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Abstract
Global municipal waste production causes multiple environmental impacts, including greenhouse
gas emissions, ocean plastic accumulation, and nitrogen pollution. However, estimates of both past
and future development of waste and pollution are scarce. We apply compositional Bayesian
regression to produce the first estimates of past and future (1965–2100) waste generation
disaggregated by composition and treatment, along with resultant environmental impacts, for
every country. We find that total wastes grow at declining speed with economic development, and
that global waste generation has increased from 635 Mt in 1965 to 1999 Mt in 2015 and reaches
3539 Mt by 2050 (median values, middle-of-the-road scenario). From 2015 to 2050, the global
share of organic waste declines from 47% to 39%, while all other waste type shares increase,
especially paper. The share of waste treated in dumps declines from 28% to 18%, and more
sustainable recycling, composting, and energy recovery treatments increase. Despite these
increases, we estimate environmental loads to continue increasing in the future, although yearly
plastic waste input into the oceans has reached a peak. Waste production does not appear to follow
the environmental Kuznets curve, and current projections do not meet UN SDGs for waste
reduction. Our study shows that a continuation of current trends and improvements is insufficient
to reduce pressures on natural systems and achieve a circular economy. Relative to 2015, the
amount of recycled waste would need to increase from 363 Mt to 740 Mt by 2030 to begin reducing
unsustainable waste generation, compared to 519 Mt currently projected.

1. Introduction

The production of waste, i.e. unnecessary or undesir-
able byproducts, is an unavoidable consequence of
most processes. Globally, 7–9 billion tonnes of waste
are produced yearly (Wilson and Velis 2015). Muni-
cipal Solid Waste (MSW) is a specific category of
waste stemming from households, and can include
commercial and industrial wastes, depending on the
reporting standard (Wilson and Velis 2015). MSW
accounted for 2 billion tonnes of the total waste pro-
duced in 2016. However, it deserves special attention
given its environmental impacts at local, regional and
global scales; its proximity to people and thus poten-
tial health impacts; and its value in possible recupera-
tion through circular economy supply chains (Wilson

and Velis 2015, EC (European Commission) 2015b,
Kaza et al 2018).

Different types of MSW can have varying
environmental and health impacts depending on the
disposal method (Eriksson et al 2005). Plastic wastes
are of increasing global concern as they persist for
long periods and are ingested by organisms, caus-
ing health impacts through the food chain, poten-
tially including humans (Thompson et al 2009, Wag-
ner 2017). Fugitive emissions from waste treatments
produced 3%–4% of global greenhouse gas (GHG)
emissions in 2006 (Monni et al 2006). Nitrogen
pollution from waste leachate is another signific-
ant long-term local impact, potentially causing dis-
ease and nutrient imbalances in nearby water bodies
(El-Fadel et al 1997, Burton and Watson-Craik 1998,
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Kjeldsen et al 2002). Furthermore, open burning of
wastes has been shown to emit significant amounts
of hazardous air pollutants, with strong implications
for human health, especially in developing countries
(Wiedinmyer et al 2014).

Moving towards a circular economy, waste mater-
ials should re-enter production flows as material or
embedded energy, through recycling, composting or
waste-to-energy incineration (EC (European Com-
mission) 2015a, Eriksson et al 2005). For the EU, the
Circular Economy Package of the European Commis-
sion (EC) has set targets of a minimum of 65% of
recycling and a maximum of 10% of landfilling of all
MSW by 2030 (EC (European Commission) 2015b).
The UN Sustainable Development Goals (SDGs),
especially targets 12.3, 12.4, and 12.5 (UN 2015), aim
for a net reduction of global waste generation by 2030,
through the reduction of total generation or increas-
ing the shares of recycling and composting.

Nevertheless, today 70% of the world’s waste ends
up in dumps and landfills (Kaza et al 2018), here
together referred to as Solid Waste Disposal Sys-
tems (SWDS). Dumps, as the most basic SWDS, are
large-scale waste storage without any technical man-
agement, which also makes them a major source
of waste pollution. Landfills may include varying
degrees of technical measures to reduce and recover
the amount of leachate and gases produced, such as
including impermeable layers and covers, respectively
(Manfredi et al 2009).

There is demand for more accurate and complete
global accounting of waste generation rates. Estim-
ating waste production and treatment is important
in order to quantify impacts, plan capacities and set
policy targets (Wilson and Velis 2015). Currently, the
most comprehensive dataset of MSW are the What a
Waste reports, with an updated version published in
2018 (Kaza et al 2018), on which we base this analysis.
TheWhat aWaste reports contains a global dataset of
waste generation values, and composition and treat-
ment shares.

Other quantifications of waste undertaken use
regionally aggregated input-output tables (Tisserant
et al 2017) or include detailed data for only one region
or aggregation level (waste treatments, but not com-
position, for instance) (Eurostat 2017).What a Waste
estimates future global waste production, but global
trends at the disaggregated level of waste types and
treatments are wholly lacking.

It is difficult to quantify global estimates of pol-
lution from waste, partly due to this lack of fine-
scale data. Plastic pollutant inputs into the marine
system have been recently estimated (Jambeck et al
2015, van Wijnen et al 2019) using theWhat a Waste
report (Hoornweg et al 2013). Various studies of
GHG emissions from landfills and dumps exist, but
these are limited to site or country-specific assess-
ments, and global accounting lacks per-country val-
ues, climate-specific emission factors, and change of

waste composition and treatments over time (Monni
et al).While many experimental and field trials meas-
ure the nitrogen content of leachates from specific
landfills (see Kjeldsen et al (2002), for example), there
is a lack of global accounting of the nitrogen inputs
and emissions of SWDS, and N2O gas from waste is
currently not measured nor included in global GHG
accounting (Ishigaki et al 2016).

Given these gaps, in this paper we produce first
estimates of national levels of waste production, dis-
aggregated by composition and treatment, at the
global scale. Estimating waste types produced and
treatments applied can serve as an important tool
for the discernment of future trends in waste man-
agement. We furthermore calculate several relevant
environmental impacts: historic and future quantit-
ies of recyclable material stocks in SWDS, GHG emis-
sions, plastic waste inputs into oceans, and nitrogen
stocks and flows, demonstrating important applica-
tions of our extended dataset.

2. Methodology

We apply a stepwise framework to estimate waste
trends and impacts: First, a matrix of waste types
by treatment is produced through an optimization
model (Section 2.1). Then, we regress waste totals
and waste shares on GDPpc, comparing various func-
tional forms for the former, and using the Dirichlet
distribution for the latter (Section 2.2) . Finally, we
use the combined projections generated by the regres-
sions as input into models of environmentally relev-
ant impacts (Section 2.3).

2.1. Linking composition and treatment through
non-linear optimization
What a Waste (Kaza et al 2018) provides shares of
composition and treatment of total MSW but does
not specify which type is treated how. Table 1 shows
the types and treatments of waste provided in What
a Waste, to which we apply constrained non-linear
optimization in order to distribute the types among
possible treatments, transforming the two separate
columns into the matrix shown. The model takes the
product of the treatment and composition shares as
initial value, however, certain treatments are phys-
ically impossible (metal and glass cannot be incin-
erated or composted, plastic cannot be composted,
while organic waste cannot be recycled). The function
redistributes these initial impossible values to other
categories within the respective rows or columns,
while minimizing the sum of the squared differences
for each row and column sum. Redistributed values
are relatively small, and we consider this optimisation
approach commensurate with the relative uncertainty
inherent in the data reporting.

The optimization was performed using an Aug-
mented Lagrangian method (Conn et al 1991),
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Table 1.Waste compositions types (rows) and applicable
treatments (columns) reported inWhat a Waste. Impossible
composition-treatment combinations are marked with ‘NA’. The
optimization model takes the product of each row-column as
initial value, sets impossible combinations to 0, and redistributes
the initial impossible values while minimizing difference between
original and redistributed row and column sums.

Composition X Treatment R
ec
yc
lin

g

C
om

po
st

In
ci
n
er
at
io
n

L
an
df
ill

D
u
m
ps

Organic NA
Paper
Plastic NA
Metal NA NA
Glass NA NA
Other NA

which efficiently finds global optima given nonlin-
ear constraints (here, the squared differences for
row and column sums). This was done through the
‘auglag’ function provided by the R-package alabama
(Varadhan 2012).

2.2. Regression analysis
Per capita waste production is known to be highly
correlated with economic activity expressed in gross
domestic product per capita (GDPpc) (Monni et al,
Hoornweg et al 2013, Jambeck et al 2015, Wilson
and Velis 2015). We thus apply regression models
to capture the relationship between per capita waste
production and GDPpc in a sequential manner: on
total waste production, on the share of waste types
within total production, and on the share of treatment
optionswithin eachwaste type. These sequential steps
allow us to first produce a relationship between total
waste generation and GDPpc, for which more obser-
vation data exists, and where observations should be
more robust; the total waste production to GDPpc
relationship is also well established in the literature.
This total value constrains the shares of waste types
and treatments as compositional data (Pawlowsky-
Glahn and Buccianti 2011); modelling the shares
dependent on the total also preserves information in
the share data. We thus model the changing waste
types and treatments independently within the chan-
ging total, all in relation to GDPpc.

The What a Waste dataset reports 215 coun-
try or region observations for waste generation, 176
for waste composition, and 172 for waste treatment
with only one time-step per observation. Harmon-
ized historical GDPpc data from 1965–2010, in Pur-
chasing Power Parity (PPP) 2005 USD, are obtained
from James et al (2012); future projections use the
Shared Socio-Economic Pathways (SSP) framework
for future plausible GDPpc values to 2100 (O’Neill
et al 2017). Note that all reported projections in the

main text use the SSP2 ‘middle-of-the-road’ scen-
ario; The SI includes a presentation of the SSP frame-
work, and accompanying data for all SSPs. We use the
regression results to complete and extend the What
a Waste dataset based on future temporal change in
GDPpc, and calibrate regression results for countries
with observed values (see SI). We employ a Bayesian
framework, which is more cognate with the epistemic
nature of the uncertainties in the regression prob-
lem at hand, more flexible in handling complex data
structures and easier to interpret in terms of prob-
ability. All regressions were undertaken through the
brms package (Bürkner 2017) as an interface to the
Bayesian inference engine Stan (Carpenter et al 2017).

For the total waste production-GDPpc relation-
ship, we test multiple functional forms with model
comparisons made based on the expected log point-
wise predictive density (elpd) generated by refitting
each model through k-fold cross-validation (Vehtari
et al 2017), see SI for model descriptions and com-
parisons.We assume homoscedastic normal residuals
and student-t priors with 3 degrees of freedom on the
slope and intercept for all models. A student-t prior
with 3 degrees of freedom is more widely distributed
with fatter tails than the Gaussian distribution and as
such generally uninformative for the inference.

The composition and treatment types of waste
are shares of a whole and sum to one within total
waste production. We thus face a compositional data
modelling problem: given the total amount of waste
produced, the increase of a unit share of one waste
type implies a reduction in other shares—the values
are described within a k-1 simplex, given k degrees
of freedom (Pawlowsky-Glahn and Buccianti 2011).
Analysis of compositional data using classical statist-
ical tools is known to be problematic due to these
constraints (Aitchison 1982). Two of the most com-
monly applied methods for the analysis of compos-
itional data include the isometric log-ratio (ILR) or
similar transformation (Aitchison 1982) and, more
recently, Dirichlet regression (Hijazi and Jernigan
2009, Douma and Weedon 2019). The ILR converts
compositional data into independent vectors, while
Dirichlet regression is a multivariate generalization
of beta regression working on the original scale of
shares. The ILR transformation may be subject to
bias in its parameters once back-transformed into
real proportions (Douma and Weedon 2019), and in
our case turned out numerically unstable. Hence we
settled with the Dirichlet regression; working in the
original data space is also preferable in principle.

The Dirichlet distribution is parametrized by
modelling the k shares directly, along with a precision
parameter phi. We use student-t priors with 3 degrees
of freedom for all share parameters, and a gamma
(shape = 0.01, scale = 0.01) prior for the precision
parameter phi (Douma and Weedon 2019).

We first apply the Dirichlet regression to the com-
position types of waste within the total, then for
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each type of waste, apply another regression for each
type’s possible treatments. For all regressions, coun-
tries are assigned a frequencyweight based onpopula-
tion in order to more accurately match global totals,
and place lower importance on countries with very
low populations. The frequency weight is computed
by increasing the observation of each point by its
population; this value is then scaled by the overall
number of data points to maintain the same total
quantity of observations.

By combining these share-based regression res-
ults with the total waste generation projections, we
create an extended global dataset of waste genera-
tion, by type and treatment, for all countries, from
1965–2100.

2.3. Environmental impacts
The extended dataset is useful for estimating future
trends in environmental impacts that require the
types and treatments of waste, including the follow-
ing (see SI for more detailed methodology):

2.3.1. Circular economy material stocks
Global and national levels of the quantity of recyc-
ling and potentially recyclablematerials can be imme-
diately accounted from our projections. Conversely,
the non-recycled amount of re-usable materials may
accumulate as a stock in landfills and dumps, assum-
ing no outflow. We calculate these stocks from 1965
onwards, for an estimation of potentially re-usable
material accumulated in landfills and dumps.

2.3.2. Plastic waste into oceans
We estimate plastic waste inputs into the ocean based
on the amount ofmismanaged plastic waste in coastal
areas. Mismanaged plastic waste is defined, follow-
ing Jambeck et al (2015), as the per capita sum of
plastic waste treated in open dumps, plastic waste in
landfills in developing countries, and littered waste
(an additional 2% of total plastic waste). We mul-
tiply this value with the population within a 50 km
buffer from the coastline (Gridded Population of the
World v3 (CIESIN 2005, Jambeck et al 2015). Note,
due to the lack of relevant information the uncertain-
ties associated with thesemodels and emission factors
are not estimated and propagated here and hence our
probabilistic results show only the uncertainty asso-
ciated with our waste regression relationships. The
same applies to the impact models presented next.

2.3.3. GHG emissions
Anthropogenic greenhouse gas emissions arise from
several waste treatment processes. We apply the
IPCC 2006 GHG accounting methodology—with
updated values from the 2019 refinement—for GHG
emissions attributable to waste (IPCC 2006, 2019).
We differentiate non-carbon neutral GHGs: CH4

from landfills, dumps, incineration and composting
processes; CO2 from incineration of non-biogenic

sources (plastics); N2O from incineration and com-
post. N2O from dumps and landfills is currently not
included in IPCC accounting; this is elaborated on
in the discussion. Landfill and dump emissions are
calculated through a first-order decay equation that
accounts for the carbon stock stored in various waste
types, along with the climatic zone; the other treat-
ments apply emission factors (IPCC 2006).

2.3.4. Nitrogen pollution
Leachate from SWDS, produced by rainwater per-
colation and waste decomposition, contains concen-
trated amounts of reactive nitrogen (Nr) (Guo et al
2010). We assume a constant C/N ratio in MSW of
14, based on the biodegradable fraction of C (Puy-
uelo et al 2011), and calculate potentially mobile Nr

based on this ratio respective to the carbon released
from emissions calculated above. Potentially mobile
Nr is thus nitrogen that is free to enter leachate—
primarily as NH4 (Mor et al 2006)—or turn into gas
emissions. Because leachate production is dependent
on factors such as climatic conditions and water flow
dynamics through landfills, actual yearly emissions of
Nr remain too uncertain for our analysis. As such, we
present only the potentially mobile Nr available to be
released, alongside N stocks in SWDS.

3. Results

3.1. Waste projections
For total waste generation (figure 1(a)), the log-log
linearmodel between per capita waste generation and
GDPpc best fits total waste generation, with the lowest
elpd given k-fold cross validations, using k = 10 (see
SI). Leave-one-out R2 (LOO-R2)—R2 based on refit-
ting themodel with each observation left out once, see
Gelman et al (2019)—is 0.58, indicating that GDPpc
explains a substantial portion of the variance in waste
generation.

We find global waste production increasing into
the future, but at a decreasing rate (see inset in
figure 1(a)). The log-log functional form allows us
to interpret the regression coefficient as the income
elasticity of waste production, with a 0.37 ratio
change given each percentage change in income
(median figure with 95% credible interval (CI) of
[0.32, 0.42]). By 2050, total global waste production
will reach 3542Mt [2983, 4197], from a 2015 value of
1999 Mt [1698, 2354].

As currently developed quality-of-fit indicat-
ors for the Dirichlet regression are highly vari-
able (Hijazi 2006), we calculate the average root
mean square error (RMSE) from ten draws from
the posterior predictive distribution compared to
the data; these have the advantage of being in
the original unit space of the dependent vari-
able. Average RMSE for the waste type regression
(figure 1(b)) is 0.10, while higher at 0.27–0.33 for
each of the treatment regressions (Regressions of
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Figure 1. (a) Total per capita waste generation by GDPpc. The large figure shows the x-axis on the log scale, for better display of
low-income countries and their country names. Smaller inset shows the shape of the curve with unit scale axes; Note the declining
slope as GDPpc decreases. Country names are displayed in ISO3 country codes. Log-log regression function and Leave-one-out R2

displayed on graph. (b) Dirichlet regression of shares of waste types within total amount generated. Share variables are dependent
within the total; a change in one value necessitates an opposite change from at least one other value. For both figures, darker
shading represents the 95% credible interval (CI) for regression uncertainty, while the lighter 95% CI shows residual uncertainty.
Data point size shows population weight.

waste treatments for each waste type are shown in
figure S1 (stacks.iop.org/ERL/15/074021/mmedia),
with accompanying RMSEs in table S2, in the SI). As
such, it is important to note that there remains much
uncertainty in the type-to-treatment regressions,
with GDPpc failing to explain much of the variance in
the data (see Discussion).

Organic waste remains a large proportion of
countries’ waste, even as GDPpc increases and
economies grow (figure 1(b)). However, the share

of organic waste declines from 47% [46.6, 47.5] in
2015 to 39.8% [39.4, 40.2] in 2050 relative to the
share of all other waste types, especially paper waste,
which increases from 15.6% [15.4, 15.8] to 20.1%
[19.9, 20.1] in the same period. This can be explained
by the saturation of organic waste through the sat-
uration of food consumption, as shown by Engel’s
curve of food demand (Bodirsky et al 2015). How-
ever, by examining totals and not shares, we observe
that organic waste may remain the most important
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Figure 2. Global projection of future waste production by Type and Treatment, 1965-2100. Waste types (organic, 359 paper,
plastic, glass, metal and other (a result of dissimilar accounting in the data)) sum up to total global waste 360 generation. CI not
displayed for ease of legibility.

waste in terms of MSW far into the future; landfills
also still constitute the most important treatment,
while the relative share of dumps declines (figure 2).

Figure 3 presents a map of global waste pro-
duction that allows for comparison of waste gen-
eration, composition and treatment both regionally
and temporally. In terms of treatment, while the
usage of dumps decreases appreciably as countries
become richer, landfills remain the most important
waste treatment option for most countries in the
Global North (figures 2 and 3). North America and
Europe continue to produce the most waste per cap-
ita, 939 kg [783,1125] and 565 kg [472, 675] by 2050,
respectively.

Furthermore, 47% [37, 59] and 31% [25, 38] of
this waste is still treated in landfills by 2050, and
while China, Sub-Saharan Africa and Latin Amer-
ica reduce much of their use of dumps, these are
replaced with landfill usage (figure 3). The excep-
tion is Japan, where incineration use is very high
in 2050 (59% [46, 75]). Indeed, only Japan exhibits
declining amounts of waste generation, when sub-
tracting recycled and composted waste. In our pro-
jection, Japan is the only country where future unsus-
tainable waste generation decreases. However, this is
also due to its observed low level of landfills and high
incineration, and our calibration method that main-
tains this ‘path dependency’ (see SI).

Elsewhere, we observe some shifts towards treat-
ments that take advantage of increased harnessing of

residual energy and material: Recycling, waste incin-
eration, and composting become a larger proportion
of the treatment share as GDPpc increases, together
reaching up to 39% [38, 40] of the global waste
treatment share by 2050. However, the main dynamic
observed is the replacement of dumps with landfills
(figures 2 and 3).

3.2. Environmental impacts
We project the yearly amount of waste treated within
a ‘circular’ framework (recycling and composting,
EC (European Commission) 2019) to double glob-
ally from 180 Mt [110 287] to 356 Mt [213, 576]
by 2050. However, as percentage of total wastes
generated, the share of metal and glass recycled
remains constant at 34% [32,35] in 2015 compared
to 2050 (35% [33,36]), while organic compost shares
increasemarginally, from 13% [12,14] to 17% [16,18]
(figures 4(a) and (b)).

Estimates of plastic waste discharged into the
marine system peak between the years 2015 and 2020,
at the global scale, primarily due to the decreasing
usage of dumps even while plastic waste generation
only levels off (see SI). Of course, the cumulative sum
of ocean plastic continuously increases, as by 2050 the
total discharge rate remains at 8.76million kg per year
[7.02, 10.92] (figures 4(c) and (d)).

GHG emissions almost double from the current
value of 1323 Mt CO2e [1090, 1604] in 2015 to 2383

6
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Figure 3.World maps of waste generation, type, and treatment, 2015 and 2050. National per capita generation values (kg) in
greyscale shading, whereas bar charts show total production of waste types and treatments presented for regionally representative
countries and regions (in the case of the EU). Bar chart values are in terms of the total amount of waste generated (Mt) for the
country/region.

MtCO2e [1941, 2923] by 2050. Almost all GHG emis-
sions arise from landfills and dumps, with compost
and incineration emissions negligible (figures 4(e)
and (f)). This is due to the large proportion of waste
still disposed of in landfills in the future.

Nitrogen fromMSWaccumulates in SWDS, given
our methodology. Yearly deposition of N from MSW

in SWDS increases from 4.4 Mt N [3.6, 5.7] in 2015
to 5.8 Mt N [4.7, 7.1] (figures 4(g) and (h)). Of this,
only about 10% is mobilized as Nr per year. As such,
the overall net accumulated stock of N grows drastic-
ally. By 2050, 302 Mt N [249, 364] is accumulated in
landfills and dumps globally, along with Nr poten-
tially remaining within the SWDS as well.

7
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Figure 4. Annual inputs (left column) and cumulative stocks (right column) of key materials and environmental impacts,
1965–2100. Shaded area represents 95% credible interval (CI), not displayed on some for ease of legibility. (a) shows projections
of business-as-usual recycling, in comparison to (b), the amount of recyclable materials accumulating in SWDS. (c) demonstrates
a peak and slight decline of the yearly input of plastic into oceans; (d) cumulative ocean plastic stocks continue to grow. (e)
Landfill greenhouse gas emission will remain the most important GHG emitted from various waste treatments, while (f) plastic
i.e. fossil carbon along with organic and paper carbon continue to grow in landfills. (g) Mobilized Nr in landfills and dumps is a
very small fraction of the overall input, meaning N tends to accumulate in SWDS (h).

4. Discussion

Our projections of total waste generation are consist-
entwith the fewother global projections ofMSWpro-
duction that exist. For example, What a Waste (Kaza

et al 2018) estimate quantities (based on a regres-
sion for waste generation as a function of GDPpc)
within our uncertainty limits (3400 Mt for What a
Waste vs. 3542 Mt (median value) for ours, in 2050
globally).
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Our estimates of waste production do not peak
by the end of the century, corroborating Hoornweg
et al (2013). The UN SDGs (UN 2016) aim for reduc-
tion of waste generation through sustainable treat-
ment practices, however, the shares of sustainable
treatments do not increase fast enough in our pro-
jections. As such, there is no absolute decoupling
effect for waste observed as countries become richer
(with the exception of Japan where other institutional
and cultural factors may play a role) and thus little
evidence for a waste-related environmental Kuznets
curve (Stern 2004). This is due to both the strong
continued growth of total waste generation, and the
slow increase of sustainable treatment shares, in the
absence of more stringent policy directives.

Our data suggests that the European Commis-
sion’s goals towards a circular economy may not be
met by 2030 without more directed policy. The EU
is projected to recycle only 37% [35,38] of its waste,
while 31% [29, 33] ends up in landfills, compared to
the goals of 65% and 10% respectively. Globally, our
projections also reveal the potential for increased cir-
cularity within the waste cycle in the future. Paper,
glass, andmetal can be easily recycled, and by 2030 we
project these waste streams to comprise 26% [24, 28]
of the total waste stream globally, and organic waste
another 44% [41, 46]. However, the recycling share
remains at 13% [11, 14] and for composting at only
6% [6, 6]. The amount of waste recycled and com-
posted by 2030 would need to increase from 363 Mt
[219, 582] in 2015 to 740 Mt [459, 1161] to begin
reducing unsustainable waste treatment (via landfills
and dumps), and to 1744Mt [1143, 2610] to meet EC
goals for the world. Our projections for the quant-
ity of recycling and composting in 2030 is only 519
Mt [311 837]. Our projections for plastic waste dis-
charged into the marine system are similar to those of
Jambeck et al (2015). Our approach allows us to use
both changing future plastic generation and dump
treatment shares in order to explicitly model mis-
managed plastic waste. Importantly, we note a peak
in global plastic input into oceans, which is driven
both by the levelling-off of plastic waste production
per capita and especially the decrease in the usage of
dumps as GDPpc increases for coastal countries.

The amount of cumulative plastic in the ocean
must be interpreted with consideration of the base
year. Here we use 1965 partly due to the range of
our GDPpc data; this is to us a fair assumption
given that widespread plastics usage only initiated
in the 1950s (Geyer et al 2017). Because degrad-
ation and fragmentation rates at sea are generally
still unknown, and there is evidence for mass accu-
mulation of plastics in the open ocean (Law et al
2010, Galgani et al 2015, Jambeck et al 2015), we do
not apply a degradation factor. Our total amount of
plastics accumulated in the ocean from 1965 to 2025,
396 Mt [323, 484], compares reasonably with Jam-
beck et al (2015)’s 150 Mt, considering their use of

2010 as base year and the process uncertainties neg-
lected in both studies. Plastic inputs from riverine
watersheds will be important for future considera-
tion, especially microplastics from poorly managed
inland waste (van Calcar et al 2019, Schmidt et al
2017, van Wijnen et al 2019).

For GHG emissions, our projections are calcu-
lated at finer scale than other assessments (Monni
et al, Fischedick et al 2014, Kaza et al 2018), due to
differentiation by country, climate, waste type, and
treatment, with dynamic future changes. Our value of
1385MtCO2e [957, 1971] frommunicipal solidwaste
in 2018 accounts for 3.7% [2.5, 5.3] of that year’s
global CO2 emissions (Friedlingstein et al 2019).

Due to temporal and process-based variability in
nitrogen emissions from SWDS, we present here the
first estimate showing the order-of-magnitude of the
amount of nitrogen currently stored in SWDS, along
with the yearly amount mobilized as Nr, as a proxy
for the Nr potentially emitted in leachate. Decades-
old landfills have similar levels of Nr in leachate as
young ones, with full solubilization or emission of
nitrogen requiring at least a century, providing evid-
ence for high mobilized Nr stocks in landfills (Jokela
and Rintala 2003, Kjeldsen et al 2002,Trabelsi et al
2000). This is especially important for Nr in un-
controlled dumps, as ammonium is the main com-
ponent of waste leachate, and is the most import-
ant local pollutant (Kjeldsen et al 2002). However, a
more detailed leachate model is required to quantify
the actual amount of various forms of nitrogen pol-
lution stemming from waste. SWDS nitrogen stocks
and flows are as yet unaccounted for in global nitro-
gen stock-taking (Fowler et al 2013).

Furthermore, N2O from landfills may contribute
up to 20% of the global warming potential of land-
fill methane (Ishigaki et al 2016), though this value
is not included in our assessment. As advanced deni-
trification technologies are increasingly implemen-
ted in landfills, these techniques may result in sig-
nificant amounts of N2O release (Zhang et al 2019).
N2O emissions from MSW are currently ignored in
global emissions accounting methodologies (IPCC
2006, 2019), but are important given the high nitro-
gen stocks in landfills, which we quantify for the first
time.

Our dataset only partially captures trends in
waste generation that have just begun to unfold,
such as increased digitalization, which may reduce
paper use and the growth in projected paper waste
(Latta et al 2016). The availability of GDP data from
1965 onwards allows us to backcast the waste pro-
jections; however, the accuracy of these predictions
may not be congruent, given more recent techno-
logical developments, such as the use of plastics. In
terms of pollution, our projection only provides a
rough calculation of the order of magnitude. Our
method can not yet account for the large variance
in landfilling technology and future developments
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that can capture fugitive emissions from landfills—
current average values are used. Furthermore, our
assessment lacks an account of unreported (uncollec-
ted) waste, as well as global MSW trade, partly due to
the lack of data (Tisserant et al 2017). MSW is man-
aged by municipalities and cities, these have varying
levels of infrastructure and management capabilit-
ies. In the Global South, waste collection systems are
often informal or poorly regulated (Dias 2016). Large
amounts of waste are burned openly at residences
and dumpsites, producing air pollution (Wiedinmyer
et al 2014). Calculating open burning of wastes was
outside the scope of this study; including burning at
dumpsites may increase our estimates of GHG emis-
sions, reducematerial and carbon stocks inwaste, and
importantly, allow for projections of human health
impacts. Finally, certain dynamics such as tourism—
especially in low-population island countries—are
not captured, leading to potentially inflated estimates
for these countries due to extra waste being produced
from non-residents. Overall, MSW poses unique dif-
ficulties in accounting aswell asmanagement (Wilson
and Velis 2015).

The Bayesian framework allows us to quantify
uncertainty in regression parameters and residual
uncertainty due to unexplained variability in the data.
Both are combined in our projections (figures 1 and
4). Results reported and the accompanying dataset in
the SI include 95%CI from the regressions, which are
propagated through the environmental impact mod-
els. As such, ourmodel results provide a range of likely
results, which becomes more uncertain in the future
given the scarcity of observations at higher GDPpc.
In terms of waste types and treatments, while these
projections are uncertain—in particular for waste
treatment—they provide a first estimate of the future
evolution of waste management at the national and
global level. For these shares, the Dirichlet distribu-
tion utilizes the information contained in all waste
shares, effectively drawing on data of all waste types
and treatments to constrain the trajectory of each
category.

Part of the residual uncertainty may be explained
by inconsistencies in the World Bank data. The data
is compiled and harmonized from a range of official
governmental reports (i.e. OECD (Organisation for
Economic Co-operation and Development) 2019),
surveys of MSW treatment operators (Al-Maaded
et al 2012), meta-analyses (Idrees and Mcdonnell
2016), or field measurements of MSW (Kumar et al
2009, Hakami and Seif 2015), among others. The
quality of the reporting may therefore be difficult
to ascertain, due to the point at which data is col-
lected, the measurement used, and varying institu-
tional capacities (Wilson and Velis 2015, Kaza et al
2018). Furthermore, theremay be region- or country-
specific fixed effects, such as established policy frame-
works or cultural attitudes, which were not captured
due to the lack of time-series data. However, the data

inWhat a Waste is useful here given its degree of har-
monization, as well as its breadth of coverage and dis-
aggregation. The data has served as the basis for vari-
ous waste-relevant analyses (van Wijnen et al 2019,
Jambeck et al 2015, Geyer et al 2017, for example).

The other category of waste type in our data is a
result of dissimilar reporting. Countries that do not
follow the given categorizations in reporting MSW
often aggregate other types of waste into the other
category. Because we model this category, it can serve
as an indicator of at least part of the data error,
decreasing slightly over time. However, the amount
of residual uncertainty suggests that variables other
than GDP are important in controlling the variance
in waste types and especially treatment shares. Can-
didate variables to include in future studies are the
existence of specific waste policies and infrastructure,
among others.Wemight further add estimates of data
error to separate out this effect, e.g. as data weights in
weighted regression similar to the population weights
employed here or explicitly as a data error model
integrated in the likelihood function.

5. Conclusion

Our analysis produces a global dataset of waste gen-
eration, disaggregated by type and treatment, for 217
countries and regions, from 1965–2100. As per cap-
ita waste production is linked to per capita income,
richer developed countries continue to produce the
most waste. Fundamentally, given current trends, we
estimate that waste productionwill continue to rise in
the future, with unsustainable treatments—especially
landfilling—continuing to dominate. Many valuable
and recyclable wastes would thus not be re-integrated
within a circular economy; much potential remains
for increased recycling and composting especially
given organic wastes’ declining but important share
in terms of waste composition. Our projections with
accompanying uncertainties provide an important
tool for assessing many waste-related impacts. Given
these projections, pollution fromwaste would further
increase as well, even though our future estimates of
dump treatments decrease. Furthermore, our estim-
ates of nitrogen stocks and pollution indicate that
some of the environmental threats from MSW may
as of yet not be fully accounted for. As such, strongly
directed policies and incentives are required to both
reduce total waste generation as well as increase the
share of waste treated sustainably.
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