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Abstract In the field of hydrological modeling, many alternative representations of natural processes
exist. Choosing specific process formulations when building a hydrological model is therefore associated
with a high degree of ambiguity and subjectivity. In addition, the numerical integration of the underlying
differential equations and parametrization of model structures influence model performance.
Identifiability analysis may provide guidance by constraining the a priori range of alternatives based on
observations. In this work, a flexible simulation environment is used to build an ensemble of
semidistributed, process-based hydrological model configurations with alternative process representations,
numerical integration schemes, and model parametrizations in an integrated manner. The flexible
simulation environment is coupled with an approach for dynamic identifiability analysis. The objective is
to investigate the applicability of the framework to identify the most adequate model. While an optimal
model configuration could not be clearly distinguished, interesting results were obtained when relating
model identifiability with hydro-meteorological boundary conditions. For instance, we tested the
Penman-Monteith and Shuttleworth & Wallace evapotranspiration models and found that the former
performs better under wet and the latter under dry conditions. Parametrization of model structures plays a
dominant role as it can compensate for inadequate process representations and poor numerical solvers.
Therefore, it was found that numerical solvers of high order of accuracy do often, though not necessarily,
lead to better model performance. The proposed coupled framework proved to be a straightforward
diagnostic tool for model building and hypotheses testing and shows potential for more in-depth analysis
of process implementations and catchment functioning.

1. Introduction
Computer models are imperfect abstractions and simplifications of the real world transferred into computer
code. As such, they necessarily impose uncertainties when simulating a certain process or the evolution of
a variable of interest. In surface hydrology, one main objective of modeling is to transfer a precipitation sig-
nal into a discharge hydrograph at a certain river section. However, the diversity of landscapes, data sets,
and specific research objectives led to the development of a large number of different hydrological models.
These can vary in their conceptualization, how and to which degree of realism hydrological processes are
represented, the discretization of a landscape into spatial model units, model runtime, initialization efforts,
the number of parameters, whether parameters should be calibrated or not, and under which environmen-
tal conditions they are appropriate simulation tools (e.g., Clark et al., 2011; Fenicia et al., 2016; Weiler &
Beven, 2015).

The structure of a model is related to the perceptual model of the real-world system and therefore reflects
the system understanding of the model developer, which is in turn based on evidence from observations and
experience (Beven, 2009; Wrede et al., 2015). Consequently, structural model uncertainties are associated
with the general conception of a model, incorporated mathematical equations, and computer code (Gupta
et al., 2012). Furthermore, model developers are usually confronted with a number of ambiguities, such as
multiple equally plausible equations for a certain process. In addition, input and output of the model, state
variables, calibration parameters, and the scale of operation need to be defined. Eventually, the applicability
of the model needs to be proven in case studies. Model development is therefore problem or even catchment
specific, where no straightforward solutions exist and compromises need to be made (Fenicia et al., 2016;
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Höge et al., 2018; Jakeman et al., 2006). Consequently, structural uncertainties can be attributed to mis-
conceptions of the general system, a lack of process understanding, spatial and temporal scaling issues,
subjectivity and ambiguity regarding important decisions during model building, and random programming
errors.

Flexible model frameworks have been recognized as important tools to address structural uncertainty (Clark
et al., 2008, 2015; Fenicia et al., 2011; Kneis, 2015; Knoben et al., 2019). They offer a common infrastructure
for the straightforward exchange of model structures, while the preparation of input data and handling
of output files are independent from the specific model configuration. In that way, they provide efficient
tools for hypothesis testing and process understanding. These frameworks, however, have not been fully
exploited as often single or few model structures have been compared (e.g., Fenicia et al., 2016; Kavetski &
Fenicia, 2011). Moreover, this type of analysis has found limitations due to interactions between the input
factors and nonlinearities in the model response (Saltelli & Annoni, 2010).

The use of more complex diagnostic and prognostic modeling tools in a fully integrated way has been recog-
nized as a promising approach (Pianosi et al., 2016; Uusitalo et al., 2015). Among others, in the last decades
frameworks of global sensitivity analysis (GSA) have been identified as important tools for model assessment
and improvement (e.g., Baroni & Tarantola, 2014; Pianosi & Wagener, 2016; Savage et al., 2016). Specifically,
by means of GSA, it is possible to investigate the importance of different uncertain model elements and
their interaction (Günther et al., 2019; Savage et al., 2016; Stahn et al., 2017). Complementary frameworks
of identifiability analyses have been used to identify adequate model configurations and parametrizations
(e.g., Ajami et al., 2007; Coxon et al., 2014; Herman et al., 2013; Mustafa et al., 2020; Wagener et al., 2003).
Identifiability analysis relates to sensitivity analysis in a way that it tries to reduce the uncertainty of model
output by constraining the a priori range of sensitive model elements based on additional information, such
as observations (Ghasemizade et al., 2017; Guillaume et al., 2019).

Difficulties to implement the aforementioned approaches are related to the need of a specific sampling
design or computational burden. As an alternative, Monte Carlo (MC) filtering approaches, also referred to
as regional sensitivity analysis (RSA), can be used to overcome these limitations (Spear & Hornberger, 1980).
These approaches have been used for sensitivity analysis (Tang et al., 2007) and identifiability analysis
(Wagener et al., 2003) but only focusing on parameters.

In this study, we extend the use of the MC filtering approach as implemented in the DYNIA framework by
Wagener et al. (2003) to account also for model structures, and we explore its capability for model build-
ing. This shall be achieved by coupling it with a flexible model environment. The aim of this study is
to identify the optimal model configuration with respect to parametrization, process representation, and
numerical solver of the underlying ordinary differential equations (ODEs). By employing a flexible model-
ing platform, process equations can be easily exchanged, and the integration of ODEs is separated from the
process implementations. Moreover, instead of using simplified conceptual approaches as many other stud-
ies, more complex process-based representations are employed. In addition, spatial and temporal variability
will be considered by employing dynamic identifiability analysis (DYNIA) over catchments with different
hydro-meteorological characteristics. It is hypothesized that this will provide more insights on model func-
tioning and process behavior from a set of equally plausible process-based model structures tailored to the
hydro-meteorological conditions of the area under investigation. The following specific research questions
are addressed:

1. How well identifiable is a set of equally likely process representations, numerical ODE solvers, and
parameter realizations?

2. How does identifiability vary over time with different meteorological conditions?
3. How consistent is the pattern for different parts of a catchment with varying hydrological conditions?

The paper is structured as follows: Section 2 introduces the general framework for flexible model identi-
fication. In section 3, the flexible model environment together with a case study are presented to evaluate
the proposed framework of model identification. The results of the case study and a discussion of their
implications are given in sections 4 and 5, respectively. The final conclusions are presented in section 6.
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Figure 1. Outline of the framework introduced in this paper. In bold the generic steps are presented (section 2), and in
italics the implementations within this case study are highlighted (section 3).

2. Framework for Flexible Model Identification
Figure 1 outlines the proposed framework for model identification. The generic part is described in the
following, while the application within a specific case study is presented in section 3.

In order to determine the most adequate model structure, multiple alternatives need to be tested against
each other. This is best achieved by implementing them in a single flexible environment. In the past, sev-
eral such model platforms have been developed (Clark et al., 2008, 2015; Fenicia et al., 2011; Kneis, 2015;
Knoben et al., 2019). They allow for the rapid exchange of model structures independent of specific input
data and output requirements. As they differ in their features, such as incorporated process formulations,
underlying model conception, programming language, or the degree of flexibility in adding further process
representations, the user has to choose a framework according to the requirements of the specific case study
and research questions.

Denoted as input factors, in this study as in some others (e.g., Pianosi et al., 2016), are elements of a model
that can be flexibly adapted before a model simulation. These include, for instance, parameters, input data
sets, or process representations. Input factors are composed of realizations, such as a specific parameter
value, input time series, or process formula. The definition of input factors and their realizations depends
on the goal of a study. To define the prior distribution of an input factor, assumptions about the underlying
distribution are required, for example, normal distribution with mean and standard deviation or uniform
distribution within certain limits. Within this framework, input factors should be selected and defined in a
way that it is known from experience that variation in the input factors will lead to variation in the output of
the model, that is, that the input factors exhibit some degree of sensitivity. Furthermore, each input factor
realization should represent a plausible working hypothesis for catchment behavior as otherwise the result
of identifiability analysis would be biased.

Studies solely focusing on parameters typically define input factors in a way that they are continuously
distributed. To account for discrete nonscalar input factors, as becomes necessary when focusing on, for

PILZ ET AL. 3 of 24



Water Resources Research 10.1029/2020WR028042

example, alternative process equations, each realization of an input factor is associated with a scalar value. In
that way, the set of considered realizations forms a discrete uniform distribution. This is a generic strategy for
the quantification and ranking of different input factors in the context of environmental model application
and allows for the incorporation of both numeric and nonscalar input factors (Baroni & Tarantola, 2014;
Lilburne & Tarantola, 2009; Plischke et al., 2013; Savage et al., 2016).

A specific combination of realizations of each input factor determines a model configuration. In order to
reduce the amount of work, model preprocessing, such as landscape discretization and preparation of input
data, should be independent of a specific model configuration. This also avoids side effects where spe-
cific preprocessing steps unintentionally influence the result of the subsequent identifiability analysis. On
the other hand, certain preprocessing steps can as well be explicitly considered as input factor within the
framework.

Following the Bayesian philosophy of statistics, the goal of this framework is to take further observations
into account and update the prior distributions of the input factors, that is, derive their posterior distribu-
tions. In the case of complex, nonlinear hydrological models, no analytical solutions exist for this problem.
Instead, MC-based strategies are efficient means to analyze the multitude of competing model configura-
tions in a systematic and computationally feasible manner. For this framework, the DYNIA approach by
Wagener et al. (2003) was adopted. It is based on the RSA (also called MC filtering) approach by Spear and
Hornberger (1980) by partitioning an ensemble of model configurations into behavioral (acceptable model
performance) and nonbehavioral sets. The DYNIA framework uses the same basis of RSA with the aim of
dynamically assessing the information content of input factors over moving time windows. In that way, the
influence of varying hydro-meteorological conditions, for example, wet and dry periods, on the identifiabil-
ity of model structures can be assessed. The posterior distribution of each input factor is derived by analyzing
the set of behavioral model configurations, that is, determining the frequencies of realizations in the case of
discrete-valued input factors.

Identifiability is assessed by comparing the prior and posterior distributions of input factors. This can be
done, for instance, by defining some metric. For our framework, we propose the identifiability measure by
comparing the number of realizations in the prior and posterior distributions of each input factor (nprior and
npost, respectively):

IM = 1 −
npost − 1
nprior − 1

with nprior ,npost ∈ N
>0. (1)

IM ranges between zero and one. A value of zero is obtained when npost has the same value as nprior , that
is, when all realizations of an input factor defined in its prior distribution are still present in the posterior
distribution. This means the specific input factor is not identifiable as all its realizations can lead to behav-
ioral model performance. In contrast, IM is one if npost is one, which happens when only one realization of
an input factor is left in its posterior distribution. In that case, the input factor is well identifiable as only
one specific realization is associated with behavioral model performance. Note that nprior and npost cannot
be zero as each model configuration is composed of one realization of each input factor and therefore at
least one realization of each input factor will also occur in the set of behavioral model configurations. If
there should be no behavioral model configuration distinguishable, this shows that either the performance
criteria for the partition of model configurations are too strict or the defined input factor realizations are no
meaningful representations of catchment behavior.

More information on identifiability can also be obtained by analyzing the posterior distributions in greater
detail. This can be achieved by analyzing the single best model configuration or visual inspection of the
posterior distributions, that is, the posterior frequencies of realizations.

In the following section, a case study is presented to illustrate the functionality and capabilities of the
proposed framework.

3. Case Study
3.1. Study Area

For the model simulations, the Isábena catchment in northeastern Spain was selected (Figure 2). The water-
shed comprises an area of about 425 km2 and is located at the southern edge of the Pyrenees. It is a mesoscale
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Figure 2. Overview over the Isábena catchment (c) and its location within Spain (b) and Europe (a). In panel (c),
background color is based on the DEM used for model initialization, thin black lines within the catchment outline
subbasins (delineated with the lumpR software and corresponding to the studied subcatchments except for Capella,
which comprises the whole study area, and Cabecera extending over the full northeast), red triangles mark the position
of discharge gauges, and blue and green points show gauges of rainfall and other meteorological variables, respectively.
Note that not all stations used in this study are visible due to feature overlays and because some stations are located
slightly outside the plot.

headwater catchment of the Ebro river basin. Therefore, the mountainous topography is characterized by a
heterogeneous relief with altitudes ranging from about 500 to 2,700 m. Consequently, precipitation is spa-
tially heterogeneous with annual sums ranging from 450 mm in the lowlands up to 1,600 mm in the upland
parts of the catchment and a spatial average of about 770 mm. The climate is continental Mediterranean
(relatively wet and cold), characterized by Atlantic and Mediterranean influences (García-Ruiz et al., 2001).

The hydrological regime is influenced by rain and snow. Floods may occur in spring as a consequence of
precipitation events amplified by snowmelt or in late summer and autumn caused by convective thunder-
storms. Mean annual discharge at the catchment outlet is 4.1 m3/s, while a maximum instantaneous value
of 370 m3/s has been observed (period 1945–2009). Minimum discharge can be less than 1 m3/s, but the

PILZ ET AL. 5 of 24



Water Resources Research 10.1029/2020WR028042

Table 1
Characteristics of the Study Area and Delineated Subcatchments Referring to the Analysis Period 2013 to 2015

Gauge A (km2) Gauge elevation (m a.s.l.) P (mm/year) Q (m3/s) RC (%)
Villacarli 41 866 673 0.30 27
Cabecera 145 841 901 2.09 46
Carrasquero 25 762 673 0.44 68
Ceguera 29 598 599 0.13 21
Lascuarre 44 565 572 0.06 6
Capella 424 490 743 4.57 40

Note. Capella is located at the outlet of the study area, while all other gauges refer to individual subcatch-
ments; A, catchment area referring to the model setting of this study; P, average annual rainfall (spatially
interpolated from station data, see text); Q, average discharge; RC, runoff coefficient.

river never falls completely dry. The study area is not regulated, thus the hydrological regime is determined
by natural factors only. It is mainly composed of deciduous woodland, agriculture, pasture, and bushes in
the valley bottoms with evergreen oaks and pines. Table 1 shows further hydrological statistics of the area
including selected subcatchments.

The area has been investigated in many research projects, including intensive hydro-sedimentological mon-
itoring (see Bronstert et al., 2014, and references therein). Consequently, a rich data set exists with relatively
high spatial coverage of meteorological and discharge measurements. In addition, the mountainous catch-
ment consists of several subcatchments with varying hydrological and meteorological conditions, which
provide different settings to apply the proposed framework of this study and investigate the influence of
hydro-meteorological conditions on the identification of model structures. Recorded time series data have
recently been published and described by Francke, Foerster, et al. (2018).

3.2. The Flexible ECHSE

The ecohydrological simulation environment (ECHSE) is a software designed for flexible model building
(Kneis, 2015). The environment consists of a generic part and the model engines. The former is the basis of
each ECHSE-based model and defines the format and general structure of input and output files, provides
data types for model development (state variables, parameters, input, and output variables), and contains
methods for the actual simulation, including a number of ODE solvers. The latter is the actual model and
consists of code provided by the user, that is, the actual process formulations. Applications of the ECHSE
environment can be found in Kneis et al. (2014), Abon et al. (2016), and Kneis et al. (2017).

For this study, a new model engine has been designed for ECHSE, which is oriented at the semidistributed,
process-based hydrological and sedimentological model WASA-SED (Güntner & Bronstert, 2004; Mueller
et al., 2010). The key feature is an efficient hierarchical landscape disaggregation scheme over multiple
scales. These spatial scales include subbasins, which contain landscape units (LUs) as representative hill-
slopes, further characterized by different terrain components (TCs) that constitute segments of the hillslope.
The latter in turn consist of several soil-vegetation components (SVCs) described by a characteristic soil
profile with specific vegetation cover. Each spatial unit is associated with areal shares of certain spatial
units of the next lower scale, that is, except for the subbasins, the spatial units have no explicit spatial
reference. Explicitly represented processes include evapotranspiration, infiltration, both infiltration-excess
and saturation-excess runoff, soil water movement, exfiltration, as well as lateral runoff redistribution.
Groundwater is represented by a simplified linear storage approach. River flow is described by a simple unit
hydrograph routing with evaporation as only source for transmission losses.

The spatial discretization scheme allows for spatially semidistributed hydrological simulations over large
scales up to about 100,000 km2 with acceptable computational burden, while taking small-scale processes
along hillslopes explicitly into account. This multiscale feature puts particular emphasis on dryland hydro-
logical peculiarities, such as evaporation from patchy vegetated surfaces, channel transmission losses, infil-
tration excess in case of crusted soil, and limited connectivity of runoff phenomena (see Bronstert et al., 2014
for more details). The model has been successfully applied in the present study area as well as several
other dryland regions in Spain (Bronstert et al., 2014; Francke, Baroni, et al., 2018; Mueller et al., 2009, 2010),
Brazil (de Araújo & Medeiros, 2013; Krol et al., 2011; Medeiros et al., 2010, 2014; Pilz, Delgado, et al., 2019),
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and India (Jackisch et al., 2014). Therefore, it has been chosen as highly plausible model hypothesis for the
selected study area and enhanced by further process representations and ODE solvers within ECHSE.

3.3. Data and Model Initialization

All model simulations are based on the same initialization procedure, including the discretization of
the study area into model units, parametrization of soil and vegetation, and the preparation of meteo-
rological inputs. Landscape discretization and preparation of model input files was performed using the
lumpR software, a package for the free and open-source environment R (Pilz et al., 2017). The software
has been designed for the initialization of models incorporating hillslope-based discretizations schemes,
such as WASA-SED, and has the option to generate input files for ECHSE. The basis of the algorithms
were a 15 m× 15 m DEM processed from ASTER raw data, a soil type, and a land-use map including
parametrizations of the soil and vegetation types. The initialization procedure comprised the delineation of
the catchment and subbasins (outlined in Figure 2), the derivation of further model units (the LUs, TCs, and
SVCs described in section 3.2), calculation and checking of parameters, and the generation of model input
files. The spatial setup consisted of 11 subbasins, 24 LUs, 72 TCs, and 93 SVCs.

Meteorological and discharge data were obtained from the data set of Francke, Foerster, et al. (2018). This
includes rainfall data from 18 stations, temperature from nine stations, and solar radiation and air humidity
data from two stations within or in close vicinity to the study area. Gaps in the time series were interpolated
with data from neighboring stations. Furthermore, station data needed to be interpolated to the centroids
of the subbasins by employing inverse distance interpolation (IDW), which was realized using the geostat
R package of the ECHSE toolbox (Kneis, 2012). For model evaluation, spatially distributed discharge mea-
surements from the Isábena river at the catchment outlet (Capella) and from five subcatchments were used
(Table 1).

All experiments were conducted under the following experimental design. The simulation and analysis
period covered 3 years from 1 January 2013 to 31 December 2015 with a temporal resolution of 1 day. This
decision is based on a compromise between data availability and computational feasibility. On the one hand,
the period should be sufficiently long to cover the hydrological catchment dynamics under different condi-
tions. On the other hand, although subdaily measurements are available and numerical ODE solvers would
be expected to be more reliable under hourly resolution, model runtimes with hourly resolution would be
too long to achieve results in acceptable time, when applied in the presented framework. To bring model
states into equilibrium and avoid artificial effects on outputs, a warm-up was conducted prior to any simu-
lation run. This warm-up run consisted of iterations over 1 year (1 January 2012 to 31 December 2012) until
convergence was achieved, that is, until the sum of hydrological storages at the end of a warm-up iteration
deviated by less than 0.1 % from the sum of storages at the end of the previous iteration.

3.4. Input Factor Definition

In line with the proposed generic framework, the following five input factors were defined for this case study:
(Ia) structural uncertainty with respect to evapotranspiration subprocesses; (Ib) uncertainty in the represen-
tation of soil water processes; (Ic) runoff concentration approaches; (II) numerical integration of underlying
ODEs; and (III) parametrization. We selected the input factors as they either reflect key landscape features
that have a large impact on simulation results but are hard to quantify (parametrization), reflect ambiguities
in the representation of key processes (process representation), or are known to be neglected in most other
studies while still exhibiting quite a large impact (ODE solvers). Table 2 provides an overview of the input
factors, which are further described in the following.
3.4.1. Process Representations
For nine hydrological (sub-)processes, alternative formulas were implemented in ECHSE. For the demon-
stration of the proposed approach, it was decided to provide two alternatives for each process component in
order to keep the computational burden within feasible limits and allow for a straightforward interpretation
of results. These alternatives consist of the respective representations copied from the original WASA-SED
model and an alternative. In most of the cases, approaches are similar but may vary in degree of detail.
For instance, the evapotranspiration approach by Shuttleworth and Wallace (1985) is deviated from the
Penman-Monteith formula but consists of a more detailed conception of resistances to account for patches of
bare soil instead of assuming a homogeneous vegetation cover. While an overview of implemented processes
is given by Table 2, Tables S1 and S2 in the supporting information provide the associated formulas.
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Table 2
Description of the Input Factors

Symbol Process/group Implementation
(Ia) Evapotranspiration
SW Evapotranspiration Shuttleworth and Wallace (1985)
PM Evapotranspiration Penman-Monteith
SK Stomatal resistance Saugier and Katerji (1991), equation 4
SW19 Stomatal resistance Shuttleworth and Wallace (1985), equation 19
SG43 Roughness length Shuttleworth and Gurney (1990), equation 43
BT Roughness length Brutsaert (1975)
SG42 Displacement height Shuttleworth and Gurney (1990), equation 42
SG41 Displacement height Shuttleworth and Gurney (1990), equation 41
AN Clear sky radiation Ångström formula
AL Clear sky radiation Allen et al. (2005), equation 19
(Ib) Soil water
GA Infiltration Modified Green-Ampt (Güntner, 2002)
PH Infiltration Philip (1957)
PS Percolation SWAT approach (described in Güntner, 2002)
PR Percolation Simplified Richards' equation
VG Soil water retention van Genuchten (described in Maidment, 1993)
CB Soil water retention Campbell (described in Maidment, 1993)
(Ic) Runoff concentration
RW Runoff concentration Physically based: lateral redistribution along a hillslope (Güntner, 2002)
RS Runoff concentration Conceptual (requires calibration): delay of runoff concentration by

linear storage approach
(II) ODE solvers (each can be applied with [CONS] or without [FREE] solution constraints)
EU First-order accurate Explicit Euler, fixed time step lengths
RK Fourth-order accurate Explicit Runge-Kutta Cash-Karp, fixed time step lengths
RKST Fourth-order accurate Explicit Runge-Kutta Cash-Karp, adaptive time step lengths
BDF Dynamic accuracy Backward differentiation formula in Nordsieck form

(predictor-corrector), multistep
(III) Parametrization
cal_wind Evapotranspiration Windspeed correction factor,  (0.1, 5)
cal_ks Soil water movement Correction factor for saturated hydraulic conductivity,  (0.01, 100)
cal_kfbed Groundwater recharge Correction factor for bedrock conductivity,  (0.01, 100)
Phil_cal Infiltration Parameter for Philip's equation (m/s),  (0.2, 1)
str_surf Runoff concentration Surface runoff retention factor,  (0.001, 0.1)
str_inter Runoff concentration Subsurface runoff (interflow) retention factor,  (0.01, 0.5)
str_base Runoff concentration Groundwater runoff (baseflow) retention factor,  (0.1, 10)

Note. Equations of process formulas are shown in Tables S1 and S2.

3.4.2. ODE Solvers
Hydrological model structures commonly comprise a set of ODEs to describe the evolution of state variables.
These ODEs need to be integrated over discrete time steps along a model application. However, complex
hydrological models typically contain nonlinear ODEs, which are analytically intractable. Consequently,
numerical approximation methods, also referred to as ODE solvers, need to be employed, which raise a num-
ber of mathematical issues that need to be considered, such as convergence (the solver needs to converge to
a solution), order of accuracy (how well solutions are approximated), and stability (the solution needs to be
stable and must not oscillate). Even though it has been shown that the use of oversimplified ODE solvers
can induce high uncertainties and lead to wrong conclusions (Gupta et al., 2012; Kavetski & Clark, 2011;
Schoups et al., 2010), this topic still receives little attention in the field of surface hydrology. Consequently,
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an aspect of this study was to explicitly consider uncertainty related to the ODE solver as part of the iden-
tifiability analysis. To do so, several ODE solvers were implemented in ECHSE using the external GNU
Scientific Library (Galassi et al., 2017). Four different solvers were considered in this study, varying in the
order of accuracy and stability (Table 2). More detailed information about ODE solvers and the selected
implementations are provided in the supporting information.
3.4.3. Parametrization
To reflect uncertainty in the parametrization, seven parameters were considered whose general features are
hard or not measurable at the targeted scale. The associated value ranges and distributions were selected
based on experience from previous applications of the WASA-SED model in the study area and similar envi-
ronments (Bronstert et al., 2014; Francke, Baroni, et al., 2018; Mueller et al., 2009, 2010). These parameters
influence different components of the model including evapotranspiration, soil water movement, ground-
water recharge, infiltration, and runoff concentration. All parameters are globally effective parameters (e.g.,
as factors; see Table 2) and independent from the spatial model setup, that is, the parameters are used to
scale the values for the entire catchment. For instance, parameter cal_ks affects the saturated hydraulic
conductivity of all soil units.

It should be noted that four parameters (Phil_cal, str_surf, str_inter, and str_base) are associated with
specific process implementations while the remaining three parameters are effective for all process imple-
mentations. This exhibits correlation among the input factors, which needs to be considered when choosing
a specific algorithm for identifiability or sensitivity analysis.

3.5. Prior Distribution and Model Configurations

The prior distributions of the input factors are defined by their realizations and assumed underlying dis-
tribution. Table 3 provides an overview where each line represents a specific input factor realization. Each
input factor realization was associated with a number in order to obtain numerical input factors with dis-
crete distributions (column ID in Table 3). With respect to the prior distribution it was assumed that the
input factors are uniformly distributed, that is, each realization of a specific input factor was assumed to be
an equally likely representation of catchment characteristics or processes and was given equal weight.

Regarding the input factors reflecting process representations (input factors Ia to Ic), the realizations were
defined by all possible combinations of the two alternative representations for each subprocess. This resulted
in nprior = 2n realizations in the prior distribution for each input factor, where n is the number of consid-
ered subprocesses: that is, 5, 3, and 1 subprocesses for evapotranspiration, soil, and runoff concentration,
respectively, resulting in 32, 8, and 2 realizations (nprior) for input factors Ia, Ib, and Ic, respectively. The ODE
solvers (input factor II) were combined with the possibility of constrained or freely evolving solutions, which
resulted in eight realizations for this input factor (four solver variants times two variants of constraints). To
represent the parameter space (input factor III), 1,000 realizations were taken by Latin hypercube sampling
from the log-transformed and uniformly distributed parameter spaces (except for Phil_cal, which was not
transformed).

The resulting model configurations are derived by the combination of input factor realizations, that is, each
model configuration consists of one specific realization of each input factor. Because of computational con-
straints, of the 4,096,000 possible model configurations, 12,000 samples were randomly drawn. The model
was subsequently evaluated for each sample. It should be noted that this framework involves no explicit
parameter calibration of the model. The resulting ensemble of model runs was then analyzed following the
DYNIA framework as follows.

3.6. Posterior Distribution and Dynamic Identifiability Measure

The root mean square error (RMSE) was selected as performance metric. For the dynamic analysis, a perfor-
mance value was calculated for each simulation day d over a moving window of the width 2w + 1 as follows:

RMSE(d) =

√√√√ 1
2w + 1

d+w∑
i=d−w

(
qs(i) − qo(i)

)2
, (2)

where qs is the simulated and qo the observed discharge and w a parameter defining the window size. For
this study, w was set to a value of 15 days, which resulted in a total moving window size of 31 days.
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Table 3
Input Factor Realizations

ID Implementations
Ia: Evapotranspiration
1 PM SW19 BT SG41 AN
2 SW SW19 BT SG41 AN
3 PM SK BT SG41 AN
4 SW SK BT SG41 AN
5 PM SW19 SG43 SG41 AN
6 SW SW19 SG43 SG41 AN
7 PM SK SG43 SG41 AN
8 SW SK SG43 SG41 AN
9 PM SW19 BT SG42 AN
10 SW SW19 BT SG42 AN
11 PM SK BT SG42 AN
12 SW SK BT SG42 AN
13 PM SW19 SG43 SG42 AN
14 SW SW19 SG43 SG42 AN
15 PM SK SG43 SG42 AN
16 SW SK SG43 SG42 AN
17 PM SW19 BT SG41 AL
18 SW SW19 BT SG41 AL
19 PM SK BT SG41 AL
20 SW SK BT SG41 AL
21 PM SW19 SG43 SG41 AL
22 SW SW19 SG43 SG41 AL
23 PM SK SG43 SG41 AL
24 SW SK SG43 SG41 AL
25 PM SW19 BT SG42 AL
26 SW SW19 BT SG42 AL
27 PM SK BT SG42 AL
28 SW SK BT SG42 AL
29 PM SW19 SG43 SG42 AL
30 SW SW19 SG43 SG42 AL
31 PM SK SG43 SG42 AL
32 SW SK SG43 SG42 AL
Ib: Soil
1 PH PS VG
2 GA PS VG
3 PH PR VG
4 GA PR VG
5 PH PS CB
6 GA PS CB
7 PH PR CB
8 GA PR CB
Ic: Runoff concentration
1 RW
2 RS
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Table 3 (continued)

ID Implementations
II: ODE solvers
1 EU FREE
2 EU CONS
3 RK FREE
4 RK CONS
5 RKST FREE
6 RKST CONS
7 BDF FREE
8 BDF CONS
III: Parametrization
ID cal_wind cal_ks cal_kfbed Phil_cal str_surf str_inter str_base
1 2.130 1.980 0.091 0.455 0.003 0.147 5.720
2 0.635 15.911 3.374 0.796 0.025 0.176 0.980
3 1.844 0.029 0.022 0.290 0.022 0.065 0.161
… … … … … … … …
998 0.185 0.021 3.823 0.226 0.093 0.290 2.514
999 0.400 1.451 0.136 0.433 0.011 0.030 4.773
1000 4.455 0.458 0.147 0.702 0.045 0.076 2.340

Note. Highlighted realizations mark implementations in the original WASA-SED model. For symbols of process and
ODE solver representations, see Table 2.

Based on the model performances, the posterior distributions of the input factors have to be determined.
There are different strategies how this can be achieved. In this study, as in the original DYNIA paper of
Wagener et al. (2003), an informal Bayesian approach as in the GLUE framework (Beven & Binley, 1992) was
employed by grouping the model performances into a behavioral group by arbitrarily selecting the best 10%
performing model configurations with respect to RMSE measures. Consequently, the group of behavioral
(i.e., acceptable) model runs generically consisted of 1,200 values out of the 12,000 samples.

The frequencies (i.e., the number of occurrences) of input factor realizations within the set of behavioral
model runs constitute the posterior distributions. The number of realizations with frequencies greater than
zero gives a value of npost for each input factor. Together with nprior , the identifiability measure IM was
calculated for each input factor following Equation 1. Note that, when comparing the IM values of the input
factors, the different characteristics and number of realizations have to be kept in mind, which define each
input factor. The values are therefore not directly comparable.

These processing steps were applied over both the full simulation period (static identifiability analysis) in
order to identify the optimal model structure and a moving window over the simulation period (DYNIA)
to study the influence of varying meteorological conditions. Spatial variability, and hence the influence of
hydrological characteristics, was investigated by analyzing the full study area and individual subcatchments
with distinct characteristics.

In addition to the analysis of IM values, the posterior distributions of the input factors were examined in
greater detail by visual inspection. This was done by counting the occurrences (also denoted as frequen-
cies) of individual input factor realizations in the posterior distribution. The higher the frequency, the more
often a realization contributes to adequate model performance. In that way, even for input factors with zero
identifiability (all realizations occur at least once in the set of behavioral configurations), information can
be derived how well certain realizations are performing.

3.7. Convergence and Robustness

Credibility of the applied sampling of model configurations was assessed by means of (i) analysis of con-
vergence (is a sample size of N = 12,000 configurations sufficient?) and (ii) analysis of robustness (is the
sampled posterior distribution independent of specific samples?). Convergence is typically analyzed by
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Figure 3. Discharge simulations in comparison to observations for each studied subcatchment and the whole study
area (Capella). The gray area illustrates the 90% probability range of all 11,968 successful model configurations
reflecting the prior distribution of input factors.

subsampling, that is, the computation of the target variable for increasing N from the original sample. This
was coupled with a bootstrapping approach to analyze robustness, which consists of sampling from the N
model results Nb times with replacement and subsequent recalculation of the target variable. The range over
the values of the target variable from the Nb bootstrapping procedures is a measure of robustness. In that
way, no additional model evaluations were required (Pianosi et al., 2016).

In this study, Nb was set to a value of 1,000. The target variable, for which convergence and robustness were
assessed, was the posterior distribution of input factors (namely, npost) and the identifiability measure (IM).

4. Results
4.1. Model Simulations
4.1.1. Model Errors
To carry out the experiments with the different model structures and parametrizations, the ECHSE environ-
ment was run 12,000 times according to the sampled model configurations. Individual simulation runtimes
varied between less than a minute and more than 1 hr, mainly depending on the ODE solver and workload of
the high-performance cluster, where the simulations were carried out. During model evaluation, 32 runtime
errors occurred, that is, for the further analyses, 11,968 model configurations have been considered. The
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Figure 4. Identifiability measures for the different input factors and subcatchments. Black errorbars represent the 95%
confidence interval estimated via bootstrapping.

runtime errors occurred exclusively when employing the backward differentiation formula (BDF) without
solution constraints as ODE solver. This is not surprising as it is the only implicit solver considered in this
analysis, which are known to be limited by the given constraints of accuracy and maximum number of iter-
ations. However, the number of errors is low, even in comparison to all runs with the BDF solver (∼3,000),
and thus no impact on the general conclusions of this study are expected.
4.1.2. Discharge Simulation
Observed discharge values for most time steps fall into the 90% probability range of the 11,968 prior model
configurations (Figure 3). This shows that the range of prior model configurations is able to capture the
observed streamflow response. However, especially large discharge peaks are often underestimated by the
model ensemble as well as by the single best model runs. Nash-Sutcliffe values range from 0.25 for the
Villacarli headwater catchment to 0.67 for the basin outlet at Capella. The RMSE for the best performing
model configuration generally lies in the order of magnitude of average discharge observations (compare
with Table 1). However, especially for the smaller subcatchments (Villacarli, Carrasquero, and Ceguera)
RMSE is relatively high. In general, the model is performing better for the larger (sub-)catchments (Cabecera
and Capella).

4.2. Static Identifiability Analysis

After determining the posterior model configurations and associated input factor distributions, it was pos-
sible to determine the identifiability measure, first for the whole analysis period. Parametrization and
evapotranspiration turned out to be the only input factors with a certain degree of identifiability (Figure 4).
For the latter, however, spatial differences exist. At gauge Lascuarre, with its comparatively low runoff coef-
ficient (see Table 1), no superior model structures with respect to evapotranspiration processes could be
distinguished from the set of a priori structures. For the other input factors, all realizations of the prior
distribution also occur in the posterior distribution resulting in identifiability measures of zero for all gauges.

More detailed information can be obtained by analyzing the posterior distributions of input factors
(Figure 5). The Penman-Monteith approach (PM, odd-numbered IDs; see Table 3) has the highest frequency
values in the posterior distribution of that input factor. For the other evapotranspiration subprocesses,
no obvious patterns can be seen. In contrast to the other gauges, at Lascuarre, the Shuttleworth-Wallace
approach (SW, even-numbered realizations) achieves high posterior frequencies. That means that the PM
approach (almost exclusively constituting the best 10% of configurations) is clearly the superior evapotran-
spiration model for most parts of the study area, regardless of the choices for the other evapotranspiration
subprocesses, while for Lascuarre, the SW approach excels.

Regarding the soil water processes, the approach by van Genuchten (VG, IDs 1 to 4) obtained the high-
est posterior frequencies at most gauges. Again, there is a different picture for gauge Lascuarre, where no
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Figure 5. Posterior distributions of input factors for each subcatchment. Note that the distributions are discrete and shown as, for better interpretability,
frequency values scaled to [− 1, 1] by dividing each frequency value by the lowest or highest value of the respective input factor depending on whether the
posterior value is less or greater than the prior value. Consequently, negative (positive) values indicate posterior frequencies less (larger) than prior frequency
values. The boxes represent the 95% confidence intervals estimated via bootstrapping, the black horizontal line is the bootstrap ensemble mean. Red boxes mark
the realizations related to the best model configuration (red line in Figure 3). For the meaning of realization IDs, consult Table 3.

clear pattern can be distinguished. For runoff concentration, ID 2 (conceptual calibration-based approach)
achieved slightly higher frequencies for all gauges but for Lascuarre.

The ODE solvers without solution constraints (odd-numbered IDs) exhibit the highest posterior frequen-
cies for all gauges except Villacarli and Lascuarre. Moreover, solvers with higher order of accuracy obtained
slightly higher values. This, however, is opposed to the findings for Lascuarre, where solvers with solu-
tion constraints (even-numbered IDs) dominate and the explicit Euler approach even achieved the highest
posterior frequencies.

It should be noted that the best performing model configuration is often not associated with input factor
realizations with the highest posterior frequencies. That means that, in some occasions such as ODE solver
4 for catchments Cabecera and Capella, an input factor realization is associated with the very best model
performance, but, overall, configurations associated with that realization only rarely belong to the set of
behavioral configurations.

Despite the high identifiability measure, the posterior distributions of input factor parametrization show
distinct peaks only for three of the seven parameters (cal_kfbed [groundwater recharge], cal_ks [soil water
movement], and cal_wind [evapotranspiration]; Figure 6). The other parameters are relatively equally dis-
tributed and show little distinction from the prior distribution. Differences among gauges are small. The
only exception is parameter cal_wind, for which at gauge Villacarli a peak in the posterior distribution for
values greater than zero (resulting in increasing values of evapotranspiration) can be seen, while for the
other gauges peaks are at smaller values (translating into less evapotranspiration). Parameters cal_kfbed
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Figure 6. Kernel density plots of the posterior (colored) and prior (black line) distributions of parameters. Shown are
log-transformed parameter spaces except for Phil_cal. For parameter symbols, see Table 2.

and cal_ks show a tendency toward smaller values, which results in less groundwater recharge and delayed
subsurface runoff generation.

4.3. DYNIA

Identifiability may change over time depending on the current boundary conditions (Figure 7). This holds
especially true for input factor evapotranspiration, which is varying considerably, while for the other input
factors, identifiability remains more ore less constant. There is some evidence that identifiability of evap-
otranspiration is enhanced during wet periods. However, differences exist among subcatchments, as for
Lascuarre the pattern seems to be reversed and for Ceguera there are periods of enhanced identifiability
during wet and dry periods. For the other input factors, no relationships become visible.

The dynamic analysis of posterior frequencies, however, provides more detailed insights and reveals patterns
even for input factors other than evapotranspiration (Figure 8). It shows that the clear pattern of high poste-
rior values of odd-valued realizations of evapotranspiration (i.e., preference of the PM formula) is blurred or
even reversed during periods of low flows, where even-valued realizations (the SW formula) dominate the
posterior distribution (e.g., end of 2013 or beginning of 2015). That means that the SW approach is more suit-
able for dry conditions. In contrast, for soil water, such low flow periods lead to high posterior frequencies
of IDs 7 and 8 (soil water retention model after Campbell and percolation modeled by simplified Richards'
approach), while during high flows, ID 1 with completely different equations is favored (see Table 3). A
model structure for runoff concentration is best identifiable during peak flows (ID 2, conceptual approach),
but for most of the simulation period, posterior frequencies were close to prior frequencies. The pattern for
ODE solvers is mostly blurred but shows a small tendency toward even-numbered realizations (constrained
solvers) during low flows. During high flows, however, although the pattern is still blurred, odd-numbered
(unconstrained) solvers with higher order of accuracy are more frequent in the posterior. However, it should
be kept in mind that absolute identifiability measures for soil water, runoff concentration, and ODE solver
are low and small absolute values of posterior frequencies are amplified due to the scaling in Figure 8.

For input factor parametrization (Figure 9), clear signals can only be seen for parameters cal_kfbed (ground-
water recharge) and cal_ks (soil water movement). Parameter cal_kfbed appears to be best identifiable
during dry periods with a tendency toward smaller values (less groundwater recharge, more soil moisture
and interflow). In contrast, cal_ks is best identifiable during wet periods with a tendency toward smaller
values (reduced conductivity of soil, more surface runoff). For cal_wind (evapotranspiration) and str_base
(baseflow), patterns can be distinguished as well but are more difficult to generalize. Both during peak
discharge and low flow periods, cal_wind is well identifiable with tendency toward smaller values (less
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Figure 7. Identifiability measures over the simulation period. Black lines represent the observed discharge hydrograph at each gauge.

evapotranspiration), while in times of intermediate flow identifiability tends toward larger values (more
evapotranspiration). Parameter str_base shows a tendency toward small values (small retention, quick
release of flows) at the beginning of flow events with values increasing over the discharge event (increasing
retention and prolonged release of flows; e.g., at the end of year 2013 or several times in 2015).

5. Discussion
5.1. Methodology and Identifiability Measure

The methodology presented in this paper can be easily integrated in any flexible model framework. However,
some specific settings need to be selected based on the specific application. These aspects together with the
implications of the decisions made in this specific case study are discussed in the following.

For this study, the ECHSE environment was chosen as it is relatively flexible in terms of model concep-
tion, specific process representations, and ODE solvers. Other such frameworks, to the authors' knowledge,
focus on a specific conception and offer less freedom to the user, for example, with respect to alternative
ODE solvers. Yet the proposed framework should also work with other model environments or even model
ensembles.

The model conception in this case study was oriented at the complex hillslope-based discretization scheme of
the process-based model WASA-SED. The main intention of this decision was that former studies analyzing
hydrological model structures focused on conceptual models. In contrast, this study presents a first in-depth
analysis of alternative process-based model structures.
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Figure 8. Posterior frequencies over the simulation period for gauge Capella (the catchment outlet) scaled to [− 1, 1] as in Figure 5. Black lines represent the
observed discharge hydrograph.

The definition of input factors strongly depends on the aim of a study. For this case study, the objectives
included the impact of different ODE solvers on simulation performance, which has rarely been investi-
gated before, and alternative representations of considered processes. Yet the choice of specific alternatives
is subjective and has to be constrained to limit the (considerable) amount of programming work and com-
putational burden and to facilitate the interpretation of results. In future studies, it would be interesting
to incorporate more or different process representations and/or include different sources of uncertainty as
input factors, such as landscape discretization or input data (e.g., different rainfall data sets).

To account for the influence of parametrization, 1,000 parameter realizations were sampled. Even though
this number is rather low, more realizations would have increased the number of model configurations
and consequently called for a higher number of samples and, therefore, computational burden. Yet a sep-
arate bootstrap analysis shows that the identifiability measure converges well with increasing number of
parameter realizations (Figure S4).

To limit the number of model simulations, out of the more than four million configurations, 12,000 samples
were drawn reflecting the prior distribution. The confidence intervals shown in Figures 4 and 5 are narrow
enough to indicate robust results, that is, that posterior distributions and associated identifiability mea-
sures are independent from a specific sample. Also the results are converging with increasing sample size
(Figure S3; note that the confidence intervals might be underestimated at small sample sizes as explained
in the figure caption and addressed by Isaksson et al., 2008). Yet it can be seen that for evapotranspiration,
the confidence intervals for subcatchments Ceguera and Villacarli are still large (Figure 4). This can happen
when some realizations of an input factor achieved only very few occurrences in the posterior distribution
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Figure 9. Posterior densities of model parameters derived via kernel density estimation and scaled to sum up to one at each time step for each parameter.
Parameter values are log-transformed, except for Phil_cal. Shown is only gauge Capella, the catchment outlet. Black lines represent the observed discharge
hydrograph.

(as further supported by Figure 5) and therefore sometimes are included and sometimes excluded from the
posterior distribution when resampling the simulation results during bootstrapping.

The number of required samples of the prior distribution also depends on the number of realizations of the
input factors. When the number of samples is low and each realization of an input factor appears only a
few times or just once in the prior distribution, it is likely to achieve a higher identifiability as the posterior
and prior distributions are more likely to differ from each other. However, a clear recommendation of the
minimum number of samples with respect to the input factor with the highest number of realizations cannot
be given. In the end, a compromise between sample size and computational demand needs to be found.

The results of parameter identification and sensitivity analyses are influenced by the employed performance
metric (Francke, Baroni, et al., 2018; Guse et al., 2017). For this study, the RMSE was selected as in the
studies of Wagener et al. (2003) and Pianosi and Wagener (2016). Experiments with the Nash-Sutcliffe index
gave very similar results (not shown). Yet, RMSE, as well as the Nash-Sutcliffe index and other metrics using
squared residuals, is biased toward higher values and the timing of the hydrograph while deficiencies of a
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model in reproducing low flows are less strictly penalized. This aspect is relevant when aggregating over
long periods and may therefore influence the findings of the static identifiability analysis of this work.

In addition to the performance metric, different variables of interest can be chosen for the comparison of
simulations with observations. For the study area, a comprehensive data set of streamflow observations
from different gauge locations is available. Besides, streamflow is the most widely used variable of interest
in hydrological model applications and best reflects the hydrological cycle, that is, the transformation of
rainfall into river discharge, of a catchment. These are the main reasons why this variable has been chosen
for this case study. However, for instance, to derive more detailed information about evapotranspiration for
soil water processes, also other variables, such as evapotranspiration and soil moisture measurements, can
be taken into account. Yet such measurements are often, as in this case, not available and associated with
high uncertainties.

Another important decision is the determination of the posterior distribution. Herein, the best 10% model
configurations in terms of RMSE determine the posterior distributions of input factors. However, RMSE
values are hard to interpret and at first sight it is not clear whether the best 10% simulation produced
plausible results at all. For our case study, it turned out that all configurations within the posterior distri-
bution achieved acceptable performances with NSE values greater than zero over the full analysis period
(see Figure S5). The advantage of the informal MC filtering approach is that it is relatively straightfor-
ward to implement and easy to understand. The disadvantage is that it is somewhat subjective and lacking
mathematical rigor. Besides, the identifiability measure was defined in a way that each input factor has to
be analyzed separately and the identifiability measures of input factors are not directly comparable. This
resulted from the discrete distribution of input factors and the highly different numbers of realizations.
In general, different frameworks are able to present different insights and have different advantages and
deficits. For instance, approaches of GSA have been used for the comparison of time-varying sensitivity
indices of discrete input factors (Pianosi & Wagener, 2016) and can be further used to identify noninfluential
input factors, which MC filtering does not allow (Pianosi et al., 2016). In that way, they account for some of
the shortcomings of MC filtering but require larger sample sizes and impose a higher computational burden.

The dynamic analysis is influenced by the decision on the length of the moving window. This in particular
is the case if sensitivity of the considered input factors varies in time, for example, because they repre-
sent processes occurring within larger or smaller characteristic time scales than the chosen window width
(Massmann et al., 2014). However, objective selection criteria are missing, and it was decided that a window
of 1 month be used. In that way, random measurement uncertainties are less likely to dominate the results
(as would be the case for a small window size), but the window is still small enough to identify relevant
process realizations at varying hydrological conditions. Experiments with varying window size (not shown)
revealed that a smaller window size leads to a more blurred pattern, while with larger windows patterns
can be more easily detected. However, the conclusions which can be derived from Figures 8 and 9 (i.e., the
dependency of posterior values from wetness conditions) do not change. On the other hand, a small win-
dow might aid in more detailed analyses of process dynamics. For instance, identifiability patterns changed
slightly for evapotranspiration when using a smaller window, especially for gauge Villacarli, where more
periods of high identifiability appeared. For the other gauges, patterns became more diverse as well but not
relevant regarding the conclusions of this study.

5.2. Spatiotemporal Patterns of Identifiability

Static analysis over the whole simulation period as well as the dynamic approach using a moving window
found evapotranspiration and parametrization to be the only input factors showing a certain degree of iden-
tifiability. Yet the temporal analysis provides much more insights into model functioning. It allows for a
more detailed comparison of prior and posterior distributions and reveals patterns also for the other input
factors, which are overall poorly identifiable. In addition, the analysis shows that the time-varying domi-
nance of certain input factors is to a large degree driven by meteorological conditions. This conclusion is
well in line with other studies emphasizing the added value of a temporal analysis in the context of sensitiv-
ity or identifiability analysis (e.g., Ghasemizade et al., 2017; Guse et al., 2014; Herman et al., 2013; Pianosi
& Wagener, 2016; Reusser & Zehe, 2011; Savage et al., 2016).

It was found that during wet periods, the PM approach clearly dominated the posterior distribution and
the parameter cal_wind was directed toward reduced evapotranspiration amounts. During dry periods, the
SW approach was dominant with a less clear pattern for cal_wind. This is supported by the fact that the
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SW approach was most dominant for subcatchment Lascuarre, which is the driest part of the study area.
The SW formula relaxes the big-leaf assumption of the PM approach in a way that it accounts for bare
soil and is therefore a more sophisticated approach for sparse crops and patchy vegetation (Shuttleworth &
Wallace, 1985). While subcatchment Lascuarre has the largest fraction of cropland, it is not clear whether
this really translates to a more patchy vegetation and thus no better suitability of either approach can be
inferred a priori. It rather seems that moisture condition is the most influential factor for the selection of an
evapotranspiration model in comparison to landscape characteristics (homogeneous vs. patchy vegetation
cover).

An interesting finding is that unconstrained ODE solvers with high order of accuracy perform better during
wet periods. A possible explanation is that implausible model states, which are likely caused by uncon-
strained solvers under rainfall conditions, can still produce a more realistic streamflow dynamic. This can
be attributed to the faster soil water fluxes with characteristic time scales less than the model's temporal res-
olution. Under such circumstances, ODE solvers without solution constraints could serve as compensation
for the rather coarse daily resolution of the model runs. For instance, consider a high amount of daily pre-
cipitation, which occurs in fact just within a few hours rather than equally over a full day. A large signal of
rainfall input within a single model time step would likely cause a high amount of surface runoff, while if
the signal would be distributed over several sub steps, it would rather result in less overland flow and a less
sharp runoff signal. In that way, the temporary storage of water in the soil, although exceeding the physical
boundaries, is delaying the runoff signal and could therefore still result in a more realistic system behavior.
In contrast, under dry conditions, constrained ODE solvers are favored as they keep the model states within
physical limits, which results in a more realistic streamflow dynamic.

In addition to the temporal patterns, some differences among the subcatchments were found. This is espe-
cially true for gauge Lascuarre in comparison to the rest of the catchment. Apart from the issue of the
evapotranspiration model, which already has been discussed, constrained ODE solvers are more clearly
favored at this than at the other gauges. This can be attributed to the distinct hydrological and meteoro-
logical conditions in this subcatchment (see Table 1). In contrast to the other subcatchments, Lascuarre is
characterized by a very low runoff coefficient, sharper discharge peaks, less precipitation, less steep topog-
raphy, and more agricultural areas. This supports the findings of van Werkhoven et al. (2008), who found
distinct patterns of parametric controls in dry and wet catchments. Their findings for parametric controls
can therefore be extended to certain process realizations and even ODE solvers.

5.3. Is There an Optimal Model Structure?

The most straightforward approach to address the question of the optimal model structure would be to
select the best performing realization. However, it was shown that the best performing model run does not
necessarily refer to the highest posterior frequencies of the analyzed input factors (Figure 5). This suggests
a high degree of interaction among input factors, that is, only very specific model configurations result in a
good performance of a certain model structure, while changes in the other input factors may significantly
deteriorate model behavior.

It was found that spatial variability, even in catchments of the lower mesoscale such as investigated in this
work, can be substantial and lead to contrasting conclusions in neighboring subcatchments. The same con-
trasting conclusions are derived when examining temporal patterns. For instance, it was consistently found
that under dry conditions, the SW model is a more plausible evapotranspiration model, while under wet con-
ditions, the PM approach was favored. In future studies, more advanced methods, such as machine learning
techniques, could be employed to derive relationships between catchment characteristics and meteorologi-
cal conditions as predictors and certain model process formulations as response variable. This would allow
the designing of the most likely model configuration prior to an application based on the characteristics of
the catchment to be investigated. Flexible simulation environments such as ECHSE (among others) enable
such a task and serve as a toolbox for the modeler (Clark et al., 2008, 2015; Fenicia et al., 2011; Kneis, 2015;
Knoben et al., 2019).

Finally, the identifiability analysis sheds some lights into model functioning and complex interactions
between the different model components. Quite surprisingly, even ODE solvers of low order of accuracy, at
least in some occasions, achieved rather high rankings in the posterior distribution. This suggests that model
deficiencies can be compensated by, albeit unrealistic, parametrizations or process formulations. Conse-
quently, there is a chance to obtain the right answers for the wrong reasons, a phenomenon resulting from,
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for example, overparametrization of a model, which has been acknowledged in numerous studies in the
field of hydrological modeling (e.g., Fenicia et al., 2016; Kavetski & Clark, 2010; Kirchner, 2006; Samaniego
et al., 2010; Schoups et al., 2008). In order to avoid corrupt model parametrization, in line with the findings
of other studies (e.g., Kavetski & Clark, 2011), robust ODE solvers of high order of accuracy should be used.
In addition, the use of ODE solvers with solution constraints appears unsatisfactorily from a mathematical
point of view as the model is forcibly pushed into plausible states. However, this as well calls for finer dis-
cretizations (in space and time) than they were used in this study as in many others. For instance, separate
analysis of the soil water module in ECHSE revealed that simulations with ODE solvers of higher order of
accuracy produce soil moisture states within plausible ranges also without solution constraints when run-
ning the model with shorter temporal resolution (1 hr) and more soil horizons with gradually varying soil
parameters (not shown in this paper). On the other hand, model runtimes increase dramatically and prevent
detailed analyses of ensemble-based approaches as presented in this study. Therefore, solution constraints
can still be a practical means, though unsatisfactorily, to keep model states within plausible limits and
achieve good model performances under specific boundary conditions (in this case study, dry conditions;
see Figure 8).

6. Conclusions
This study investigated the spatiotemporal identifiability of multiple model structures. The experiments
were conducted in a lower mesoscale mountainous catchment in northeastern Spain. To carry out simu-
lations, the flexible simulation environment ECHSE was used, which enabled the rapid implementation
of different alternatives for process representation (with respect to subprocesses of evapotranspiration, soil
water movement, and runoff concentration) and ODE solvers. This flexible model environment was coupled
with DYNIA. The approach is generic and flexible in a way that a user can freely choose a flexible simula-
tion environment, the input factors and realizations (process formulations, parametrization, etc.), how to
derive the posterior distribution, and how to investigate the results.

While the framework was designed primarily for model structure identification, it also allowed obtaining
information about process behavior under changing boundary conditions. The main findings with respect
to the initially stated research questions shall be briefly summarized as follows.

1. Parametrization and subprocesses of evapotranspiration turned out to be the only identifiable input
factors. Yet more patterns were identified by inspecting the posterior distributions.

2. Identifiability patterns vary over time. The Penman-Monteith approach appeared to be superior during
wet periods while during dry periods, the Shuttleworth-Wallace approach led to better model perfor-
mances. Moreover, unconstrained ODE solvers with high order of accuracy performed better during wet
periods, while solvers with solution constraints obtained better model performance during dry periods.

3. The results of model identification are clearly influenced by hydrological characteristics. While identi-
fiability patterns are relatively consistent over areas with similar hydrological characteristics, identified
model structures are most distinct for the subcatchment with the most diverging characteristics with
respect to land use, topography, rainfall sum, and runoff coefficient.

Identifiability patterns might be influenced by interactions among input factors and compensation effects.
This could explain why in some rare cases even ODE solvers of low order of accuracy achieved good model
results and therefore high rankings in the posterior distribution. Therefore, it is difficult to decide for a
specific model configuration, as the model obtaining the best performance metrics might be influenced by
such compensation effects. Consequently, the results of this study impose the following further research
questions:

1. How can the compensation effects be eliminated and model identification made more robust? How do
temporal resolution and ODE solvers dictate these issues and how do they interact?

2. If temporal resolution and ODE solvers are crucial, how can they be addressed while maintaining feasible
model runtimes?

3. Could data science (e.g., machine learning) be combined with process knowledge to determine the most
adequate model structure for a study area before conducting time consuming model evaluations?

While answering these questions will be the focus of new studies, we believe that coupling a flexible model
framework with identifiability analysis will play an important role to address these issues. In our case study,
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we have shown that DYNIA based on MC filtering together with the introduced identifiability measure is
one simple and practical approach that can be easily employed with any flexible model environment.

Data Availability Statement
The data, R scripts, and ECHSE model, on which this study is based, were published with GFZ Data Ser-
vices. The data and R scripts to reproduce the identifiability analysis are accessible from https://doi.org/10/
5880/PIK.2019.016 (Pilz, Francke, et al., 2019). The ECHSE environment with the new WASA-SED engine
is available from https://doi.org/10.5880/pik.2019.017 (Pilz, 2019). The resources are freely accessible and
contain detailed license information.
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