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We explore mathematical models for physical prob-
lems in which it is necessary to simultaneously con-
sider equations in different dimensions; these are called
mixed-dimensional models. We first give several ex-
amples, and then an overview of recent progress made
towards finding a general method of solution of such
problems.

1 Mixed-dimensional physical problems

Real-world physical problems often involve processes interacting between dif-
ferent physical “domains” (for instance, water and air), which are naturally
considered to be three dimensional. When the interface between the domains
itself has properties that must be taken into account, it is often natural to
use a model that considers the interface to be two dimensional. So we have
a “mixed-dimensional” problem. By a mathematical model, we mean a set of
equations that represent a physical system and can be analysed to give numerical
solutions that are then interpreted as information about the original system.
We are interested here in models that contain equations that are defined on
domains of different dimension - subsets of the three-dimensional space R3, the
plane R2 or the real line R - and the equations must be solved simultaneously
(we say they are coupled). Such models are called mixed-dimensional.

In order for a physical problem to be considered as mixed-dimensional, it
must contain some features that are naturally either so flat, thin, or small,

1



that they are reasonably represented as surfaces, curves or points, respectively.
As we will see, such a categorization depends upon the “scale”, or level of
magnification, at which the problem is considered. Nevertheless, we can already
give some examples:

• The surface between two liquids, as common language indicates, is often
reasonable to model as a surface between two three-dimensional domains.

• The wires of a bridge structure are reasonably modelled as one-dimensional
curves connecting three-dimensional structures.

• Since the time of Johannes Kepler (1571–1630), it has been known that
even objects as big as planets can sometimes be considered to be points, for
example if the problem of interest is to calculate the motion of the solar
system.

So, mixed-dimensional models arise in many settings. They have been used in
science and engineering literally for hundreds of years; Kepler’s laws of planetary
motion are more than 400 years old, and they are not the first such example. On
the other hand, mixed-dimensional models have typically been introduced on a
case-by-case basis, and their systematic study within a class of mathematical
problems, in the sense that they are investigated using recognised tools and
techniques that have previously been developed for other similar problems, is a
relatively recent development.

Indeed, as an example, the description of the flow of a liquid in a fractured,
porous media as a mixed-dimensional problem has recently been given [1].
Analysis of the resulting mathematical models is an active area of research (see
for instance [2] and references therein). A second example is the description
of blood circulation in the human body, which has to take into account both
the flow in vessels (described as networks of 1D segments) and tissue (3D),
and leads to problems with coupling across dimensions [5]. This problem is
non-trivial to handle, as the most straight-forward mathematical models lead
to “singular” solutions, intuitively solutions that are not physically convincing
in some way.

1.1 Low dimensional gap: Surfaces

Any interface between two domains can in principle lead to a mixed-dimensional
system. However, as mentioned in the introduction, the character of this mixed-
dimensional system will depend strongly on the scale we consider. This is most
easily understood by looking at something as familiar as the surface between
water and air.

Consider first a single drop of water, and imagine that you have a microscope
which is powerful enough that you can see individual molecules. If you aim
the microscope at a point in the water drop, you would then not see anything
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resembling what we usually think of as water, you would instead see individual
H2O molecules, moving around essentially randomly with no apparent order.
While the majority of molecules are water molecules, you may also once in
a while spot an oxygen molecule. If you were now to gradually move the
microscope to look closer to the edge of the water drop, you would now see that
as you approach the edge, the molecules move less randomly. Indeed, as you get
to the edge, the molecules nearly form structured layers, due to the fact that
the electromagnetic forces associated with the oxygen molecules outside the
drop differ from the forces associated with the water molecules. Finally, when
you point the microscope outside the water drop, you see a very sparse amount
of O2 molecules whizzing around, with once in a while a water molecule mixed
in. At this finest scale, our description of the world is three-dimensional, and
there is no precise concept of a surface between water and oxygen, even though
it is easily recognized qualitatively.

Figure 1: An illustration of a mixed-dimensional geometry with low dimensional
gap. Starting on the left of the figure, we see an aerial photograph
from the island of Sotra, outside of Bergen, Norway. Then we see
a geological interpretation, wherein a 2D planar interpretation of
fractures and faults identified at this site has been recorded. The next
picture shows the full 3D interpretations of this fracture network,
and finally a computer simulation of heat transport is shown. The
actual mixed-dimensional domain thereby contains both the rock (3D
domains), fractures (2D domains), and their intersections (1D line
segments and 0D points).

Without access to such a powerful microscope, your description of a water
drop would be very different: Indeed, you may now say that the drop is simply
a drop of liquid water with some small oxygen concentration, while air is a gas
of oxygen with some small water concentration. Between the liquid and the air
is a surface, which in addition to providing a separation between water and air,
also induces a pressure difference. This pressure difference, or surface tension,
is a result of the structuring of molecules near the edge of the water bubble.

3



In addition to providing a pressure difference, the surface tension also acts to
ensure that the surface of the water drop is smooth, that is, if a drop of water
is left undisturbed for some time, it will form some nice smooth shape like a
sphere. At this intermediate scale, our description of the world is that of two
three-dimensional domains, separated by a two-dimensional surface.

You might also be interested in air and water not because you are looking
at a water drop, but because you are looking at the surface of the ocean. Now
again you observe a region of water and a region of air, and a surface that
separates them. But at this scale, you might decide that surface tension is of
less importance, and that the world is described sufficiently by considering the
surface as simply an interface, and that the important processes to take into
account are the currents and winds happening in either the water or the air.

Our example of the surface between water and air reveals a typical character-
istic of real systems: Our description depends on the scale we look at, and thus
also implicitly on the questions we want to answer. In this example, it is only
at the intermediate scale, where interface tension is important, that the system
is mixed-dimensional, since at both the finest and coarsest scale the system is
described using only three-dimensional equations. A much more complicated
example arises in systems of geothermal energy production, wherein heat is
distributed in the subsurface rock in part due to flow in complex networks of
fractures. An illustration of such a system is given in Figure 1.

Mixed-dimensional systems are often characterized by the span in dimensions,
also known as the dimensional gap. In the case of surfaces, the difference between
the full domain (three dimensions) and the surface (two dimensions) is one,
and we therefore refer to problems with domains and surfaces as having low
dimensional gap. The concept of low dimensional gap is a bit more general,
as we will also consider problems where surfaces intersect in curves or points
as having low dimensional gap, as long as the objects of various dimensions
are only connected to objects of adjacent dimensionality. That is, we consider
three-dimensional domains connected by surfaces (but not curves or points),
or two-dimensional domains (surfaces) connected by one-dimensional curves or
three-dimensional domains (but not points), and so on.

1.2 High dimensional gap: curves and points

Problems with high dimensional gap are inherently more difficult than those
with low dimensional gap. This is because the concept of a surface is usually
easy to define, and because the interaction between an object and its surface
is well understood in both physical and mathematical terms. In contrast, the
interaction between an object and a curve may be less straight-forward.

As an example, consider the setting of a drinking well drilled into a subsurface
reservoir of water (called an aquifer). As in the previous section, we can consider
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this problem at various scales, but it suffices to say that at an intermediate
scale, we study the flow in the aquifer with the understanding that the well can
be reasonably considered to be a 1D curve (or indeed, often a line segment).
Conceptually, we can consider the physical situation wherein there is now flow
inside the well, and flow in the aquifer towards the well. The challenge is in
determining how these two flows are coupled.

In the case of aquifer flow towards a well, we would like to think of the
system as being described by the fluid flow rate and the pressure. In this system,
the law of mass conservation is valid, and thus the flow inside the well should
equal the (total) flow to the well. On the other hand, it is not so clear how to
link the pressure in the well to the pressure outside the well. One would like to
think that there should be some relationship between these two, but this runs
into the difficulty that pressure is not defined on 1D objects such as a curve.

In physical terms, pressure is defined as force per surface area, (on the
molecular scale the concept of pressure is based on the actual collisions between
molecules and between molecules and a surface). However, a curve does not have
any area, and the probability of a molecule hitting a curve is zero, so any virtual
or real measurement of force on a curve would necessarily somehow involve
dividing zero by zero. In mathematical terms, pressure is usually understood as
a function in a space of functions (technically, a Hilbert space 1 often referred to
as H1), which is continuous almost everywhere and for which values on curves
or points cannot be guaranteed to exist.

There is a less subtle way to understand why pressure is a difficult variable.
If the well is represented as a line segment, it can be thought of as the limiting
case of a well with finite radius when the finite radius becomes vanishingly small.
A vanishing radius implies a vanishing circumference and this implies that the
flow per unit surface area of the well is infinite (as long as the flow does not
vanish). But what pressure can drive an infinite flow rate? In some sense the
pressure in the well is infinitely high, what mathematicians call a “singularity”.

The solution to this conundrum lies in realizing that the well, despite being
considered as essentially a line, still represents something that has a real radius,
and that this radius cannot be neglected, even though it is in geometric terms
vanishingly small compared to the full size of the aquifer. This is in contrast to
the problems with low dimensional gap, where the width of the surface typically
plays no explicit role in our understanding of the system.

1 A Hilbert space, named after the German mathematician David Hilbert (1862–1943), is
a generalisation of the familiar Euclidean spaces. Hilbert spaces can have any number of
dimensions, even infinitely many, and their defining characteristic is a geometric one: they
admit an “inner product”, which is a generalisation of the scalar product of two vectors in
space, which allows the measurement of lengths and angles. Hilbert spaces arise naturally in
many areas of mathematics and physics.

5



Figure 2: An illustration of a mixed-dimensional geometry with high dimen-
sional gap. Here the arteries and veins (which together make up the
vascular system) are rendered by red and blue, respectively. This
system is naturally modeled as mixed-dimensional, where the white
and gray matter comprise the 3D texture of the brain, while the
vascular system is represented as 1D. The interaction between the
vascular system and the brain must be understood to be a balance
between diffuse leakage from the vascular system (very low in the
case of the brain due to the blood-brain barrier), and source terms
arising where the arterial and venous trees are terminated due to
finite resolution in the images [6, 7].

In Figure 2, we give another, more complex, example of such a geometry,
namely, that of the vascular system in the human brain.

2 Mixed-dimensional mathematical models

Once we have identified a mixed-dimensional physical system, we would like
to make mathematical models of a similar structure. These models consist of
two parts: Equations within each domain and “coupling conditions” between
domains. To be precise, let us make an illustration and fix some notation, as in
Figure 3. Here we have labeled the two two-dimensional domains Ω1 and Ω2,
while we have labeled by Ω3 the one-dimensional curve separating them.

We consider two types of variables. For each domain Ωi, let χi be the vector
of what are called state variables for that domain. A typical example, as was
the case for the aquifer described above, might be χi = [ρi,vi] if the state
variables are density ρ and velocity v. Note that these variables are defined
within each domain, so that the velocity would be a two-dimensional velocity in
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Figure 3: An illustration of a prototypical mixed-dimensional geometry.

Ω1 and Ω2, but a one-dimensional velocity (along the curve) in Ω3. In addition
to the variables within each domain, we need to keep track of a set of variables
which reside on the boundary between domains of different dimension, which
we will call λi,j for any pair of domains Ωi and Ωj . For the density and velocity
example just given, we could select as boundary variables the flows across the
boundary, that is, λ2,3 = [p2, un,2], in the sense that the boundary values consist
of the pressure at the boundary, p2, as well as the “normal component” of the
velocity on the boundary un, where this means the portion of the flow that
crosses the boundary.

Then for these three domains and corresponding sets of variables, we would
generally obtain a model consisting of five equations, of three different types.
We would have two standard, full-dimensional equations representing Ω1 and
Ω2, and these would be functions of only the variables χ1 and χ2 respectively.
Then we would have an equation on the lower-dimensional object Ω3 which
is impacted by both of its higher-dimensional neighbors, so it would be an
equation in all three of the variables χ3, λ1,3 and λ2,3. Finally, we would have
two equations, one a function of the variables χ3 and λ1,3 and the other of the
variables χ3 and λ2,3, representing the relations between the boundaries of a
higher-dimensional domain and its lower-dimensional neighbor.

Equation sets having this form are quite ubiquitous in science. Examples
are found in structural engineering (plate reinforced concrete, or the junction
between an H-beam and a wall) [3], geophysical engineering (oil, gas and
water wells [12], but also structural features such as flow in fractured rock [1]),
biomedical applications [5], and even the design of antennas [4].

An important class of examples is when we have what are called differential
equations, most commonly for the equations that represent the domains (in our
example above, Ω1,Ω2 and Ω3). A differential equation is one which relates a
given function with its derivatives. In a two- or three-dimensional domain, the

7



derivatives are partial, which means they are taken with respect to each of the
variables individually. The resulting problem is then called a mixed-dimensional
partial differential equation. This case is encountered whenever the variables
arise from a model where materials are modelled as a continuous mass rather
than as a system of particles 2 , such as those of fluid dynamics (for instance,
the Navier-Stokes’ equations), or electromagnetism (the Maxwell equations).

3 Recent developments, and future out look

Recent work on mixed-dimensional equations is divided along the same lines as
the models. Firstly, for problems with low dimensional gap, recent research has
sought to unify the variables and equations presented in the previous section.
The idea is to explicitly consider a set of mixed-dimensional variables, that is to
say, to avoid dividing the variables explicitly by domains. If one imagines such
a concept as leading to a mixed-dimensional vector of variables X, representing
all the χi discussed previously, one might similarly allow for the possibility that
our given set of equations could be simplified to a single equation.

The building blocks of such approaches have recently been developed [9, 10],
and these results have led to the development of accurate and robust numerical
methods [2, 11].

Let us discuss this further for the example of fluid flows, as in [11], with
two three-dimensional flows coupled to a two-dimensional flow between them
(think of a flow between two parallel plates with a very small distance between
them). Under certain conditions, the equations on each of the domains are
“elliptic” partial differential equations, which roughly means that they have no
discontinuities and are well suited for modelling equilibrium situations. These
flows have the property that the rate of volume flow across a unit area (the
“flux”) is considered to be proportional to the pressure gradient (the direction and
rate of change of pressure). The variables χi in this case are all understood to be
the corresponding pressure. Then for this system, the coupling variables λi,j are
recognized as the flow from domain i into the domain j, and the coupling terms
can therefore be modeled as proportional to the pressure difference between
those domains.

So we have our five equations, as before, three differential equations and
two involving the pressure difference between a higher- and lower-dimensional
domain. A mixed-dimensional representation of this system is obtained by defin-
ing a new mixed-dimensional differential operator that combines the differential
operators on each domain with suitably defined “jump” operators involving
the neighboring domains. It can be shown that such a definition is sensible,

2 In order for a function to be differentiable, it must necessarily be continuous.

8



and moreover, that in this way our five equations can be combined into one, as
desired.

Problems with high dimensional gap are less amenable to a unified treatment,
and indeed are understood in a case-by-case manner by analyzing the full
coupled system (for instance, in [5]). A reasonably accurate understanding of
the mathematical structure of these equations has led to recent developments
of numerical methods for such problems (see for example [8, 6]).

Image credi ts

Fig. 1 Courtesy of the Anigma project at the University of Bergen.

Fig. 2 Reproduced with permission from [6, 7].

Fig. 3 Produced by the author.
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