behaviour tends to be similar for contagions that
are initialized in different parts of a network. This is not the case
for the London transit network, which has significant hetero-
geneity and very small node degrees (which seem to exacerbate
the effect of heterogeneity). Infections that start in some parts of
the network have rather different properties than those that start
in others, and one also needs to consider multiple strategies for
how to handle activation times of infinity. There are also other
interesting phenomena that our approach can examine for
heterogeneous networks. For example, in Supplementary Note
1, we study the geometry of WTM contagions for individual
nodes (rather than averaging our results over an entire network)
in what amounts to an ‘egocentric’ analysis of geometry.
We find that the local geometry of WTM maps (and hence of
contagions) at a given node relates strongly to its proximity to a
metro line.

Discussion
Many empirical networks include a combination of geometric
edges between nearby nodes and non-geometric, long-range
edges12. Such situations can arise when nodes are restricted by
their locations in a physical space (such as in a city) or in terms of
latent underlying spaces16–26. When considering a spreading
process on a noisy geometric network, it is important to
understand the extent to which a contagion follows the
underlying structure. (Additionally, one can also consider the
possibility of WFP in a latent structure6, which need not look like
WFP with ordinary observations.) To address this question, we
conducted a detailed investigation using the WTM of complex
contagions (with uniform threshold T) on noisy geometric
networks. The spreading dynamics exhibit both WFP, which
follows the underlying manifold structure of a network, as well as
the ANC of contagion in distant locations. To investigate the
extent to which a WTM contagion adheres to a network’s
underlying manifold, we introduced the notion of WTM maps
(and contagion maps more generally) and showed when a
contagion predominantly spreads via WFP that WTM maps
recover the topology, geometry and dimensionality of a network’s
underlying manifold even in the presence of many non-geometric
(that is, ‘noisy’) edges.

Our methodology of constructing and analysing contagion
maps has important implications not only for the analysis,

modelling and control of contagions, but also for other
dynamics63–65 that can be used to construct filtrations of
networks. Moreover, by studying manifold structure in
contagion maps, we have shown that such maps can also be
used to identify and study manifold structure in networks. We
have compared WTM maps with Laplacian eigenmaps23 and
Isomaps22 (see Supplementary Note 8 for additional discussion)
and found that WTM maps—which are based on a nonlinear and
nonconservative dynamical process—yield results that contrast
with those from the other methods. This is sensible, as
nonconservative and conservative dynamics (for example,
diffusion) are known to give different results for which nodes
are central66 and what network structures constitute bottlenecks
to the dynamics67.

In the Supplementary Discussion, we further consider the
implications of our work on three important fields of research:
(i) studying contagions and other dynamics from the perspective
of high-dimensional data analysis (that is, computational
topology and nonlinear dimension reduction), (ii) identifying
low-dimensional (for example, manifold) structure in networks
and (iii) identifying low-dimensional (for example, manifold)
structure in point-cloud data.

Methods
Data and code availability. The London transit network that we study in the
section ‘Contagions on a London transit network’ and the code that we use to
construct WTM maps are available as Supplementary Data 1 and Supplementary
Software 1, respectively.

Bifurcation analysis. To guide our study of WTM maps, we set Ti¼T for each
node i 2 V, and we perform a bifurcation analysis of WTM contagions on noisy
ring lattices. In particular, we investigate the dependence of ANC and WFP on the
contagion threshold T and on the network parameters d(G), d(NG) and N. In Fig. 3,
we illustrate ANC and WFP for this class of networks with d(G)¼ 4, d(NG)¼ 1 and
N¼ 40 by considering a WTM contagion at time t¼ 0. The light-blue nodes are in
the contagion seed SðsÞ ¼ fsg[fk j Ask 6¼ 0g, which is centred at node s 2 V.
Because node s is incident to both geometric and non-geometric edges, the con-
tagion is initialized with 1þ d(NG)¼ 2 contagion clusters. We denote these clusters
by C1 and C2. Cluster C1 is more likely to grow via WFP than C2. The orange nodes
in Fig. 3 are what we call contagion cluster C1’s ‘boundary’—the set of nodes that
have yet to adopt the contagion but that are exposed to it via a geometric edge that
is incident to an infected node in C1. As we show in the magnification on the right,
nodes in the boundary can adopt the contagion via WFP. Nodes that are not
infected and not on the boundary can become infected via ANC. (See the dark-blue
nodes and dashed edges.)

If node i adopts a contagion via ANC, then by definition it is not in the
boundary of a contagion cluster, so its neighbours due to geometric edges have yet
to adopt the contagion. Consequently, node i potentially has 0, 1, y, d(NG)

neighbours that are infected, and its fraction of infected neighbours is restricted to
fi 2 f0; 1

dðGÞ þ dðNGÞ ;
2

dðGÞ þ dðNGÞ ; . . . ;
dðNGÞ

dðGÞ þ dðNGÞg. This observation yields the critical
thresholds

TðANCÞ
k 9

dðNGÞ � k
dðGÞ þ dðNGÞ

; k ¼ 0; 1; . . . ; dðNGÞ:

The contagion dynamics changes abruptly at the critical values of T, so the

qualitative dynamics of ANC for any T 2 ½TðANCÞ
kþ 1 ;TðANCÞ

k Þ are similar to each
other, but there are abrupt changes at the end points of the interval. In particular,

whenever T 2 ½TðANCÞ
kþ 1 ;TðANCÞ

k Þ; a node requires at least (d(NG)� k) neighbours due
to non-geometric edges to be infected before it adopts the contagion. In
Supplementary Note 6, we study the probability that a node has exactly (d(NG)� k)
infected non-geometric neighbours at time t. For large networks, this probability is

approximately
�

dðNGÞ

dðNGÞ � k

�
qðtÞ=N½ �d

ðNGÞ � k 1� qðtÞ=N½ �k; where q(t) denotes the

number of nodes that have adopted the contagion at or before time t. Note that the
probability is an expectation over the ensemble of noisy ring lattices, because it uses
the fact that non-geometric edges are generated uniformly at random in our model.
Therefore, it does not matter which of the q(t) nodes happen to be infected.

Turning to WFP, we now study contagion transmissions exclusively across
geometric edges. That is, given a node i in a contagion cluster’s boundary, we
assume that the node’s neighbours due to non-geometric edges are not infected.
Naturally, this assumption does not always hold, but it is insightful to first examine
this ideal case and then consider more general situations as perturbations of such a
baseline analysis of WFP.
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To facilitate our discussion, we will use the example contagion illustrated in
Fig. 3. In particular, we consider WFP in the clockwise direction for cluster C1.
Nodes a, b and c are exposed, respectively, to 2, 1 and 0 nodes that have adopted
the contagion, so their fractions of neighbours that are infected are fa¼ 2/5, fb¼ 1/5
and fc¼ 0/5, respectively. Note that we assume that the non-geometric edges for
nodes a, b and c are incident to nodes that are not infected (that is, which have not
adopted the contagion). Because fi4T for node i to adopt the contagion, one of
three situations can occur at time t¼ 1: (1) if 0rTo1/5, then nodes a and b adopt
the contagion; (2) if 1/5rTo2/5, then node a adopts the contagion; and (3) if 2/
5rT, then the contagion cluster C1 does not increase in size via WFP. Node c
cannot adopt the contagion via WFP at time t¼ 1 for any TZ0. We find that WFP
is governed by the critical thresholds

TðWFPÞ
k 9

dðGÞ=2� k
dðGÞ þ dðNGÞ

; k ¼ 0; 1; . . . ;
dðGÞ

2
;

where a wavefront propagates at a speed of kþ 1 nodes per time step for
T 2 ½TðWFPÞ

kþ 1 ;TðWFPÞ
k Þ. For TZT0(WFP), there is no WFP.

We now include additional discussion of the assumptions in our analysis of
WFP. Specifically, when considering whether or not node i in a contagion cluster’s
boundary will become infected, we assumed that its non-geometric edges are not
incident to an infected node. Obviously, this assumption is valid for d(NG)¼ 0.
However, as we discuss in Supplementary Note 6, the expected probability (over an
ensemble of noisy geometric networks with non-geometric edges generated
uniformly at random) that a node’s non-geometric edge is incident to an infected
node is q(t)/(N� 1). Similarly, the probability that a node has d(NG) non-geometric
neighbours and that none of them are infected is approximately [1� q(t)/N]dNG,
which is therefore the probability that our assumption is valid. In particular,
whenever qðtÞ � N , which necessarily requires N 
 1 and describes the scenario
of an early stage of a contagion on a large network, the probability that our
assumption is valid is approximately equal to 1. Therefore, equation (2) accurately
describes the speed of WFP in this scenario with high probability. (Note that we
also assume that dðNGÞ � N , so there cannot be too many non-geometric edges.)

Equation (2), which one can construe as a ‘local’ result, is also very useful for
predicting the ‘global’ behaviour of WFP. To see this, we make the following two
observations: (1) if a contagion cannot spread when qðtÞ � N , then it will not
reach a state in which q tð Þ ¼ O Nð Þ; and (2) if q(t) does spread for qðtÞ � N , then
it will also spread when q tð Þ ¼ O Nð Þ, because an increase in q(t) will help promote
further spreading. Specifically, the presence of a node in the boundary with infected
non-geometric neighbours can accelerate WFP by allowing the node to adopt the
contagion with fewer infected geometric neighbours than equation (2) would
predict. In fact, when the contagion size is large (that is, when q(t)EN), we find
that the WFP speed accelerates up to d(G)/2 nodes per time step (that is, all nodes
in the boundary on one side of the contagion cluster become infected upon each
time step). Similar accelerated WFP has also been observed for other applications
including species dispersion68. See Supplementary Note 6 for further discussion.

In Supplementary Note 3, we use a perturbative approach to generalize our
bifurcation analysis to a family of synthetic noisy geometric networks with slight
heterogeneities. In our generalizations, we examine the WFP and ANC behaviour
of WTM contagions at each node. When the nodes are identical (that is, as in the
synthetic ring lattice), the contagion behaviour is uniform across a network; this
leads to the bifurcation diagram in Fig. 4. When there is heterogeneity, the
contagion behaviour at each node varies across a network. However, if the amount
of heterogeneity is small, then one can construct a perturbed bifurcation diagram in
which the boundaries between contagion regimes are thickened. That is, as one
varies T or a, the transition from one regime (for example, WFP and no ANC) to
another (for example, WFP and ANC) still occurs, but it does not occur
simultaneously for each node.

Activation times of infinity in WTM maps. When studying WTM maps, one
needs a strategy for dealing with activation times that are infinite (which in
some cases might be useful for identifying outliers and in other cases might be
problematic). After constructing a map such as V7!fxðiÞg 2 RJ , the distance
between points x(i) and x(j) for i; j 2 V can be infinite or even undefined, which
complicates any subsequent analyses of the point cloud {x(i)}. Such an issue can
also arise for distances that are derived from shortest paths or the commute time
for diffusion, so algorithms for mapping networks often assume that a network
consists of a single connected component22,23. Distances that are infinite are not an
issue for diffusion maps24, because the nodes are mapped to a bounded metric
space whose diameter is equal to twice the maximum of the heat kernel.

For complex contagions, activation times that are infinite arise not only due to
disconnected networks, but also for networks that are ‘disconnected’ with respect
to the contagion dynamics. In the present work, we use two methods for handling
activation times that are infinite: we either set these activation times to be large but
finite (specifically, we choose 2N � 1), or we neglect the contagions that lead to
activation times that are infinite by restricting the map to a subset of contagions
(that is, j 2 J 0 � J , where J 0 ¼ j 2 J j xðiÞj o18 i

n o
). We note in passing

(although we do not explore the strategy in the present manuscript) that there exist
maps such as d 7!/(dþ 1)A[0,1] that map an unbounded metric space to a
topologically equivalent metric space that is bounded. This ought to be useful for
some situations.

Geometry of WTM maps. To quantify the similarity of the geometry of a WTM
map to that of the nodes on the underlying manifold of a noisy geometric network,
we calculate the Pearson correlation coefficient r to relate node-to-node distances
for the WTM map. In Fig. 5, we compare the geometry of {z(i)} (see Fig. 5a) with
that of the nodes’ locations fwðiÞg 2 M (see Fig. 5b) by computing a Pearson
correlation coefficient r to compare the node-to-node distances for the two point
clouds (that is, kzðiÞ � zðjÞk2 and kwðiÞ �wðjÞk2 for ði; jÞ 2 V�V). We conduct
our comparison with respect to the dimension of the ambient spaces in which the
points lie (that is, RN for {z(i)} and R2 for {w(i)}). See Supplementary Note 7 for
further discussion.

Dimensionality of WTM maps. We study the dimensionality by examining the
residual variance22,58 of the point cloud {z(i)} and computing the smallest
dimension such that we lose less than 5% of the variance when projecting to a
lower dimension using PCA22,26,58. We refer to this dimension as the ‘embedding
dimension’ P. Specifically, we estimate the embedding dimension P of a WTM map
by studying p-dimensional projections of the WTM map obtained via PCA for
different values of pA{1, 2, y}. For each projection, we calculate the residual
variance Rp¼ 1� (r(p))2 (refs 22,58), where r(p) denotes the Pearson correlation
coefficient that relates the geometric similarity between the p-dimensional
projection and the unprojected WTM map (see the section Geometry of WTM
maps). We define the embedding dimension P as the smallest dimension p such
that Rpo0.05. See Supplementary Note 7 for further discussion.

Topology of WTM maps. We study the topology of a WTM map by examining
the persistence diagram of a Vietoris–Rips filtration that is generated by the
point cloud {z(i)} (see refs 48,49). For our experiments involving a noisy ring lattice,
we are interested primarily in assessing the presence versus absence of a ring
topology in a WTM map. We thus study the persistent homology of a WTM map
by examining a Vietoris–Rips filtration using the software package Perseus69. We
calculate persistent 1D features (that is, 1-cycles) for the point cloud, and record
the difference D¼ l1� l2 between the two largest lifetimes of such 1D features. We
normalize all lifetimes by the diameter of the point cloud so that D,l1,l2A[0,1].
(Note that sometimes it can be preferable to use the ‘bottleneck distance’ between
persistence diagrams70 rather than D.) See Supplementary Note 7 for further
discussion.
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Erratum: Topological data analysis of contagion
maps for examining spreading processes on
networks
Dane Taylor, Florian Klimm, Heather A. Harrington, Miroslav Kramár, Konstantin Mischaikow,

Mason A. Porter & Peter J. Mucha

Nature Communications 6:7723 doi: 10.1038/ncomms8723 (2015); Published 21 Jul 2015; Updated 4 Sep 2015

In the sixth paragraph of the Methods section of this article, there is a typographical error in the equation [1� q(t)/N]dNG. The correct
version of the equation reads as follows:

½1� qðtÞ=N�d
ðNGÞ
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