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Big data and deep learning are modern buzz words
which presently infiltrate all fields of science and tech-
nology. These new concepts are impressive in terms
of the stunning results they achieve for a large variety
of applications. However, the theoretical justification
for their success is still very limited. In this snapshot,
we highlight some of the very recent mathematical
results that are the beginnings of a solid theoretical
foundation for the subject.

1 Introduction

Deep learning has had a transformative impact on a wide range of tasks related to
artificial intelligence, including speech recognition, computer vision, and games.
We will give a more precise definition below, but what is meant intuitively
by a deep learning approach to a given problem is a computational system
that is based on a simplified model of the human brain, one that has many
layers of structure and is “trained” to perform a certain task using extremely
large sets of data. This feature of adapting to data by extracting the essential
information and using it to form decisions in a “black box” is what makes
the deep learning approach so useful for so many applications. An underlying
principle of this method is that it is built entirely from sets of data, without



creating any problem-specific model. The main thing required to make this
work is a sufficiently large and diverse dataset, and a suitable design for the
learning structure. The results obtained are equally surprising in their apparent
potential for a wide range of applications as well as in the almost complete
lack of a solid theoretical basis for these approaches in terms of approximation
properties, convergence results, sampling rates or mathematically justified,
efficient algorithms [4, 6].

One emerging application of deep learning is in the scientific field of inverse
problems, which deals with the derivation of unknown system parameters given
an incomplete mathematical model and “noisy” observations. It is often the case
that we have observations and data relating to scientific problems of interest, and
we must create from this data an adequate model of the problem. Techniques
for solving inverse problems are crucial for modelling and understanding some
of the most fundamental real-world applications, ranging from medical imaging,
finance and the modelling of technical and industrial processes to describing
social behaviour and interaction. One particularly nice historical example is the
discovery of Neptune, the only planet in our solar system to have been predicted
to exist by a mathematical model before being directly observed. The model
used was derived from observations made on the orbit of the planet Uranus.

In this snapshot, we first highlight the results of an emerging mathematical
theory for understanding “neural networks” and demonstrate their potential
for the classical inverse problem of computerized tomography. We start with a
more precise introduction to neural networks and inverse problems.

1.1 Mathematical Formulation of Neural Networks

A neural network is a computational structure which has a design motivated by
the system of neurons in the human brain. In its basic form, a neural network is
given some input values and transports this input through the network from left
to right by its neurons (see Figure 1). The i-th neuron of a neural network can
be viewed as a function on input vectors (x1,...,24) of dimension d, which is
fully determined by its weights w; i, for £ =1,...,d, bias b;, and a non-lineard
function ¢, called the activation function. The output y; of the i-th neuron is
given by

d
yi=¢ (Z Wiy + bi) :
k=1

A function f is said to be linear if it satisfies f(az + By) = af(x) + Bf(y) for any real
numbers v and 8 and input vectors x and y. Otherwise, the function is called non-linear. In
general, non-linear functions are harder to work with, but arise commonly in applications.



That is, the neuron performs a weighted, biased summation of the input, which is
also called the pre-activation, and this sum is then acted upon by the activation
function ¢. The weights give relative importance to the d components of the
input vector. The bias is a constant value which is added to the weighted sum
of the inputs and allows the model to be more flexible. For example, with added
bias it is possible to obtain a non-zero pre-activation even if the input is zero.
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Figure 1: Diagram of the i-th artificial neuron located in some layer of a neural
network.

There exist several choices for the activation function. One common choice
is the rectified linear unit (ReLU), which sets all negative values to zero:

0 forz <0,
xz for z > 0.

¢reru () := { (1)

The neurons of a network are arranged in what are called layers. An example of
a very small, fully connected “feed-forward” neural network with three different
layers is given in Figure 2. The name feed-forward indicates that the input is
carried from one layer to the next without ever going back again. The weights
of all neurons in the /-th layer are usually stored in a matrix W*, where the
weights of the i-th neuron are found in the i-th row of the matrix W¥*. In the
example of the three-layer network in Figure 2, the weight matrices are given
by Wt e R3*do 1¥2 ¢ R>*3 and W3 € R?*® according to the dimensions of
the layers, where dy denotes the input dimension. Assuming that the activation
function ¢ does not change throughout the layers and calling the bias vectors b’
for £ = 1,2 and 3, the whole operation of the network ®y; on an input = € R



can be described via the following concatenations of affine linear operations
fe(z) := W'z + b® and the non-linear activation function ¢, which is applied
componentwise:

Py p(r) = o fsopo fropo fi(x). (2)

Typically, the number of layers L and the choice of the activation function
is fixed in advance. Such feed-forward neural networks are therefore fully
determined by the weights and biases of all neurons. Thus, we can describe the
operation of the network by a simple iteration, analogous to Equation (2): The
input vector z° is iteratively transformed according to

gt =W ") Vi=1,...,L -1
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O

Figure 2: Diagram of a fully connected neural network with three layers. The
sizes of the color-coded layers correspond to the number of neurons
in each layer, which are in this example 3-5-2. The full operation of
the neural network is given by Equation (2).

The training of a network, by which we mean determining suitable (W*, b¢),
is typically done via some training data, that is, sets of given input-ouput data
(), @) for j = 1,..., N, where typically N will be a very large number. One
simple example of a training data set could be a large collection of images, some
of which contain (for instance) human faces, and the output for each image is a
yes/no choice (this would be to train the network to detect faces in images).
Another, less straightforward, example comes from the medical application of
determining the type of a tumour. Here the inputs would be data obtained
from tissue samples and the outputs would be the annotations done by trained
pathologists. The aim would be to train the network to assign the correct tissue
type according to the tissue sample data it is given.

By defining a loss function

N
LW, WE R bR = B (D) — y P, (3)
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which measures the mismatch between the output of the network @W,b(x(j ))
and the given output data y), it is possible to solve the minimization problem

min L(W!,... WLl .. bF) (4)

to determine suitable weight matrices and bias vectors. This allows us to
approximate a large class of input-output relations such as using pictures as
inputs and classification results as output. The notion of deep learning here
refers to neural networks with multiple layers L > 10 and many sets of training
data with an extremely large number of data points, for example, N ~ 10% and
xU) € R? with d > 10°.

Despite its seemingly simple structure, a mathematical theory addressing
properties such as convergence, sampling theorems relating to a minimial
number of training data points needed for achieving a desired accuracy, or
mathematically-justified, efficient training algorithms is still to be developed.

1.2 Inverse Problems

An inverse problem in science is one in which we try to infer the unknown
causes of observed effects in a given system, using data from the observations
and whatever partial information we have about the system. This is as opposed
to the direct or forward problem, where mathematical or numerical models
of physical systems are constructed and used to make predictions of how the
system will behave in the future. A great many real-world applications are
based on the concepts of inverse problems.

One current topic of research is medical tomography, that is, any technique
for displaying a representation of a cross-section through a human body using
X-rays, ultrasound or other penetrating rays. Here we have an image, produced,
for instance, by a CAT (computerised axial tomography) scan, and the “inverse”
problem is to determine the pathology that would give rise to such an image.
We can also find examples in the fields of weather prediction, oceanography,
navigation and the “deconvolution”, or sharpening, of blurred images. Another
good example to illustrate the principle of inverse problems is given by the
physical system of the Earth’s gravitational field. The direct problem in this case
would be to determine the gravitational field via the known density distribution
of the Earth in the subsurface. The corresponding inverse problem would
be to determine the mass distribution of the earth (that is, the cause of the
gravitational field), via measurements of the gravitation.

The abstract formulation of an inverse problem starts with an analytical
description of the mathematical model via a map F : X — Y, where X is the
set of the causes (or model parameters) and Y the set of the observed data. The



map F' is called the forward operator. The forward operator is unknown, either
fully or partially, and the task is to recreate this map and use it to reconstruct
an unknown parameter x from nois datay ~ F(x) €Y.

One of the first mathematicians to try to classify the solutions of physical
systems was Jacques Hadamard (1865-1963). He stated that models of physical
processes ought to have the following three characteristics:

e A solution exists.
The solution is unique.
The inverse map F~! : Y — X is continuous, that is, the solution « depends
continuously on the data y. (In other words, small changes in y lead to
small changes in z)

A mathematical problem is called well-posed if it satisfies the conditions given
by Hadamard, and is called ill-posed otherwise. Initially, the scientific consensus
was that ill-posed problems served no practical purpose, but we now know that
they are in fact extremely common in scientific and engineering applications.

Inverse problems are likely to be ill-posed, and it is the continuity condition
that is often violated. In other words, inverse problems often have the undesirable
property that small errors in the observations, typically caused by measurement
errors, can induce large errors in the derivation of the corresponding causes.
This kind of error amplification has to be taken into account during the solution
process to prevent unsuitable results. In this case, we must use stabilization
techniques, which are also referred to as regularization methods: The “too-
sensitive” version of the problem is replaced by a closely related re-formulation,
which is stable with respect to measurement errors.

The classical model driven approach to solving inverse problems has at least
two shortcomings. First of all, the mathematical model is never complete and
extending the model might be challenging due to an only partial understanding
of the underlying physical or technical setting. Secondly, most applications will
have inputs which do not cover the full space X but stem from an unknown
subset or obey an unknown probability distribution.

Machine learning offers several approaches for amending such analytical
models using a data driven approach. Based on sets of training data, either a
problem-specific update to the model is constructed and an established inversion
process is used for regularizing the updated model, or the inverse problem is
addressed by a machine-learning method directly. However, despite the apparent
potential for mathematical theory to be used to enhance and optimize neural
networks, no consistent investigation into this subject has so far been carried out.
Consider the analysis of the performance of a neural network with respect to

Data is called noisy when, along with the information that we want, it contains some
amount of additional useless information.



real data sets. We know how well a given network copes with the training data
and test sets of data, but there is no satisfactory way of quantifying how well
the model will perform with other input data. In other words, we don’t know
how far we can deviate from the test data and still be sure to get meaningful
results. Some first results for neural networks modelling forward operators are
available, but they do not cover the case of ill-posed inverse problems [2, 3].

2 A Representer Theorem

Working with neural networks typically starts with the design of the network.
Many papers have discussed various different types of networks with all kinds of
subtleties for defining the different layers. However, the choice of the non-linear
activation function is typically reduced to picking a suitable one from a small
list of choices, which includes the ReLU function that we have already seen,
some variations of the ReLu, a function based on the hyperbolic tangent tanh,
and few others.

Arguably, this is due to the theoretical as well as numerical complexity when
aiming for an optimized activation function: Training the weights of the affine
linear maps connecting the different layers of a network can be done by the well-
established “backpropagation” algorithm. However, optimizing the activation
function is much more subtle and has been done - if at all - by optimizing
within a small paramterized family of non-linear functions. Hence, to prove
theoretical results on the optimality of the activation function together with a
suitable algorithm for constructing data-adapted optimal activation functions
is somewhat of a breakthrough on the theoretical side of neural networks and
deep learning.

Very recently, such a theoretical result, known as a representer theorem, was
obtained [7]. The main idea of the representer theorem is based on two assump-
tions about optimal activation functions. On the one hand, the optimization
scheme should promote activation functions that are locally linear (such as
ReLU), since these appear to work best in practice. On the other hand, the
function should be differentiable to be compatible with the chain rule when the
backpropagation algorithm is used to train the network. Therefore, the resulting
activation function should be continuous and piecewise-linear (CPWL), such
that the resulting deep neural network is CPWL as well. The endpoints of the
subintervals of neighbouring linear segments from such a CPWL function f are
called knots. The derivative of a CPWL function is piece-wise constant, with

The backpropagation algorithm uses an expression for the partial derivatives of the loss
function to update the weights and biases in light of training data in such a way that the loss
function moves towards a minimum.



Figure 3: Example of a learned activation function (blue curve) from a series of
noisy data points (crosses). The optimal solution is a piece-wise linear
function that is encoded with as few as 8 = 3 x 2 + 2 parameters: three
knots with their corresponding slopes plus a global linear term of the form
bo + bix.

jumps at the knots. The second derivative is thus equal to zero everywhere,
except at the jumps, where it is not differentiable in the classical sense. These
points give rise to what are called “Dirac delta-peaks”. In such a way, one can
reduce a CPWL function to a sequence of Dirac delta-peaks after differentiating
twice. Motivated by the piecewise-linear ReLU activation function (see Equation
(1)), whose second order derivative is sparse, which means it is equal to zero
almost everywhere, it is meaningful to choose activation functions with sparse
second derivatives.

Recall the loss function that was defined in (3). First of all, we extend the
minimization process by optimizing for the weights of the neural net and also
for the activation functions for every layer and neuron. Hence, we get different
activation functions for each layer and each neuron by solving the corresponding
minimization problem. Furthermore, we choose appropriate regularization terms
for the cost function to regularize the ill-posedness of the problem and to extract
the desired activation functions. Besides a standard penalty term to constrain
the value of the linear weights of the network, [7] includes also a “total variation”
penalty term, which induces sparse second derivatives of the corresponding
activation functions.



Surprisingly, this rather complex minimization task can be solved explicitly
and leads indeed to the desired piecewise-linear activation functions. Practically,
this translates into a network where the action of each neuron (for example, each
blue circle in Figure 1) is encoded by a CPWL function that is uniquely described
by its knots together with a small set of linear parameters. Furthermore, these
CPWL functions can be written as a sum of ReLU-functions, which (as we
already mentioned in Section 1.1) are a common choice of activation function
for deep learning [5]. Hence, this provides one of the first solid mathematical
results in the theory for deep learning. Equally important, this result allows us
to improve neural nets by computing optimized activation functions.

The concept is illustrated in Figure 3, where the system has to learn a
piecewise-linear map x — y = ¢(z) from a noisy set of data points (), y(9))
for 7 = 1,...,N. The norm constraint on the second derivative produces a
sparse solution that can be encoded with a small number of parameters. The
optimization process can be thought of as a mathematical version of Occam’s

razor, as it favors simpler descriptions over more complex ones.

3 Computerized tomography

As already explained in the introduction, data driven, or “black box” models
are particularly successful for solving problems in computer vision and image
processing, where large data sets are available, for instance, the detection and
classification of street signs.

This is different when the aim is to design a neural network to solve an
inverse problem y = F(z) from supervised training data (z),y()), where
yY) = F(x()) + “noise”. Approaching this problem from a purely data driven
point of view without accounting for knowledge about F' is unfeasible for
most inverse problems in imaging due to the excessive amounts of training
data required. This is in particular the case for the classical problem of
reconstructing images from parallel-beam X-ray data, which is the core of
computerized tomography (CT).

The goal then is to combine the two techniques, using an existing model to
help design the learning structure of a neural network. The structure mimics
already-known inversion formulas, such as explicit inverse maps or “fixed-point
iterations” [1]. Let us look at the model used to reconstruct CT images. The
forward operator of the CT problem is given by the Radon transform, after the
Austrian mathematician Johann Radon (1887-1956), who developed a method
of determining two- and three-dimensional functions by analysing integrals

Occam’s razor is a philosophical principle which states that if there are two competing
explanations for a given phenomenon, the simpler one is the more likely to be correct.



along lines or planes. His work was completely theoretical, and he could have
had no idea how useful it would turn out to be.

In this case, we can start with the classical inversion formula f = R#*A(Rf),
where R is the Radon transform, R# its adjoint operator and A is the first order
Riesz operator. This formula goes back to the early works of Frank Natterer
and gives rise to the filtered back projection (FBP) algorithm, the gold standard
in computerized tomography. Another possibility is to apply a classical iterative
regularization technique for inverse problems, the Landweber iteration scheme
[ = fkF — 7 (R*Rf* — R*y), with a suitable step size 7 (choosing the right
step size ensures that the algorithm is not too slow to be useful).

A well developed technique for the design of neural networks is based on
“unrolling” the iteration, in the sense that each step of an iterated process is
interpreted as an internal layer of a network. Hence, if we stop the Landweber
iteration after L steps, this corresponds to a network with L layers. The
linear operators R and R* can now be replaced by learned affine linear maps
connecting the layers.

This can be generalized by introducing into the iteration a “shrinking function’
S, which promotes sparsity in the obtained solution, and its learned counterpart
Y = S, (f* — 7(W f¥ — b)), which corresponds to a neural network with
activation function S,. The design in [1] extends this idea by splitting the
network in such way that one part uses learned iteration maps and the other
uses a pre-implemented algorithm for evaluating the mathematical operators R
and R#. Hence, this combines the best of both worlds and yields the Learned
Primal-Dual reconstruction operator for CT that outperforms state-of-the-art
methods on low-dose CT data (see Figure 4).

The learned iterative reconstruction method can also be jointly trained with
neural networks for performing tasks such as segmentation, labelling, caption
generation and similar applications. After joint training, one obtains a joint
task adapted reconstruction method.

Y
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Total variation reconstruction
PSNR 37.48 dB, SSIM 0.946, 64 371

ms

Ground truth
512 x 512 pixel human phantom

FBP + U-Net denoising Learned Primal-Dual
PSNR 41.92 dB, SSIM 0.941, 463 ms PSNR 44.10 dB, SSIM 0.969, 620 ms

Figure 4: The original image and three CT reconstructions of a human phantom
(a model of the human body used for computerized analysis). The
SSIM (structural similarity index) and PSNR (peak signal-to-noise
ratio) are quality measures. Only the Learned Primal-Dual algorithm
(trained on data from 9 patients) correctly recovers these regions.
The clinically feasible runtime offers performance advantages over
other methods that translate into true clinical usefulness.
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