
Snapshots of modern mathematics
from Oberwolfach

№13/2016

The adapt ive f in i te element
method

Dietmar Gal l is t l

Computer simulations of many physical phenomena
rely on approximations by models with a finite num-
ber of unknowns. The number of these parameters
determines the computational effort needed for the
simulation. On the other hand, a larger number of
unknowns can improve the precision of the simula-
tion. The adaptive finite element method (AFEM) is
an algorithm for optimizing the choice of parameters
so accurate simulation results can be obtained with
as little computational effort as possible.

1 A model problem

Consider the problem of modeling a drumhead whose shape is given by Ω, a
region in the plane that is bounded by a closed polygonal curve, for example
the L-shaped domain in Figure 1.

Figure 1: Our L-shaped domain Ω.
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The vertical displacement of the drumhead can be described as a function v
on Ω. Because the drumhead is clamped along the rim of the drum, no matter
what state the drumhead is in, its displacement along the edge will always be
described by the same function g on the boundary ∂Ω. A drum with a flat rim
will have g being the constant function 0, but we may consider drums with
bent rims as well. In most circumstances, we may as well assume that g is a
continuous function. In fact for simplicity, we usually assume that g is piecewise
linear, that is, that the rim of the drum is made up of straight line segments.
We focus on displacements v that are continuously differentiable, which means
that the drumhead does not have corners or folds.

Mathematically, we say that any continuously differentiable function v which
has boundary values given by g is called an admissible state; that is, the set V
of admissible states is:

V = {v : Ω→ R : v|∂Ω = g and v is continuously differentiable} .

For each admissible state v, the energy associated with v is

E(v) :=
∫

Ω
|∇v(x, y)|2 dx dy,

where the integrand |∇v(x, y)|2 = ( ∂v
∂x )2 + ( ∂v

∂y )2 measures the growth of the
function v nearby the point (x, y).

Since the drumhead, like all physical systems, prefers low-energy states to
high-energy states, the mathematical problem we want to solve to model the
drumhead is as follows:

Compute the minimal value Φ of the energy E(v) over all admissible
states v ∈ V . In symbols,

compute Φ := min {E(v) : v ∈ V } . (1)

It turns out that in general we cannot expect that the minimum is attained 1

in the set V , so instead we try to find the infimum of E, that is, the largest
real number that is no larger than E(v) for any admissible state v ∈ V .

The space V over which the infimum is sought is very large, in fact infinite-
dimensional; computer methods are necessarily finite-dimensional. Therefore

1 The search for a class of functions in which the minimum is achieved leads to the concept
of Sobolev spaces, which is beyond the present discussion; see [4].
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Figure 2: Uniform meshes of an L-shaped domain.

in order to use computer methods to address problem (1), we require an
approximation of the infinite-dimensional problem by a finite-dimensional model,
where only finitely many parameters determine an admissible state.

To this end, the domain Ω is partitioned into triangles, which results in a
mesh as displayed in Figure 2. In the finite-dimensional model, the space V of
admissible states is replaced by the space V̂ of continuous functions v̂ which
coincide with g on the boundary and such that their graph is flat – meaning
not curved – on every triangle, as in Figure 3.

Any such surface can be described by giving the values of v̂ at the interior
mesh vertices. Hence, the number N of interior vertices determines the (finite)
dimension of the problem. Although these functions may be not differentiable
because their graphs can exhibit kinks at the interfaces between two triangles,
we can give a meaning to their energy by evaluating the gradient triangle-by-
triangle:

E(v̂) :=
∑

T, a triangle
of the mesh

∫
T

|∇v̂(x, y)|2 dx dy.

The finite-dimensional energy minimization problem is the following:

compute Φ̂ := min
{
E(v̂) : v̂ ∈ V̂

}
. (2)

The approximation of (1) by (2) is known as the finite element method
[2, 3]. This finite-dimensional problem can be solved with available computer
algorithms. It can also be proved that in this finite-dimensional case, the
infimum of E over V̂ is indeed achieved. That is, there exists a (unique)
minimizing function û ∈ V̂ such with E(û) = Φ̂.
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Figure 3: Two piecewise flat surfaces with the same boundary values: the left
one has energy 13.37 while the right one has energy 6.22.

2 Error and mesh design

The field of numerical analysis is concerned with making predictions about the
magnitude of errors in approximate mathematical models. Here, the appropriate
error is

ê := |Φ̂− Φ|

as the difference of the computed energy Φ̂ and the true (but unknown) energy Φ.
Estimates for such error quantities are of fundamental interest for reliable
simulations in engineering practice.

2.1 Ref in ing the mesh

It is intuitively plausible (and can be rigorously shown) that the error ê con-
verges to zero if we repeatedly refine the mesh, by adding vertices, say as in
Figure 4, so that the size of any particular triangle is made arbitrarily small.
(This requires the number N of interior vertices to tend to infinity.) By refining
the mesh, we may therefore find solutions û of (2) for which E(û) is as close as
we like to the solution Φ of (1).

Figure 4: Five possible refinements of a triangle into smaller sub-triangles.

On the other hand, the problem size and, hence, computational costs including
computation time, required computer power, energy consumption, etc., increase
as N becomes large. Basically the minimization procedure requires the solution

4



of a linear system of N equations with N unknowns. This leads to the necessity
of an efficient choice of the mesh in the following sense:

Given some tolerance ε > 0, how can we design a mesh with as few
triangles as possible, but such that the error ê is smaller than ε?

It turns out that for certain problem classes it is optimal to distribute the
vertices uniformly in the domain, so that the triangles are all the same size.
In general, however, this may not be the optimal approach for an accurate
approximation.

Why would the uniform mesh fail to be optimal? Let us focus on one specific
difficulty, namely domains with re-entrant corners. Re-entrant corners are
corners that “point inside the domain”, see Figure 5. The L-shaped domain
from Figure 2 is an example.

Figure 5: Two domains whose re-entrant corners are highlighted.

In this case, it is known that the derivatives of any sequence of functions vj

in V that lets E(vj) tend to its infimum, exhibit rapid growth at the re-entrant
corners as j →∞. This means that locally an accurate approximation requires
many mesh points in those regions. In other parts of the domain, where the
size of the derivatives stays moderate, a mesh with fewer triangles may be
sufficient – which is better from the viewpoint of computational tractability.
This phenomenon is illustrated with a one-dimensional example in Figure 6.
A locally refined mesh of the L-shaped domain is displayed in Figure 7. Note
that the mesh is much finer near the corners, and particularly fine near the
re-entrant corner.

2.2 Automated mesh design

Although in particular model problems one can predict (based on mathematical
analysis of the domain) how the optimal mesh should be designed, this is
not possible in general. The adaptive finite element method is a method for
automatic mesh design – that is, the meshes are designed by the computer. It
evaluates properties of the discrete minimizer û and refines the mesh locally.
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Figure 6: A function whose graph is steep at x = 1. Left: approximation
with piecewise straight lines based on a uniform distribution of nodes
(indicated by the dots on the x-axis). Right: non-uniform distribution
of the same number of nodes. The higher concentration of these
mesh-points near x = 1 improves the approximation quality.

The local mesh-refinement is purely based on information obtained from the
known function û, it does not require any knowledge about the exact minimizer.

It can be proved that the error ê can be estimated in terms of a quantity
called the a posteriori error estimator η, which is computed by summing up
how much ∇û jumps as we move from one triangle to an adjacent one, weighted
by the length of the edge across which that jump is occurring:

η :=
∑

T, a triangle
of the mesh

∑
F, an

edge of T

length(F )2|[∇û]F |2. (3)

Figure 7: Locally adapted mesh of an L-shaped domain.
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Here, the bracket [∇û]F denotes the jump of the piecewise constant gradient
∇û from one of the adjacent triangles of an edge F to the other. The quantity η
is called an a posteriori error estimator because it is based on information about
the computational solution û – and therefore evaluated after its computation –
and provides the following error estimate.
Theorem ([9]). There is a constant C, which is independent of the size of the
triangles in the mesh, so that

ê ≤ Cη.

In particular, this result implies that the error converges to zero provided
η converges to zero. Locally, for every single triangle T , the contribution of η
in the second sum of (3) may be interpreted as a measure how “rough” the
solution is with respect to variations of the gradient. Note that the functions in
V̂ are continuous, but need not be continuously differentiable. A large gradient
jump may be interpreted as a strong kink in the graph of û across two triangles.
Regions where the error estimator contribution is large are expected to have
more impact on the error than regions where the estimator is small. High values
of the error estimator contribution indicate regions where finer resolution is
required.

These considerations lead to self-adapted mesh-refining algorithms, where
the local error estimator contributions are used as refinement indicators. First,
on a (coarse) initial mesh, the discrete minimizer is computed and the error
estimator is evaluated. We select a certain fraction of triangles where the largest
contributions are located. Various strategies can be utilized to achieve this.

One possibility is the Dörfler marking [7]. In this method, we compute a
subsetM of the triangles in the mesh with as few triangles as possible, while
keeping the sum of estimator contributions from triangles in M larger than
some percentage θ (which is a parameter the user can set) of the sum of all
estimator contributions. That is,∑

T∈M

∑
F, an

edge of T

length(F )2|[∇û]F |2 ≥ θη.

The mesh is now refined in such a way that as few as possible new triangles are
generated, but at least all triangles inM are replaced by smaller triangles. 2

Then the process is repeated.
The repeated refinement of a mesh using a self-adapted algorithm is what

we call the adaptive finite element method.

2 The refinement procedure involves some technical aspects that concern the preservation of
the mesh quality [1], which are not discussed here.
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2.3 An example: elast ic sol ids

The physical equations describing the deformation of elastic solids belong to a
similar class as the minimization problem (1). In this case, large values of the
error estimator correspond to stress concentrations. Typically these occur at
re-entrant corners: the material is most likely to break in these regions. The
adaptive finite element method is utilized to get high-accuracy predictions with
little computational cost.

Figure 8 displays an adaptively generated mesh for a tool whose behavior
we want to model. The regions with re-entrant corners are highly resolved
while other parts of the domain need only few triangles for an accurate result.
Figure 9 shows the distribution of the elastic stresses in the deformed solid.
It can be seen that the adaptive mesh has a high resolution where the stress
concentrations occur. The number of triangles in the mesh is 3653; a mesh with
uniformly distributed triangles leading to the same resolution in the re-entrant
corners requires more than 1 million triangles. The reduction in computational
effort for the adaptive finite-element method versus the uniform mesh is striking.

Figure 8: The solid in its reference configuration and the adaptive mesh.

Figure 9: The deformed solid; the arrows indicate the applied force; bright
colour indicates high stresses.
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3 Mathematical resul ts and out look

Numerical analysis studies the behaviour of algorithms for finding approximate
solutions of many kinds of mathematical problems, including optimization
problems such as we consider here. In particular, numerical analysts are trying
to elucidate the question of whether or not the adaptive meshes generated by
the algorithm are optimal. For the model problems of this article, the answer is
affirmative. In a simplified version, the result reads as follows:

Theorem. Let (Nj) for j = 0, 1, 2, . . . be an arbitrary ascending sequence of
natural numbers corresponding to the number of interior vertices in a sequence
of meshes that lead to errors êj. Let s > 0 be a positive number such that, for
some constant C > 0,

êj ≤ CN−s
j for all j = 0, 1, 2, . . . .

Then, provided the parameter θ is chosen sufficiently small, the sequence of
solutions û on the meshes produced by the adaptive algorithm lead to errors
ê that also tend to zero with rate at least (−s) with respect to the number of
interior vertices.

In other words: Whenever there is the possibility that the error converges to
zero with rate (−s) on a sequence of meshes, then the same convergence rate is
attained on the adaptively generated mesh sequence. Proofs of these results
can be found in [1, 8, 6] and the survey article [5].

Despite their practical success – the adaptive finite element method is
very popular in civil engineering – adaptive finite element methods and their
(optimal) convergence are only partly understood. For many problem classes
(like stationary fluids), the adaptive finite element method is empirically observed
to perform very well, and a mathematical justification beyond model problems
is a vital topic of current research. For some other problem classes like time-
dependent or fully-nonlinear problems, also the design of a posteriori error
estimators and appropriate refinement criteria is less obvious and, hence, topic
of active research.
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