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Fluid-structure interaction is a rich and active field
of mathematics that studies the interaction between
fluids and solid objects. In this short article, we give
a glimpse into this exciting field, as well as a sample
of the most significant questions that mathematicians
try to answer.

1 The Mathematics of Fluids

In 1901, the Wright brothers successfully flew the first airplane. At the heart of
their success was a simple formula that they used to compute the lift force as a
function of velocity. The Bernoulli formula

pt 5ot =0, (1)
where p is the air pressure, p is the density, v is the fluid velocity and C' is an
appropriate constant, describes a physical law known as Bernoulli’s pm’nciple7
which postulates that the lift on the airfoil is proportional to the square of
the difference in air flow velocity on the top and bottom of the wing, induced
by the geometry of an airfoil. The successful use of this simple formula was
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another triumph for mathematics, setting in motion the development of the
field of aerodynamics in which mathematical modelling and computation play a
central role.

Fluid dynamics, the mathematical theory that describes how fluids flow, goes
back to 1757, when Leonhard Euler (1701-1783) proposed the equation

v+ (v-V)v+ Vp =0, (2)

that describes the general motion of a fluid. Here, v is the fluid velocity and
p is the pressure. Here, V is the vector defined as V := (0/0,,0/0,,0/0,).
The equation, which was named after him, governs the velocity and pressure
of the fluid, both depending on time and space. Euler used the principle of
conservation of momentum to derive the equation but the equation still failed
to account for internal forces within the fluid, which we refer to as wviscosity.
Such forces provide a friction mechanism slowing down the motion, and this is
what distinguishes the motion of different fluids such as honey and water. Thus,
the Euler equation describes the motion of an ideal fluid which has no viscosity.
The Bernoulli equation was derived by Euler from the Euler equations under
the assumptions of low viscosity and steady flow.

The question of how to incorporate the internal forces in the fluid into the
equation remained a standing problem until it was resolved by Adhémar Jean
Claude Barré de Saint-Venant (1797-1886). Ironically, the modified equations
were named after French engineer Claude Louis Marie Henri Navier (1785-1836)
who, at the time, was the chief designer of bridges in France, and after Sir
George Gabriel Stokes (1819-1903), the famous English physicist. Therefore,
they came to be known as the Navier-Stokes equations.

Phenomena involving fluid flow are very interesting and complex and have
intrigued people since antiquity. Today, research on the mathematics of fluids
is very active and is relevant to the study of many phenomena whether it is the
atmosphere, the ocean or blood flow in the arteries.

2 The Mathematics of Solids

Mathematics is indispensable for the description of how different solids deform
under the application of external forces. This is the object of study of a
whole field within mechanical engineering and material science, known as solid
mechanics. Take for example the vibrations of the drum membrane or the
vibrations generated by plucking the strings of a guitar. Such elastic motions
are described by partial differential equations of the same kind used to study
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wave propagation in a medium. Partial differential equations are indispensable
for the study of the natural world, be it heat transfer, wave propagation, fluid
flow, or many other phenomena. These are equations involving an unknown
function of more than one variable (typically space and time), and they relate
the function to its derivatives. A reference for this topic is Snapshot 006/2018
Fast Solvers for Highly Oscillatory Problems by Alex Barnett.

Interesting solid mechanics arise from the study of beams and plates, which
are used to model airplane wings, bridges, and many other structures. Math-
ematics can describe these dynamics very accurately and is successfully used
to study deformations that such structures undergo and to provide predictions
about potentially new phenomena and design strategies for novel applications.
The mathematical description of all these phenomena in various domains — or
areas of applicability — involves partial differential equations.

3 The Mathematics of Fluid-Structure interactions

3.1 Motivating the field of Fluid-Structure interactions

A more intriguing and intricate subject is the interaction of fluids with various
deformable structures, such as aircraft wings, submarines, beams, plates, bridge
structures, blood vessels, pipes etc. An accurate description of such interaction
dynamics is instrumental in understanding various physical phenomena. The
field of fluid-structure interaction constitutes a well-developed research area
within mechanical and aerospace engineering as well as applied mathematics.
This phenomenon, which is manifested in a wide range of different mechanical
and natural processes, occurs when the flow of a fluid causes deformation of a
solid structure, which in turn interferes with the flow.

3.2 Problems within Fluid-Structure interactions

During the last decade, we have witnessed an increased interest in fluid-structure
interaction modelling and control in various domains.

This type of interaction is precisely the source of two important forces in
aerodynamics, lift and drag, without which no airplane can fly [1, 2]. For
example, the dynamics that arise because of the interactions between two
different systems, are precisely what causes bending in the wing of an aircraft
and the blades of a helicopter, and thus they have serious implications in
aerodynamic design and control. In addition, understanding these dynamics is
crucial for correct modelling and analysis of oil reservoirs and pipes. Moreover,
modelling and simulation of blood flow in the arteries is instrumental in many
biomedical applications such as the design of artificial valves.


https://publications.mfo.de/handle/mfo/1370

A problem of particular interest to engineers and mathematicians concerns
the stability of deformable structures in a fluid flow. For instance, the prevention
of extreme vibration is a primary goal in the design of various objects from
bridges and buildings to aircrafts and motor vehicles. Such instabilities, whether
they are caused by the flutter (sustained vibrations) or resonances (growing
vibrations usually induced by a periodic force like wind gust), can cause major
structural damage and even failure if sustained for a long time. Consider for
instance the famous Tacoma Narrows bridge incident [7], in which the bridge
underwent large oscillations that led eventually to the collapse of the bridge
(see Figure 1). In the aerospace industry, a new airplane must be subjected to
a special test called flutter test, to determine whether it can endure the flying
conditions up to its maximum speed and maximum altitude. In contrast, for
some other applications such as energy harvesting from wind, such instabilities
are desirable and the design goals are concerned with their generation rather
than their prevention [5].

For mathematicians, the phenomenon of fluid-structure interaction provides
an abundance of interesting mathematical problems. There are many different
models used to describe fluid-structure interaction depending on the particular
phenomenon or application in question. To describe a fluid flow, we typically
use the Navier-Stokes equations

ve—vAv+ (v-V)u+Vp=0 (3)
or the Euler equations
v — (v-V)v+ Vp =0, (4)

where v represents the fluid viscosity and A := (92/0x2,02/0y?,0?/02?), and
their variations depending on the type of fluid and the flow regime. To describe
structural motion, the equations used depend on the type of structure, but are
typically reminiscent of the equations used to study wave propagation, such as
hyperbolic equations.

The interaction between these different phenomena is typically described by
a set of conditions known as boundary conditions. In the theory of differential
equations, in order to uniquely determine the solutions, a set of constraints
(known as boundary conditions) must be given on the initial values of the
solutions and their derivatives, that is, on the values that the functions and
their derivatives take within specific domains of the variable space.

3.3 Open questions

Some of the questions that mathematicians aim to answer involve existence
of solutions to these equations, their properties and long-term behavior (the



behavior of the solutions after a lot of time has elapsed). Other important
questions pertain to the possibility of imposing controls on the structure to
achieve particular objectives such as preventing extreme vibrations or inducing
them. While these questions are mathematical in nature, they are directly
related to control engineering and will help to understand further structural
instabilities. On the other hand, recent collaborative work by mathematicians
and physicians has resulted in simulating the interaction between blood flow
and arterial walls treated with vascular prostheses called stents [6]. A stent is a
metallic mesh-like tube used to prop open a clogged artery, and the purpose of
these mathematically based simulations is to assess the stability and performance
of different stents and ultimately decide which stent is most appropriate.

On the fluid dynamics side, there are also many standing problems regarding
the correct modelling of flows in the region in the vicinity of a structure, known
as the “boundary layer”. This is related to another shortcoming of the Euler
equation, which was observed by the famous physicist and mathematician Jean-
Baptiste le Rond d’Alambert (1717-1783), in what is known as d’Alembert’s
paradox. D’Alambert used the equations to demonstrate that the equations
failed to account for drag forces experienced by an object moving in airflow,
even when the viscosity is very small. This is a paradox because empirical
evidence shows that there is drag while the equations do not account for this
drag. Ludwig Prandtl (1875-1953) proposed one solution to this paradox by
introducing boundary layer equations to model the flow near the boundary,such
as the surface of the object, while retaining the Euler equations as a good
model for the flow away from the boundary. Such questions about the correct
modelling and size of the boundary layer constitute a whole field of very active
mathematical and scientific research. Other questions also relate to the possible
development of shocks! due to flow separation when the flow meets a structure
such as an airfoil, and how to mathematically capture these effects. These
questions are mathematically very challenging, and they are also the subject
of whole fields of experimental and computational research within fluid and
aerodynamics [8, 3].

The famous physicist Eugene Paul Wigner (1902-1995) once said that “The
miracle of the appropriateness of the language of mathematics for the formulation
of the laws of physics is a wonderful gift which we neither understand nor deserve.
We should be grateful for it and hope that it will remain valid in future research
and that it will extend, for better or for worse, to our pleasure, even though
perhaps also to our bafflement, to wide branches of learning.”

Regardless of this mystery, the beauty of the mathematics describing the natural
world will continue to dazzle and amaze us for time to come.

A shock occurs when the local speed flow abruptly exceeds the speed of sound.



Figure 1: Collapse of the Tacoma Bridge [4].
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