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Seeing through rock
with help from opt imal transpor t
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Geophysicists and mathematicians work together to
detect geological structures located deep within the
earth by measuring and interpreting echoes from
manmade earthquakes. This inverse problem nat-
urally involves the mathematics of wave propagation,
but we will see that a different mathematical theory
– optimal transport – also turns out to be very useful.

1 Introduct ion

“Most people, if you describe a train of events to them will tell
you what the result will be. There are few people, however that if
you told them a result, would be able to evolve from their own inner
consciousness what the steps were that led to that result. This power
is what I mean when I talk of reasoning backward.”

− Sherlock Holmes in A Study in Scarlet
Sir Arthur Conan Doyle (1887)

Everyday life is full of inverse problems: problems or situations that can be
addressed by collecting clues and using backward reasoning to narrow down a
specific sequence of events that can solve a mystery. For example, if you lost your
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keys somewhere in your house, you would start the detective work by forming a
mental image that recreates what you were doing the last time you saw them.
Then, starting with the last known location, you would systematically visit
rooms in the house, performing a thorough check before completely eliminating
one room and moving on to another, until you find the location where they
were last stored. But what if the mystery is more complicated? What if the
goal of your search isn’t visible?

People often visit a doctor when something is wrong; they may be sick, in
pain, or perhaps notice unusual patterns in their health. In these cases, the
doctor must play the role of Sherlock Holmes and solve mysteries that are
much more complex than the case of missing keys. A brain tumor, for example,
can’t always be easily spotted with the human eye. Instead of dusting for
fingerprints at the scene, a doctor collects evidence by measuring the patient’s
vitals and documenting any symptoms, lifestyle changes, and family history.
Then, the information is used to piece together possible causes and form an
initial treatment plan.

Unfortunately, detectives may follow red herrings that lead them on the
wrong path, and this is also true for medical doctors. There can be many
different conditions that produce the same symptoms, and this is why follow-up
appointments are needed to confirm whether the initial diagnosis was correct
and the treatment was successful. If not, the plan can be updated, and the
process repeated until the patient is better. In both of these real-world detective
cases, a combination of collected evidence, backward reasoning through trial
and error, and a bit of luck can illuminate the investigation.

Like Sherlock Holmes, researchers in almost every field in science and engi-
neering use indirect measurements or observational data from complex physical
or biological processes to gain an understanding of a quantitative problem.
Applications of inverse problems range from finding the energy resources of the
Earth by recording shock waves from manmade earthquakes (see Figure 1) to
checking the development of a fetus using ultrasound (see Figure 2), and even
mapping the surfaces of planets in the solar system with radar imaging.

To formulate these inverse problems mathematically, we use m to denote a
parameter of interest that, if known, solves the mystery. Finding the unknown
m involves an investigation process that generates observable data d containing
clues that ideally lead to a unique choice of m. The forward model is char-
acterized by the map F that describes the process that transforms the input
parameter m to the observable d:

d = F (m). (1)
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(a) (b)

Figure 1: (a) A diagam of the seismic survey for subsurface exploration that uses
sound waves to generate seismic data collected by receivers. (b) Geophysical
properties of the Marmousi profile [13]. This graph gathers values of parameters
that we aim to reconstruct by solving inverse problems.

(a) (b)

Figure 2: (a) A doctor performs an ultrasound examination on a patient.
(b) Ultrasound image of a fetus at 12 weeks of pregnancy in a sagittal scan.
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(a) (b)

Figure 3: (a) The forward map from input parameters to observables. (b) The
inverse problem is to use collected data to find unknown model parameters. In
both seismic imaging (Figure 1) and ultrasound imaging (Figure 2), F describes
physical wave propagation processes.

The inverse problem is to “undo” the forward process, that is, find a Sher-
lock Holmes map F −1 that traces the observable data d back to the parameter m:

m = F −1(d). (2)

Such a map is more rigorously called “inverse map”. The inverse map of F is
the map F −1 that fulfills F −1 ◦ F = F ◦ F −1 = Id, where Id is the identity
map that maps an object to itself. Thus, F −1(d) = F −1(F (m)) = m. Figure 3
illustrates the relationship between the forward and the inverse maps.

In the case of ultrasound imaging, the unknown m can represent the properties
of fetal muscles, tendons, and organs of the fetus. Close monitoring of m can
give doctors a good sense of any developmental abnormalities that need to
be addressed in the early stages. The ultrasound image plays the role of the
observational data d generated by the forward map F (m), where F is based on
a known mathematical model of ultrasound wave propagation.

For more general inverse problems, desired parameters m could be physical
properties of a medium (such as density, electrical conductivity, heat conduc-
tivity), geometrical information (such as the location, shape, and structure of
intrusions, defects), or sources (of heat, waves, potential difference, pollution).
Examples of the forward processes include optical or acoustic imaging, lab
experiments, and electrical probing. In these cases, F is based on a known
mathematical forward model that describes the governing equations of various
physical phenomena, such as the propagation of sound, heat, seismic waves, or
electromagnetic waves. Depending on the application, forward models can also
include empirical models, statistical models, or machine learning models.

Solving the inverse problem is hard. First, the data-collection process can be
flawed: images can be blurry, measurements can be imprecise, and samples can
become contaminated. Inadequate data can produce multiple or even infinitely
many solutions to the inverse problem. Secondly, inverse problems can also
be mathematically unstable, meaning that small changes in the measurements
could be produced by parameters that differ dramatically. In other words, even
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if the data is collected with a high-precision instrument, there can still be wide
margins of error in the parameter recovery. To make things even worse, it is
rarely possible or practical to find the exact mathematical formulas for the
inverse map F −1, so inverse problems are almost always solved indirectly.

Why do so many mathematicians and researchers work on inverse problems
despite all of these difficulties? Advances in the field of inverse problems make
a tremendous impact on our daily lives, improving our ability to monitor the
health of a fetus, locate energy sources within the earth, and optimally design
airplanes. In addition, inverse problems also appeal to mathematicans interested
in the development of elegant theory and analysis. Furthermore, there are a
seemingly endless number of challenging open problems to be explored that
arise from both the existing theory and also from new applications. The rest
of this snapshot focuses on the investigation of an inverse problem in seismic
exploration that led to new scientific and mathematical discoveries.

2 Seismic inversion

Inverse problems play a central role in reflection seismology, where the aim
is to investigate the Earth’s deep subsurface layers using seismic data. The
most common form of seismic data is a seismogram, which is a recording of
the phase and amplitude of waves caused by the ground shaking following
an earthquake or explosion. Seismic data has successfully been used to un-
cover intrinsic features of the Earth, including the crust-mantle-core structure.
A current active area of research uses seismic data to solve challenging problems
in exploration seismology, or the quest to find new energy sources such as oil,
gas, and coal reserves.

Detectives in exploration seismology rely on the knowledge that sound waves
travel in different materials with dramatically different speeds, called wave
propagation speeds, given in meters per second (m/s). Sound waves travel at a
speed of about 1500 m/s in the sand, 2100 m/s in coal, and 4800 m/s in shale.
Therefore, once the wave speeds of all the subsurface layers are known, the
material types are also revealed.

To determine the sound speed of the subsurface layers, seismologists conduct
an experiment starting with a loud explosion occurring at time t = 0 seconds.
The traveling waves propagate through the Earth and are partially reflected
back to recording instruments, called receivers, located at multiple seismic
stations. The receivers then track the time-history measurements of both the
phase and amplitude.

Figure 1a is a diagram of a seismic marine exploration survey. Such explo-
ration surveys are carried out by seismic vessels, which use air guns to generate
seismic waves that propagate through water and then earth. Hydrophones are
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Figure 4: Example of seismic data taken at 25 receiver locations li (vertical axis),
over the times t with 0 ≤ t ≤ 1 (horizontal axis).

placed on the surface of the water around the vessel in order to measure the
seismic waves reflected back from the earth at different depths. The goal of
this type of seismic survey is to reconstruct geophysical properties of the under-
ground layers. The results can then be compiled into a velocity image, such as
the “Marmousi model”, which is shown in Figure 1b. This is the application we
will focus on in the paper.

Now, we can formulate the forward problem mathematically as d = F (m).
We represent the Earth’s subsurface by a coordinate system (x, y, z), where for
any location l the coordinates x and y represent the horizontal and vertical
distance from a fixed origin, and z represents the depth in kilometers (km). The
unknown wave propagation speed is denoted by a function m(x, y, z) that varies
based on the location inside the Earth. Then, the physical laws governing wave
propagation in different media are captured in the forward operator F (m) = d,
where d is the observable seismic data taken at N receiver locations l1, . . . , lN
where each location li is described by coordinates li = (xi, yi, 0) over the
times t with 0 ≤ t ≤ T . That is, di(t) = u(li, t) where u(l, t) solves the acoustic
wave equation

m(l)∂2u(l, t)
∂t2 − △u(l, t) = s(l, t) (3)

for a given source s(l, t) and appropriate boundary conditions (this equation is
used to model the empirical data shown in Figure 4).

The seismic inversion process m = F −1(d) can be a cumbersome undertaking
for both geophysicists and applied mathematicians. Since the waves with higher
propagation speeds will reach the receivers earlier, an excellent way to start
decoding the recorded seismic data is to analyze patterns in the arrival times of
the reflected waves. However, the complicated, layered structure of the Earth’s
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subsurface can add a great deal of difficulty in the interpretation, and more
advanced mathematical tools are needed in order to accurately reconstruct the
wave propagation speed distribution in each subsurface layer.

3 Solving the inverse problem via opt imizat ion

Instead of the (often impossible) task of directly finding m by applying F −1,
inverse problems can be solved indirectly. A common way of solving an in-
verse problem is to approximate the true model parameter m∗ by solving an
optimization problem. This method essentially boils down to trial and error.
For each guess m, a prediction F (m) is generated. A misfit function J(m) is
used to measure how well this prediction matches the actual observed data d.
Misfit functions typically measure the difference between F (m) and d, and
minimizing J finds the best possible choice of m:

m∗ = argmin
m

J(F (m), d), (4)

where the function argmin returns the value of m that produces the smallest J .
A significant advantage of (4) over (2) is that the process of trial and error can be
performed efficiently and intelligently using advanced optimization techniques.

The most common misfit function used in inverse problems is the least-squares
or L2 norm which computes the sum of squared difference between observed
data d and the simulated prediction F (m) generated by a guess of the model
parameter m:

JL2(F (m), d) =
N∑

i=1
|Fi(m) − di|2 , (5)

where F (m) and d are vectors with N elements {Fi(m)}N
i=1 and {di}N

i=1.
The L2 norm defined above is a point-by-point comparison, meaning it ac-
cumulates differences in the data and prediction for each coordinate. This way
of measuring differences can cause problems for inversion because it is sensitive
to noisy data and can lead to a modeling error called overfitting, in which a
model is too closely fit to data. Another drawback of the L2 norm is that
if the recorded data contains oscillatory patterns, like in the case of seismic
signals, the misfit function can contain multiple local minima that can cause the
optimization solver described in (4) to stop prematurely and return an incorrect
parameter approximation [4].
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(a) Two signals (b) L2 norm calculation (c) W2 metric calculation

Figure 5: (a) Two signals f and g; (b) After subtraction (gray) and addition (orange)
in signal intensity, two signals are equal. The L2 norm is the sum of the squared
differences; (c) After mass transportation, the two signals are equal. The W2
metric is the multiplication of the displaced signal intensity and transport distance
squared.

4 Optimal transpor t and the Wasserstein metr ic

To overcome the challenges caused by using the conventional L2 norm for
measuring the difference between predicted data F (m) and observed data d,
we can replace it with a new metric, that is a new notion of distance, with
more desirable mathematical properties such as “convexity” and “stability”.
The graph of a convex function is curved outward, like the parabola y = x2. A
nonconvex function behaves like y = sin(x), where there are multiple “ups” and
“downs”. Convex functions have only one global minimum, making convexity a
desirable property of a misfit function. Stability is another desirable property -
a distance function is stable if small changes in the input result in small changes
in the measured distance. This means that small errors in the data won’t change
the outcome dramatically.

Engquist and Froese [8] first proposed to use an alternative notion of distance,
called the “Wasserstein metric”, derived from optimal transport theory. Their
research, focused on seismic inversion, found that the use of the Wasserstein
metric mitigated some common difficulties of the least-squares formulation,
including sensitivity to noise and non-convexity of the misfit function from the
last section. Since the release of the work [8], there has been fruitful activity in
further incorporating metrics derived from optimal transport in seismic inversion.
In the past four years, these ideas have been studied and implemented in both
academia [2, 6, 9, 17, 18, 20, 23, 32] and industry [22, 24, 26] with field data
applications, for example, under the North Sea and in Brazil.

The Wasserstein metric is based on the theory of optimal transportation. The
optimal transport problem can be viewed as a quest for the most efficient way
of transforming one distribution of mass to another. This problem was posed
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by the French mathematician Gaspard Monge (1746 – 1818) in 1781 [19] and
later expanded by the Soviet mathematician and economist Leonid Kantorovich
(1912 – 1986) during World War II [14]. Optimal transport-related techniques are
both nonlinear and algorithmic, and involve exploring a model in terms of both
signal intensities (how large the peaks in the signal are) and locations (the times
when the signal has a peak). The significant contributions of the mathematical
analysis of optimal transport problems since the 90’s [5, 10, 12, 27, 30, 31]
together with recent advancements in numerical methods [3, 7, 16, 21, 25]
have driven the development of numerous modern data analysis techniques for
estimation, detection, and imaging problems [15]. The optimal transport cost
function, called the Wasserstein distance belongs to a class of mathematically
well-defined distances [30].

The cartoons in Figure 5 illustrate the differences between the quadratic
Wasserstein metric W2 and the L2 norm. Figure 5a shows two different signals.
One can interpret the L2 distance in the following way. First, we transform
the left signal to match the one on the right by subtracting the extra intensity
in the first bar (gray) and adding more intensity in the second bar (orange);
see Figure 5b. By definition (5), the L2 norm is the sum of the squared signal
intensity differences. For the W2 metric, we match the two signals by an entirely
different transformation. Instead of creating or destroying the signal intensities,
we conserve the total intensity and transport the extra intensity in the first bar
to the second bar, as indicated by the yellow block in Figure 5c. By definition,
the W2 metric is the total transport cost, which is calculated as the sum of the
amount moved at every bar multiplied by the squared distance of the location
change. If there are multiple transport plans, we pick the one that gives the
minimum transport cost. The optimal transport cost is the Wasserstein distance,
which comes naturally from the optimal transport problem.

5 Optimal transpor t for seismic inversion

The calculation of the W2 metric represents a central “non-local” idea in
data comparison and analysis. Optimal transport-based methods compare the
observed and simulated data globally and thus include important “phase infor-
mation” in addition to the intensity differences. This makes optimal transport a
powerful tool for comparing waveforms, in which significant differences originate
from phase mismatches caused by different wave propagation speeds. We will
show the clear advantage of W2 over L2 in the next example.

Figure 6a shows measurements of the same source propagated through
materials with different wave speeds. For better illustration, we choose the
model parameter m to be squared slowness, a physical quantity directly related
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Figure 6: (a) Black: signal d; red and blue: signals generated by model parameter m1
and m2 respectively; (b) JL2 (F (m), d) for different m (slowness); (c) JW2 (F (m), d)
for different m (slowness); the red and blue marks in (b) and (c) represent the
misfits between F (m1) and d and F (m2) and d under the norms.

to wave speed through the relationship

squared slowness = 1
(wave speed)2 . (6)

Without loss of generality, we assume the black signal in Figure 6a represents
the observed waveform d, generated by a true parameter m∗. Our ultimate
goal is to reconstruct m∗ = 5 based on d. The red and blue signals represent
predictions (simulated waveforms) computed for two different values of slowness,
m1 and m2 respectively. Notice in Figure 6a that the red signal indicates an
earlier arrival time than the blue one. The different signals here have the same
intensities, the discrepancy measured by the L2 and W2 distances is therefore
solely caused by the different arrival times.

This means that the corresponding signal propagated through a material
of faster wave speed and therefore smaller slowness: m1 < m2. Similarly, we
observe that |m1 −m∗| > |m2 −m∗| because the gap in the arrival time between
F (m1) and d is larger than the gap in the arrival time between F (m2) and d.

To solve the inverse problem by optimization (4), one needs to compute the
misfit between F (m) and d first. A good misfit J(F (m), d) can be considered as
a “ruler” that measures the data misfit based on the choice of model parameters
m, emphasizing the differences in the misfit when m changes. Figure 6b shows
the shape of the “ruler” if we use the L2 norm (5) as the misfit. However,
the “measurement” for the “ruler” (that is, JL2(F (m), F (m∗))) doesn’t always
increase as |m − m∗| increases. In particular, we read

JL2(F (m1), F (m∗)) = JL2(F (m2), F (m∗)) (7)
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(a) Desired parameter m∗ (b) Inital guess (m0)

(c) Recovered result using L2 (d) Recovered result using W2

Figure 7: Inversion of the benchmark Marmousi profile [29].

while |m1−m∗| > |m2−m∗|. Let us illustrate that: For example, the value m = 4
is closer to the actual value (m∗ = 5) than m = 3. Yet, using the L2 norm,
m = 4 has a larger misfit value than m = 3. We have a local minimum of the
L2 misfit function at m = 3 that can trick the optimization into returning an
erroneous result. Clearly, the L2 norm is not as reliable at measuring the data
misfit for waveform inversion under the optimization formulation (4).

On the contrary, if we use the W2 metric as the ruler, the measurement
shown in Figure 6c increases monotonically as the value |m − m∗| increases.
Also, JW2(F (m1), F (m∗)) > JW2(F (m2), F (m∗)), which represents the fact
that |m1 − m∗| > |m2 − m∗|. Compared with the L2 norm, the W2 metric
has a better characterization of the differences between different wave speed
parameters. This simple example motivates us to apply the W2 metric to real
world seismic inversion problems.

6 Numer ical resul ts

The discussion and comparison in the previous section illustrate the promising
features of W2 that overcome the issues of the L2 norm in seismic inversion.
The example in Figure 6 only has one single unknown parameter m. In reality,
m can represent a vector of thousands of independent variables. In industry,
the W2 metric and other optimal transport-based approaches have been applied
to handle more complicated large-scale problems efficiently. In this section, we
will show inversion results using both the L2 norm and the W2 metric for a
subsurface geometry and parameter profile based on the Marmousi profile.
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The Marmousi profile is a synthetic geological profile designed in 1988 to
help researchers better understand practical aspects of seismic inversion. Based
on the geological properties in a region of northwestern Angola on the Atlantic
Coast of West Africa of size 3 km in depth and 9 km in width, the Marmousi
profile contains many subsurface layers, steep dips, and strong velocity gradients,
and is used to produce complex seismic data that require advanced processing
techniques to solve the inversion problem correctly. Since its creation, the
Marmousi model has been used to generate standard benchmark datasets for
methods and algorithms [13].

Figure 7a contains plots of the original P-wave 3 squared slowness of the
Marmousi profile. We take this to be the “true” model parameter m∗ that
generates the observable data d. To compute predictions F (m) = u(li, t),
corresponding to receiver locations {li}N

i=1, and times 0 ≤ t ≤ 1 where u(l, t)
satisfies (3), we use a numerical forward solver for the acoustic wave equation (3).
The optimization procedure for both L2 and W2 is initialized with a guess of
the parameter m0 (Figure 7b) and is terminated after 300 iterations. Figure 7c
shows the inversion result of using the traditional least-squares L2 method
and Figure 7d shows the final result of using the W2 misfit function. Again,
the result using the L2 norm has spurious high-frequency artifacts while the
inversion using the W2 metric correctly inverts most details in the true model.
Mathematically speaking, this comes from the convexity of the W2 metric and
the nonconvexity of the L2 norm.

7 Summary

Surprisingly often, mathematical ideas that, on the surface, may seem like they
have nothing to do with a particular application, turn out to be strikingly
useful. This snapshot highlights how new mathematical insights inform science
by illustrating how the idea of applying optimal transport theory and its related
Wasserstein metric to inverse problems arose from interdisciplinary research
between numerical analysts and geophysicists.

One of the main inverse problems in reflection seismology aims to reveal
geological properties of rock located deep within the earth from measured data
taken after manmade earthquakes. The standard procedure for solving the
inverse problem is: 1) simulate seismic data from predicted geological properties,
2) compare the simulated data with the collected data, 3) improve the prediction,

3 The P-wave (primary wave or pressure wave) is one of the two main types of elastic body
waves, called seismic waves in seismology. P-waves travel faster than other seismic waves
and hence are the first signal from an earthquake to arrive at any affected location or at a
seismograph. When it comes to reconstruction, it is important to reconstruct the squared
slowness that P-waves have as they travel.
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and repeat. There are many aspects of this procedure that can be analyzed
mathematically, and we focused on new developments that impact step 2). The
most common way of evaluating predictions is to measure the least-squares
distance between the predicted and collected data. Mathematicians are well
aware that several notions of distance can exist, and the use of different metrics
can lead to desirable properties of the optimization problem. Noticing that
convexity with respect to translation was important, the least-squares norm
was replaced by the Wasserstein metric, in which the difference between signals
is calculated by how much effort it takes to transport one signal to another.

As it turned out, the idea to replace the least-squares norm with the Wasser-
stein metric became a turning point in the plot. The choice of the Wasserstein
metric and its ability to account for geometric information in the signal (such
as a translation) led to a new way of solving the inverse problem in notoriously
difficult settings (see Figure 7). Although each inverse problem comes with a
unique set of assumptions, challenges, and applications, many inverse problems
are tackled by minimizing the difference between predictions and measured data.
This means that the ideas developed for inverse problems in reflection seismology
can extend well beyond the field. There are many more related problems and
mathematical mysteries to be addressed by exploring other disciplines and
drawing connections between them. Applications of optimal transport theory
and the Wasserstein metric are currently being explored in optics [11], inverse
problems in medical imaging [28], and even machine learning [1].
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Image credi ts

Figure 1a “Diagram of a marine seismic survey.png”. Author: Nwhit. Licensed
under Creative Commons Attribution-Share Alike 4.0 via Wikimedia
Commons. https://commons.wikimedia.org/wiki/File:Diagram_of_a_
marine_seismic_survey.png, visited on September 16, 2019.

Figure 2a “Aparelhodeultrassom.jpg”. Author: Leval. Licensed under Creative
Commons Attribution-Share Alike 4.0 via Wikimedia Commons.
https://commons.wikimedia.org/wiki/File:Aparelhodeultrassom.jpg, vis-
ited on September 16, 2019.

Figure 2b “CRL Crown rump length 12 weeks ecografia Dr. Wolfgang Mo-
roder.jpg”. Author: Wolfgang Moroder. Licensed under Creative Com-
mons Attribution-Share Alike 4.0 via Wikimedia Commons.
https://commons.wikimedia.org/wiki/File:CRL_Crown_rump_length_
12_weeks_ecografia_Dr._Wolfgang_Moroder.jpg, visited on September
16, 2019.

Figure 4 “KR-example.png”. Author: DavidMP1. Licensed under Creative
Commons Attribution-Share Alike 4.0 via Wikimedia Commons.
https://commons.wikimedia.org/wiki/File:KR-example.png, visited on
October 27, 2019.
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