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In this snapshot, we will consider the problem of find-
ing the number of solutions to a given system of poly-
nomial equations. This question leads to the theory
of Newton polytopes and Newton-Okounkov bodies
of which we will give a basic notion.

1 Preparatory considerat ions: one equat ion

The simplest system of polynomial equations we could consider is that of one
polynomial equation in one variable:

P (x) = aN xN + aN−1xN−1 + . . . + a0 = 0 (1)

Here a0, a1,. . ., aN ∈ R are real numbers, and aN 6= 0 is (silently) assumed.
The number N is the degree of the polynomial P . We might wonder: how many
solutions does this equation have?

We can extend (1) to a system of d equations which is of the form
P1(x1, . . . , xd) = 0
P2(x1, . . . , xd) = 0

. . .
Pd(x1, . . . , xd) = 0,

for some arbitrary positive integer d. Here, P1, P2, . . . , Pd are polynomials in
d variables x1, x2, . . . , xd and the number of variables is always equal to the
number of equations. In the following sections, we will extensively deal with
the case d = 2. For the moment, though, let’s keep the case of one equation as
in (1) and try to answer the question we posed before.
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1.1 The number of solut ions

At first, consider the following example:

Example 1. The equation xN − 1 = 0 has two real solutions, namely ±1, if N
is even and one real solution, 1, if N is odd. However, the complex 1 solutions
are just the Nth roots of unity 2 , hence, the number of complex solutions is N .

This example illustrates the following general facts: The number of complex
solutions of a polynomial equation as in (1) is equal to the degree of P . This
statement generally follows from the Fundamental Theorem of Algebra: a
polynomial P of degree N has exactly N complex roots 3 when the counting
of multiplicities, the number of times a root occurs, is implied. Put in other
words, P (x) can be written as P (x) = (x− c1)n1(x− c2)n2 . . . (x− ck)nk where
n1 + . . . + nk = N . The roots of the polynomial are then the complex numbers
c1, . . . , ck and they have integer multiplicities n1, . . . , nk, respectively. If ni ≥ 2,
ci is said to be a multiple root.

1.2 Gener ic polynomials and discr iminants

Now that we know about the total number of solutions, we are interested in a
way to distinguish between polynomials with multiple roots and such that have
pairwise distinct roots, that is, N roots with no root equal to any other. Again,
consider an example:

Example 2. The roots of the quadratic equation ax2 + bx+ c = 0 can be found
by means of a well-known formula:

x± = −b±
√

b2 − 4ac

2a
.

This formula was obtained in the IX-th century by the Persian mathematician
Muhammad ibn Musa al-Khawarismi.

If the discriminant D = b2 − 4ac of the equation is not zero, then there are
two distinct complex roots x+ 6= x− and ax2 + bx + c = a(x− x+)(x− x−). If
the discriminant is zero, then there is only one root x = b

2a of multiplicity two,
that is, ax2 + bx + c = a(x− b

2a )2.

1 that is from the complex numbers C; for a definition and if you want to learn more
about the field of complex numbers, you might want to have a look at the first section
of the snapshot What does “>” really mean? by Bruce Reznick, Snapshots of modern
mathematics (2014), no. 4, 1–3, available at http://www.mfo.de/math-in-public/snapshots/
files/what-does-really-mean.
2 The Nth roots of unity are the N complex numbers e2πi k

N , k ∈ {0, . . . , N − 1}.
3 Generally, solutions to a polynomial equation P (x) = 0 are also called roots of the
polynomial P (x).
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In this sense, the discriminant is a polynomial function dependent on the
coefficients a, b, c. Via the value it takes for a specific set of coefficients, it
distinguishes between polynomials with pairwise distinct roots and such with
multiple roots.

The notion of discriminant can be extended to polynomials of degree N > 2:
there is a polynomial function D(a0, . . . , aN ) such that the following holds:
a general polynomial equation such as (1) has N pairwise distinct complex
solutions if and only if D(a0, . . . , aN ) 6= 0.

Polynomials of degree N that have N pairwise distinct roots are generic,
or in general position, among all polynomials of degree N in the following
sense: a small perturbation of the coefficients of such a polynomial does not
change the number of its pairwise distinct complex roots. Why this? Easily,
we can check this via the discriminant. Indeed, if D(a0, . . . , aN ) 6= 0 then
D(a0 + ε0, . . . , aN + εN ) 6= 0 for all sufficiently small ε0,. . ., εN . In other words,
we could say, generic polynomials are polynomials which are stable under small
perturbations of the coefficients.

Note that polynomials with multiple roots are never generic. For instance,
xN has a root of multiplicity N at 0, but xN − ε has N pairwise distinct roots
for any however small ε 6= 0. Hence, a polynomial with a multiple root is
unstable: no matter how small the perturbation is, it may destroy a multiple
root and change the number of pairwise distinct roots.

In fact, this is the only thing that can happen to the roots of a polynomial
as long as the degree stays fixed. Under perturbations, distinct roots can collide
and form multiple roots (or vice versa) but they cannot disappear. This means,
roots move continuously. Using this fact one may formulate a conservation
of number principle: the number of roots of a polynomial is always the same
provided that we count multiplicities. It can be used to prove the Fundamental
Theorem of Algebra stated above. Various versions of this principle hold in the
multidimensional case as well. The only bad thing that can happen is that a
root escapes to infinity. However, in this case, the degree of the polynomial
effectively drops. 4

1.3 Nonzero solut ions and lengths of intervals

Before we delve into the involved multidimensional world, let us make one more
observation. Fixing the degree of a polynomial P means fixing the order of
its highest term. What if we fix the order of the lowest term? Suppose that

4 If you draw, for example, the polynomial x2(x − n)2 for increasing values of n, that is
n = 1, 2, 3, 4, . . . you will recognize that for very large n the graph of the polynomial looks
like a parabola, at least in the vicinity of 0. This means, effectively, for n going to infinity, it
looks like the graph of a quadratic polynomial.
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the lowest monomial in P is xM . What can be said about the roots of P? For
P = xM , the answer is very simple: the root 0 has multiplicity M .

We may now consider a polynomial whose terms start with xM and go all
the way up to xN , M < N . Such a polynomial has 0 as a root of multiplicity
M , and it has N −M roots in C− {0}, the complex plane without the point
0. Note that, incidentally, the number of roots in C − {0} is equal to the
length N −M of the interval [M, N ] on the real line. This last statement has a
nice multidimensional generalization obtained by A. Kouchnirenko in the 1970s
which we will learn more about in Section 3.

2 Bézout ’s theorem

After having discussed the one-dimensional case, d = 1, extensively, we proceed
to systems of several equations. Although, to keep the ideas simple, we only
discuss the case d = 2. This means, we now look for the number of complex
solutions of a polynomial system with two unknowns x and y of the form

P (x, y) :=
∑

m,n∈N
am,nxmyn = 0;

Q(x, y) :=
∑

m,n∈N
bm,nxmyn = 0.

(2)

Here, the coefficients am,n, bm,n again are real numbers 5 . P (x, y) and Q(x, y)
are polynomials, that is, only finitely many of the coefficients am,n and bm,n are
nonzero. Correspondingly as in one dimension, the degree deg P of a polynomial
P (x, y) =

∑
m,n∈N

am,nxmyn is defined as max{m + n | am,n 6= 0}.

In order to gain some understanding about the nature of solutions to such
systems, we start with an example:

Example 3. Consider the system of linear equations{
a1,0x + a0,1y + a0,0 = 0;
b1,0x + b0,1y + b0,0 = 0.

As you might know from the theory of linear algebra, there are three cases to
distinguish: the system has one solution (if the determinant a1,0b0,1−a0,1b1,0 6=
0), infinitely many solutions, or no solution. We can interpret the problem of
finding solutions to the above system geometrically. The equations P (x, y) = 0

5 all ideas discussed throughout this snapshot can be extended to polynomials with com-
plex coefficients. We here keep the real coefficients in order not to produce unnecessary
complications.
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and Q(x, y) = 0 define two lines in the x-y-plane (where both x and y are
complex!), and the three cases then appear as follows: two lines intersect at
one point, coincide, or are parallel. From this geometric point of view we also
recognize in which case the system is a generic system – without using any
discriminant condition. Indeed, only the first case is generic since it is stable
under small perturbations: if we perturb two distinct intersecting lines, then
they still remain distinct and intersecting. This is not true for the other cases.
Note that, if the two lines become parallel, we may think of their intersection
point, and equivalently the root of this system, escaping to infinity.

We can summarize this example as follows: a generic system of linear
equations has a unique solution.

Let us now consider a generic pair of polynomials P (x, y) and Q(x, y) of
general degrees M and N , respectively. Similarly to the one-dimensional case,
the condition of being generic can be made precise by using multidimensional
versions of discriminants, but this is out of scope of the present text. How many
solutions does a generic system P (x, y) = Q(x, y) = 0 have?

Again, as in Example 3, we can view this algebraic problem as a geometric
one: the equations P (x, y) = 0 and Q(x, y) = 0 define curves in the plane,
for which the lines in Example 3 were a special case; the problem of finding
solutions is then reduced to finding the intersection points of the two curves. If
M = 1 or 2 this problem can in certain cases be reduced to the Fundamental
Theorem of Algebra as becomes clear from the following example:

Example 4. If P (x, y) = xy− 1, and Q(x, y) is a generic polynomial of degree
N , then the number of solutions is equal to 2N . Indeed, if P (x, y) = 0, then
y = 1

x . Speaking geometrically, the hyperbola {xy − 1 = 0} admits a rational
parametrization x 7→ (x, 1

x ). Substituting this into Q(x, y) = 0, we obtain
the equation Q(x, 1

x ) = 0 on x. The latter equation has 2N solutions by the
Fundamental Theorem of Algebra applied to the polynomial xN Q(x, 1

x ). 6

With the previous considerations at hand, the reader may already have
guessed the general answer. It is called the Bézout theorem to give credit to
an influential work of Bézout of 1779; however, it was stated by Newton more
than a century earlier, in 1687, in his treatise “Mathematical foundations of
Natural Philosophy”.

Theorem 1 (Bézout, 1779). The number of complex solutions of a generic
system (2) is equal to deg P · deg Q.

6 For further reading we suggest Undergraduate Algebraic Geometry by Miles Reid [7] which
covers topics related to this example (and many more). For example, Sections 1.1 and 1.2
discuss rational parametrizations of conic sections and the nonrationality of elliptic curves,
respectively.
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If the system is not generic, then it either has an infinite number of solutions
or the number of solutions is strictly less than deg P ·deg Q. Here is an example
of a generic system whose number of solutions is easy to compute:{

(x− 1)(x− 2) . . . (x−M) = 0;
(y − 1)(y − 2) . . . (y −N) = 0.

To prove Bézout’s theorem it is sufficient to show that any generic system can
be continuously deformed to this one above without having roots collide or
escape to infinity.

2.1 A ref ined not ion of gener ic i ty

What about the systems that are not generic? We have already mentioned
that such a system has a number of solutions which is either infinite or strictly
less than deg P · deg Q, yet, it would be more satisfying to give a more specific
answer. Consider the system{

P (x, y) := a1,1xy + a1,0x + a0,1y + a0,0 = 0;
Q(x, y) := b1,1xy + b1,0x + b0,1y + b0,0 = 0.

(3)

Any system of type (3) can be solved explicitly, and the number of solutions
is either infinite or does not exceed two. Solving this system amounts to
intersecting hyperbolas with horizontal and vertical asymptotes. Two such
distinct and non-touching hyperbolas intersect in two points, similarly to the
fact that any two distinct and non-touching circles intersect in two points.

There should have been four solutions if Bézout’s theorem were applicable to
such a system. However, systems of type (3) are not generic among all systems
with M = N = 2. Namely, a small perturbation P (x, y) → P (x, y) + εx2

increases the number of solutions without changing M and N . Can we refine
Bézout’s statement so that to make it applicable to systems of type (3)? It
turns out, yes, indeed, there is a generalization to the theorem. First, we may
put more restrictions on small perturbations and by that generalize the set of
systems we call “generic”:

We define the support S(P ) of P as the set of points (m, n) in the real plane
R2 such that am,n 6= 0. By definition all points in the support have integer
coordinates. The support S(P ) partially encodes the polynomial P : it tells us
which monomials xmyn occur in P but does not specify the coefficients am,n

belonging to these monomials. Let us now refine our notions of genericity and
stability, and say that a system is generic if it is stable under all perturbations
which do not enlarge the support of the polynomials P (x, y) and Q(x, y). In
particular, the perturbation of system (3) which changes P (x, y)→ P (x, y)+εx2
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for ε 6= 0 is not allowed because neither P (x, y) nor Q(x, y) have a term with
x2. We could also say, the system is generic within the space of polynomials
with support contained in S(P ) ∪ S(Q). It is easy to check that if a system
of type (3) has exactly two solutions, then the allowed perturbations do not
change the number of solutions.

Second, we generalize the notion of the degree of a polynomial. This refined
degree is no longer a number but a polygon!

3 Newton polygons

Consider a polynomial in two variables

P (x, y) :=
∑

m,n∈N
am,nxmyn = 0.

Again, for P being a polynomial we require that the coefficients am,n are nonzero
for finitely many (m, n) only. Furthermore, the degree of P is already completely
determined by the support S(P ). Namely, it is the maximal value the linear
function f : R2 → R defined by f(m, n) := m + n attains on S(P ).

Example 5. If P (x, y) = 1 + 2xy2 + 3x3y then S(P ) = {(0, 0), (1, 2), (3, 1)}. It
is easy to check that the function m + n attains the maximal value on S(P ) at
the point (3, 1). Hence, the degree of P is equal to 3 + 1 = 4.

Moreover, we can replace the support by any larger set ∆ with the following
property: for any linear function f , the maximal value of f on S(P ) coincides
with the maximal value of f on ∆. Then the degree of P is determined by ∆.

The largest set ∆(P ) with such property is called the Newton polygon of P .
It is a convex polygon. We say a set ∆ is convex if for any two points p1 and p2
that lie in ∆, the line segment [p1, p2] also lies in ∆. Alternatively, the Newton
polygon ∆(P ) can be defined as the smallest convex polygon that contains the
support S(P ) (see Figure 1). 7

Exercise 1. Verify that in one dimension, the Newton polygon ∆(P ) of a
polynomial P (x) = aN xN + . . . + aM xM is a straight line, that is, an interval
on the real axis. What length does this interval have?

The classical degree satisfies the following additivity property: if P and Q
are polynomials, then deg(P ·Q) = deg(P ) · deg(Q). You will verify this very

7 Think about why these definitions really are equivalent. You can find more about convex
polygons in An Introduction to Convex Polytopes by Arne Brønsted [2].
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Figure 1: The support (red points) and the Newton polygon (blue surface) of
the polynomial 2xy + x2y + 3x4y + 5x2y2 + xy3.

easily. Newton polygons satisfy a similar property. Define the Minkowski sum
of sets ∆1 and ∆2 in the plane as

∆1 + ∆2 = {p1 + p2 | p1 ∈ ∆1, p2 ∈ ∆2},

where p1 + p2 means the usual vector addition, that is, if p1 = (x1, y1) and
p2 = (x2, y2), then p1 + p2 = (x1 + x2, y1 + y2) (see Figure 2).

Exercise 2. Show that ∆(P ·Q) = ∆(P ) + ∆(Q).

A word of warning: if we consider supports instead of Newton polygons, then
the additivity property fails as seen in the following example:

Example 6. Let P (x, y) = x + y and Q(x, y) = x− y. Then P ·Q = x2 − y2.
We have S(P ) = {(1, 0), (0, 1)} = S(Q) and S(P ·Q) = {(2, 0), (0, 2)}. However,
S(P ) + S(Q) = {(2, 0), (1, 1), (0, 2)}, hence, S(P ) + S(Q) 6= S(P ·Q).

This is one of the reasons for which Newton polygons are easier to handle
than just supports.

3.1 Laurent polynomials

Observe that the Newton polygons are all contained in the first quadrant of the
plane R2 due to the nonnegative integer coordinates of the points (m, n). From
a geometric perspective, this is an unnecessary restriction which in fact obscures
the situation. Let us thus take a look at the so called Laurent polynomials, a
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Figure 2: Minkowski sum of two triangles.

natural generalization of the concept of polynomial in our context. We do so
via their Newton polynomials which may now be in a general position in the
real plane R2.

Let ∆ be a lattice polygon in the plane (lattice means that the vertices of
∆ have integer coordinates). Consider all polynomials P , whose support is
contained in ∆. Since ∆ may contain points with negative integer coordinates,
it is natural to consider not only polynomials but also Laurent polynomials.

A Laurent polynomial is a finite sum

P (x, y) :=
∑

m,n∈Z
am,nxmyn = 0,

where m and n are allowed to be negative. The values of Laurent polynomials
are well-defined for all (x, y) such that x, y 6= 0 (we call such (x, y) totally
nonzero). The definition of the support and the Newton polygon goes verbatim
for Laurent polynomials.

Let V (∆) be the space of all Laurent polynomials whose support is contained
in ∆. Then we can define a notion of a generic system with respect to V (∆).
Let P, Q ∈ V (∆). The system P = Q = 0 is generic if its number of solutions
does not change under any sufficiently small perturbation of P and Q within
the space V (∆). Again it is true that non-generic systems are not stable, that is,
any non-generic system can be made generic by a very very small perturbation.

3.2 A theorem by Kouchnirenko

We now assembled all necessary ingredients and can formulate a beautiful
theorem due to Kouchnirenko [4].
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Theorem 2 (Kouchnirenko, 1975). The number of totally nonzero complex
solutions of a generic system {

P (x, y) = 0;
Q(x, y) = 0;

(4)

of Laurent polynomials with ∆(P ) = ∆(Q) = ∆ is equal to 2Area(∆).

Example 7. Consider a generic system of type (3). It is generic with respect
to V (∆), where ∆ is the unit square with the vertices (0, 0), (1, 0), (0, 1) and
(1, 1). Hence, the number of solutions is equal to 2Area(∆) = 2.

Exercise 3. Deduce the Bézout theorem in the case M = N from the Kouch-
nirenko theorem.

The Kouchnirenko theorem can be extended to polynomials with different
Newton polygons. This was done by D. Bernstein [1].

Theorem 3 (Kouchnirenko-Bernstein, 1975). The number of totally nonzero
solutions of a generic system (4) with ∆(P ) = ∆1 and ∆(Q) = ∆2 is equal to

Area(∆1 + ∆2)−Area(∆1)−Area(∆2).

This expression is called the mixed area of the two polygons ∆1 and ∆2.

Exercise 4. Check the above Kouchnirenko-Bernstein theorem for polynomials
P (x, y) = aN xN + aN−1xN−1 + . . . + a0 and Q(x, y) = bM yM + bM−1yM−1 +
. . . + b0. Hint: The area of a degenerate polygon (here meaning a polygon that
is entirely contained in a straight line) is zero.

4 Newton-Okounkov bodies

Let us look at the Kouchnirenko theorem from another viewpoint. Instead
of starting with a polynomial P and its associated Newton polygon ∆(P ) we
could have started from a finite set A = {P1, . . . , P`} of Laurent monomials,
that is, Pi(x, y) = xmiyni , with mi, ni ∈ Z. Next, we can define the Newton
polygon to the set A, ∆(A) as the minimal convex polygon that contains all
points (m, n) such that xmyn ∈ A. Consider the space V (A) of all possible
linear combinations

P (x, y) = a1P1(x, y) + . . . + a`P`(x, y),

where coefficients a1,. . ., a` are complex numbers. A system of polynomials in
V (A) is called generic if its number of solutions does not change under any
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sufficiently small perturbations of the single polynomials within the space V (A).
Then Kouchnirenko’s theorem can be rephrased as follows: a generic system
P (x, y) = Q(x, y) = 0 with P, Q ∈ V (A) has 2Area(∆(A)) solutions.

A natural generalization of the above situation is to consider a finite set
A = {P1, . . . , P`}, where P1,. . ., P` are now arbitrary polynomials or even
rational functions of x and y. Is there an analog of Kouchnirenko’s theorem?
How to define a Newton polygon ∆(A)? These questions bring us to the theory
of Newton-Okounkov convex bodies. The construction of Newton-Okounkov
bodies is due to A. Okounkov [6], and the general theory and its applications
to algebraic and convex geometry were developed by K. Kaveh-A. Khovanskii
[3] and R. Lazarsfeld-M. Mustata [5].

Example 8. Take A = {1, x, y, x2 +y2}. A generic system P (x, y) = Q(x, y) =
0 with P, Q ∈ V (A) has the form{

a4(x2 + y2) + a3y + a2x + a1 = 0;
b4(x2 + y2) + b3y + b2x + b1 = 0.

(4)

Solving this system amounts to intersecting two circles, hence, the number
of solutions is two. Note that Kouchnirenko’s theorem is not applicable here:
twice the area of the Newton polygon of P (and Q) is equal to four, not two.
However, the theory of Newton-Okounkov bodies applies. We now associate
with A a Newton-Okounkov polygon ∆NO(A).

Let us order monomials that occur in P ∈ V (A). For instance, order them
as words in a dictionary with the understanding that x2 = xx and y2 = yy

1 ≺ x ≺ x2 ≺ y ≺ y2.

The ordering has to satisfy certain natural assumptions, say, we should be able
to multiply both sides of an inequality by a monomial and still preserve the
inequality, but otherwise it is arbitrary. Assign to every P ∈ A the smallest
(with respect to the chosen ordering) monomial occuring in P . In this way, we
obtain monomials 1, x, y and x2. Finally, take the Newton polygon of these
monomials. This is the triangle with vertices (0, 0), (2, 0), (0, 1). It is called
the Newton-Okounkov polygon of A and is denoted by ∆NO(A). Note that
twice the area of ∆NO(A) is exactly two, which coincides with the number of
solutions of a generic system of type (4).

The construction of ∆NO(A) depends on certain choices. For instance, we
could have assigned to every P ∈ A the greatest monomial rather than the
smallest one, or we could have used a different ordering of the monomials.
Then we would obtain a different Newton-Okounkov polygon (for example, the
triangle with vertices (0, 0), (1, 0), (0, 2)) but it can be shown that the area of
this Newton-Okounkov polygon would be the same as that of our choice.
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