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Algebraic Statistics builds on the idea that statisti-
cal models can be understood via polynomials. Many
statistical models are parameterized by polynomials
in the model parameters; others are described implic-
itly by polynomial equalities and inequalities. We ex-
plore the connection between algebra and statistics
for some small statistical models.

1 Introduct ion

From 17th to 22nd April 2017, a workshop on Algebraic Statistics took place
at the Mathematisches Forschungsinstitut Oberwolfach (MFO). The weather
started off cold with intermittent rain showers. The middle of the week saw
snow and hail, and there were two sunny days at the end.

We conducted a survey of the participants and 50 out of the 52 in attendance
responded. The following table summarizes the data we obtained. It counts the
observed answers to three questions, along with the empirical probabilities that
are calculated from the counts. Such a table is called a contingency table.

First time at MFO Been to MFO before
Games Liked weather 12 (24%) 5 (10%)

Disliked weather 5 (10%) 4 ( 8%)
No games Liked weather 7 (14%) 9 (18%)

Disliked weather 3 ( 6%) 5 (10%)
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For instance, a workshop participant selected at random enjoyed the weather,
was at MFO for the first time and played games during the week with empirical
probability 0.24 (or 24%) because, in our sample of 50 participants, 12 of them
satisfy all three criteria. The eight probabilities given as percentages in the
table form the joint probability distribution of three binary random variables,
‘disliking the weather’, ‘having visited Oberwolfach before’, ‘playing no game’.
These variables are binary: they take two values (“yes” or “no”). We can write
the probabilities in an array of numbers, called a tensor, of size 2× 2× 2:

p =
[[
p000 p010
p100 p110

]
,

[
p001 p011
p101 p111

]]
=
[[

0.24 0.1
0.1 0.08

]
,

[
0.14 0.18
0.06 0.1

]]
.

The eight numbers pijk represent the probabilities P (X = i, Y = j, Z = k)
for random variables X, Y and Z. In the survey, the three indicator random
variables X, Y and Z are ‘disliking the weather’, ‘having visited Oberwolfach
before’, and ‘playing no game’. Above we noticed that, for example, p000 = 0.24.
So-called marginal probabilities can be obtained by choosing one variable and
ignoring the others. This corresponds to summing over all states for all but
the chosen variable. For example, to find out the probability that a random
participant liked the weather, we fix the first index and calculate the probability
in the following way:

p000 + p010 + p001 + p011 = 0.24 + 0.1 + 0.14 + 0.18 = 0.66.

A statistical model is a collection of probability distributions that share some
structure. In this article, we explore statistical models that can explain the
survey results. Maybe people who had not been in Oberwolfach before were
more likely to play games, or perhaps a more subtle dependency can be found in
the survey results. We focus on the algebraic structure of the statistical models.

2 Independence Models

Suppose that X and Y are binary variables as in our survey. Their joint
probability distribution is a point in the 3-dimensional simplex

∆3 :=

p ∈ R2×2 :
∑

i,j∈{0,1}

pij = 1, pij ≥ 0

 ,

where the pij represent P (X = i, Y = j). The simplex ∆3 is a subset of the
four-dimensional space R2×2 but, since all points also lie in the hyperplane of
points satisfying

∑
i,j∈{0,1} pij = 1, it is a 3-dimensional object, which turns

out to be a tetrahedron.
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Figure 1: The 3D simplex ∆3 is a tetrahedron. The independence model is the
set of all points inside the tetrahedron for which (1) holds. This set is
a surface inside the tetrahedron, parameterized by rank one matrices
with non-negative entries. A photograph of a 3D printed version of
this surface is shown above. For algebraists, it is the restriction of
the Segre variety Seg(P1 × P1) from P3 to the tetrahedron.

Two random variables X and Y are called independent if the distribution of
one does not change under knowledge of the other. They lie in the independence
model which consists of distributions which satisfy the single quadratic equation

det
[
p00 p01
p10 p11

]
= p00p11 − p01p10 = 0. (1)

The equation tests if the matrix of joint probabilities has rank one. This is the
case if and only if one row in the matrix can be written as a multiple of the
other row.

We use the independence model to study the survey data. Ignoring the
games question gives the following table with marginal probabilities:

First time at MFO Been to MFO before
Liked weather 19 (38%) 14 (28%)
Disliked weather 8 (16%) 9 (18%)

First time visitors to MFO were more appreciative of the weather than those
who had visited the institute before. Hence the empirical distribution from the
random variables ‘liking the weather’ and ‘having visited MFO before’ are not
independent. Algebraically we can express this by

det
[
0.38 0.28
0.16 0.18

]
= 0.0236 6= 0.
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It is not surprising that the real-world data from the survey does not exactly
satisfy the equation (1). The independence model occupies a volume of 0% of
the space of all possible probability densities: it is a surface in a tetrahedron,
see Figure 1. As we explain next, 0.0236 is “quite close” to 0, indicating that
our table lies close to the independence model. Therefore, this model is a good
explanation of the data observed.

For most applications, the gathered data is a sample of a larger population.
We use the sample to infer properties of the whole population. In our survey,
the population could be ‘all past, present and future MFO visitors’. To use
such a model it is important to know whether the distance of the data from
the model is statistically significant, that is, whether the data is further from
the model than would be expected by chance. To quantify this, we can use the
technique of Fisher’s exact test. Following [2, Proposition 1.1.8], we compute
the probability of observing our data under the null hypothesis, which assumes
independence of the two variables, and fixes the row and column sums of the
table: (33

19
)(17

8
)(50

27
) = 0.1842341.

The probability of deviating at least as much from the statistical model as
our data is called a p-value. It is found by adding 0.1842341 to the probability
of observing all more extreme tables of hypothetical data, that is tables with
larger determinant. The p-value exceeds the standard significance level of 5%,
which means we do not reject the null hypothesis that the two variables are
independent. There are other statistical tests that we could use to reach a
similar conclusion, for example the asymptotics of Pearson’s χ2 test.

Now we consider probability distributions of three binary random variables
X, Y and Z instead of two variables. We shall examine the following three
independence models on three random variables:

• full independence,
• marginal independence, and
• conditional independence.

2.1 Ful l Independence

In the situation for two random variables above, we considered a 2× 2 matrix,
and the statistical model consisted of all distributions whose matrices had rank
one. We want to generalize this to three random variables. The statistical
model for the full independence model for three random variables consists of
2×2×2 tensors of rank one. That is, tensors which can be written p = a⊗ b⊗ c
for some vectors a, b, c. The tensor product “⊗” of the vectors works as follows:
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Figure 2: The eight joint probabilities of three binary random variables

to get the pijk entry of the tensor p, we multiply together the ith entry of the
vector a, the jth entry of the vector b, and the kth entry of the vector c.

We consider all points in the 7-dimensional probability simplex

∆7 :=

p ∈ R2×2×2 :
∑

i,j,k∈{0,1}

pijk = 1, pijk ≥ 0

 ,

which satisfy the system of equations that define the statistical model,

p000p011 = p010p001, p000p101 = p100p001, p000p110 = p100p010,
p001p111 = p101p011, p010p111 = p110p011, p100p111 = p110p101,
p000p111 = p101p010, p000p111 = p110p001, p000p111 = p011p100.

(2)

The first six equations are rank one conditions on facets of the cube in
Figure 2. The last three are rank one conditions that involve the main diagonal
from p000 to p111 and one of the three other main diagonals. We might think
that the facet-independences are sufficient for full independence, since they
describe independence between any pair of variables after fixing the value of
the third variable. But just the six equations are not sufficient to fully describe
the statistical model. This can be explored using the computer algebra software
Macaulay2, using the code:

R = QQ[p000,p001,p010,p011,p100,p101,p110,p111];
I = ideal(p000*p011-p010*p001,p000*p101-p100*p001,p000*p110-p100*p010,

p001*p111-p101*p011,p010*p111-p110*p011,p100*p111-p110*p101);
decompose I

Since the nine equations in (2) are not satisfied for the survey data, the three
questions in the survey are not independent. As before, the model occupies a vol-
ume of 0% of the distributions: it is something 3-dimensional in a 7-dimensional
space. We wish to assess if the data is significantly far from the independence
model. We use the algebraic techniques of Markov Bases to generalize Fisher’s
exact test, as explained in the Oberwolfach seminar notes [2, §1.2]. This can be
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done using the package algstat in the statistical programming language R. We
get a p-value of 0.492 when measuring the significance of tables exactly, and
0.515 using asymptotics via the χ2 statistic. This means we do not reject the
hypothesis that the three random variables are independent.

Each point on the model is a tuple of probabilities with particular structure.
For each point in the model, we can compute the likelihood of observing our data
under those probabilities. The point on the model with the highest likelihood
is the maximum likelihood estimate (MLE). For the survey data, the MLE is

p =
[[

0.185 0.158
0.095 0.081

]
,

[
0.171 0.146
0.088 0.075

]]
=
[
0.66
0.34

]
⊗
[
0.54
0.46

]
⊗
[
0.52
0.48

]
.

It can be computed by hand using the row and column sums of the data.

2.2 Condit ional and Marginal Independence

Conditional and marginal independence are weaker forms of independence than
the full independence model. Here we show the equations that describe them.

Conditional independence is the independence of some random variables,
after fixing the value of other random variables. The statistical model in which
Y and Z are conditionally independent given X (denoted (Y |= Z)|X) consists
of all distributions which satisfy the two equations

p000p011 = p001p010 and p100p111 = p101p110. (3)

For the survey data, this is the statistical model in which ‘having visited
Oberwolfach before’ and ‘playing no game’ are independent, after we account
for whether a participant liked the weather.

Marginal independence concerns independence of two random variables after
summing over the possible values taken by a third. For example, consider the
marginal independence of Y and Z after summing over the values taken by X.
This model is denoted Y |= Z. It is defined by the polynomial equation

(p000 + p100)(p011 + p111) = (p001 + p101)(p010 + p110).

The two-dimensional example from the beginning of this section is an example
of a marginal independence model, since we ignored the games variable.

The interplay between conditional and marginal (in)dependence can be subtle,
as we can see in the famous example of Simpson’s paradox. Here, we have a
certain correlation between two variables but when we fix the value of a third
variable, the sign of the correlation changes. For a detailed explanation of the
phenomenon see [4, Chapter 6]. For example, it could happen that those who
liked the weather were more likely to play games, but that among the first time
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visitors to MFO there was a negative correlation between liking the weather
and playing games, and likewise among those who had visited MFO before.
The sign of the correlation after marginalizing by a third variable, can have a
different sign than the correlation after conditioning on a third variable. This
appears to be a contradiction, although there is no mathematical inconsistency.
It highlights the importance of knowing the hidden variables, which influence
the observations but have not been directly measured.

3 Latent Var iable Models

We next illustrate how hidden (latent) effects may confound the relations among
observed variables in the context of our survey data.

First time 
at MFO

Liked the 
weather

Played 
a game

?

Figure 3: Three known and one hidden variable

The Naïve Bayes Model consists of some observed variables, and a single
hidden variable. The statistical model is given by distributions on the observed
variables, after marginalizing out the hidden variable. Its joint distribution is a
convex combination of independent distributions.

We explore how to model the survey data using a hidden variable. In fact,
our survey had two additional questions:

• Do you consider yourself a “young person” or and “old person”? and
• Do you consider yourself more a “maths person” or a “stats person”?

Our 2 × 2 × 2 data table kept these two binary variables hidden. The
breakdown of the responses was as follows: 56% identified as ‘young people’,
while 44% did not. The subject affiliations were 70% mathematics and 30%
statistics. We shall not reveal the complete 2×2×2×2×2 table of all responses.

The joint probability distributions in the Naïve Bayes Model are, up to a
normalizing constant, the 2× 2× 2 tensors of non-negative rank two. The rank
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of a tensor p is the minimal number of rank one tensors that must be summed
to make p. The non-negative rank imposes the condition that the rank one
tensors we sum up have non-negative entries. The tensors in our statistical
model are those that can be written in the form

p = a0⊗b0⊗c0 +a1⊗b1⊗c1 where a0, b0, c0, a1, b1, c1 ∈ R2 are non-negative.

The non-negative rank is two because we summed over the values taken by
the single hidden variable, which has two states. This statistical model is
full-dimensional inside the probability simplex ∆7. It occupies a volume of
approximately 8% of the simplex. That region is given by the polynomial
inequalities found in [1]. This region has 4 parts; one of which is given by what
are called the log-supermodularity conditions

p000p011 ≥ p010p001, p000p101 ≥ p100p001, p000p110 ≥ p100p010,
p001p111 ≥ p101p011, p010p111 ≥ p110p011, p100p111 ≥ p110p101,
p000p111 ≥ p101p010, p000p111 ≥ p110p001, p000p111 ≥ p011p100.

(4)

Notice these are the same equations as in (2), but with the equalities replaced
by inequalities. There are three other regions of ∆7 in the Naïve Bayes Model.
Their inequalities are obtained from those above by swapping 0 and 1 in either
of the three indices.

We can check to see if the above inequalities hold for survey data. It turns
out that one of the inequalities in (4) is not quite satisfied:

p010p111 − p110p011 = −0.0044. (5)

Hence the survey data cannot be perfectly explained by a single hidden binary
random variable. The MLE for our data in the Naïve Bayes Model equals

p̂ =
[[

0.24 0.1096
0.1 0.1704

]
,

[
0.14 0.0704
0.06 0.1096

]]
.

The MLE p̂ is a point in the model, written as the sum of two non-negative
rank one terms

p̂ = λ

[
α0

1−α0

]
⊗
[
β0

1−β0

]
⊗
[
γ0

1−γ0

]
+ (1− λ)

[
α1

1−α1

]
⊗
[
β1

1−β1

]
⊗
[
γ1

1−γ1

]
.

The parameters in the maximum likelihood estimate for our data are

λ = 0.509155
(α0, β0, γ0) = (0.709459, 1, 0.644068)
(α1, β1, γ1) = (0.608696, 0.062840, 0.391304).
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The MLE in this particular case is found by considering the probabilities that
occur in (5) as a distribution on two random variables X and Z (the value for Y
is fixed in the expression), and finding the MLE for this conditional distribution
using the row and column sums of its 2× 2 matrix of probabilities.

The rank one terms in the MLE are two independent distributions that are
found after fixing the value of the hidden variable. In our case, they are similar
to the data we obtained after fixing the response to the age question. This
indicates the importance of the age variable for understanding the survey data.
It seems very plausible that being an ‘old person’ influences whether someone
has been at MFO before.

4 Towards Deep Learning

Probability distributions on three binary random variables have only a 8% chance
of being completely explained by a single hidden binary variable. Multiple
hidden random variables arranged in a layer, such that all are connected to
the observed variables but there are no direct edges between them, make a
Restricted Boltzmann Machine (RBM). RBMs are building blocks for so-called
deep belief networks. These are canonical deep learning models consisting of
multiple layers of hidden variables and a single layer of observed variables.
Direct statistical dependence can only exist between distinct adjacent layers.
Parameters of the multi-layer network can be learned one layer at a time, and
each pair of adjacent layers is an RBM. This is an example of a greedy algorithm,
one in which a locally optimal solution is taken at several successive steps to
reach the global solution.

Distributions in an RBM model can be written as the (entrywise) product of
one Naïve Bayes model for each hidden variable. For algebraists, they are given
by Hadamard products of secant varieties of Segre varieties. Algebraic geometry
techniques have been used to establish that the parametrization is generically
identifiable, meaning that there are only finitely many possible parameter values
for each distribution in the model. This is a recent result of Montúfar and
Morton [3]. Algebraic techniques can also tell us which probability distributions
can be described by a particular arrangement of hidden variables. We see an
example of this, below.

We consider the case of two hidden binary variables. This RBM model
consists of all probability distributions that can be written as the entrywise
product of two 2×2×2 tensors from the Naïve Bayes Model that we encountered
in section 3. The graphical representation of the RBM model is as follows:
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First time 
at MFO

Liked the 
weather

Played 
a game

??

Figure 4: Three random variables and a layer of two hidden variables

This statistical model occupies an approximate volume of 76% of the proba-
bility simplex ∆7. It consists of six regions inside of the simplex, namely, the
Hadamard (entrywise) products of any two of the four regions obtained from (4)
by label swapping. One of the six pieces is characterized by the two quadratic
inequalities

p000p011 ≥ p001p010 and p100p111 ≥ p101p110. (6)

Notice that these are the same equations as (3), with the equalities replaced
by inequalities. And recall that the inequalities in (4) were the same as the
equations in (2), but with their equalities replaced by inequalities. The five
other regions in the RBM model are obtained by reversing the inequalities in (6)
or by permuting indices. A sketch of the Naive Bayes model contained inside
the RBM model is shown in Figure 3.

Figure 5: The four dark blobs are the pieces of the Naïve Bayes model. The
striped blobs containing them are the six pieces of the Restricted
Boltzmann Machine model.
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The two inequalities in (6) are satisfied for our survey data: the data is
independent, conditional on two hidden binary random variables. It remains to
ponder what the two hidden variables are. They are the unseen factors that
influence the survey data. Might young/old and maths/stats play a role?
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