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Molecular structure of bottlebrush polymers in melts
Jarosław Paturej,1,2,3 Sergei S. Sheiko,2 Sergey Panyukov,4 Michael Rubinstein2*

Bottlebrushes are fascinating macromolecules that display an intriguing combination of molecular and partic-
ulate features having vital implications in both living and synthetic systems, such as cartilage and ultrasoft
elastomers. However, the progress in practical applications is impeded by the lack of knowledge about the
hierarchic organization of both individual bottlebrushes and their assemblies. We delineate fundamental cor-
relations between molecular architecture, mesoscopic conformation, and macroscopic properties of polymer
melts. Numerical simulations corroborate theoretical predictions for the effect of grafting density and side-
chain length on the dimensions and rigidity of bottlebrushes, which effectively behave as a melt of flexible
filaments. These findings provide quantitative guidelines for the design of novel materials that allow architec-
tural tuning of their properties in a broad range without changing chemical composition.

INTRODUCTION
Significant progress in polymerization techniques allows synthesis of
hyperbranched molecules with precisely controlled architectures (1–9).
Dense branching results in distinct shape of individual molecules and
reduces overlap of neighboring molecules in dense systems (concen-
trated solutions and melts). These unique features inspire the design
of new materials with physical properties that are different from proper-
ties of conventional linear polymers. Branched macromolecules were ex-
plored as molecular pressure sensors (10), pH-sensitive probes (11),
supersoft elastomers (12, 13), and drug delivery agents (14–16). They
have also been used as components for the construction of mesoscopic
systems (6) and controlling conformations of polymer chains (17).

One of the most distinct examples of highly branched macromol-
ecules are molecular bottlebrushes composed of many polymer side
chains densely grafted to a linear chain (backbone) (Fig. 1). The high
grafting density results in strong steric repulsion between the side
chains, causing extension of the backbone (18–21) and, in some cases,
even scission of its covalent bonds (21, 22). Because of this steric re-
pulsion, bottlebrushes adapt a wormlike conformation controlled by
side-chain length and grafting density (23). In bulk melts, this conforma-
tion promotes reduction of entanglement density of the wormlike mol-
ecules (24), resulting in unusual rheological properties (25, 26) with an
ultralow plateau modulus of 102 to 103 Pa (13, 25, 27), which is much
lower than the 105 to 106 Pa typically observed in melts of linear poly-
mers. Note that these fundamental changes in physical properties are
achieved only through architectural control without changing the
chemical composition. Varying length and grafting density of side
chains allows for systematic control of conformation of individual mol-
ecules as well as overlap and entanglements with neighboring mole-
cules in dense systems.

Given their unique physical properties, molecular bottlebrushes
have been an active field for many theoretical (18, 28–32), experimen-
tal (13, 27, 33–40), and numerical investigations (20, 22, 34, 36, 41–51).
Most of these studies focused on basic structural properties of bottle-
brushes in solutions and in the adsorbed state. Particular attention was
paid to the bending rigidity of bottlebrush macromolecules, which is

characterized by the persistence length ℓp and remains a matter of de-
bate in the scientific literature. The major difficulty is the interplay
between many length scales in the bottlebrush structure and their
impact on ℓp. Several theoretical approaches have been proposed to
address this problem using scaling analysis (28, 29, 31, 52) and the
self-consistent field method (49). For bottlebrushes in dilute solutions,
under good solvent conditions, the persistence length was predicted to
scale as ℓpºNa

sc, with a as low as 3 4= (28) or as high as 1.11 (49) and 15
8=

(29). The exponent a for bottlebrushes in a q solvent was predicted
to be 2

3= (28) or 1.01 (49). Significantly less attention has been paid to
solvent-free systems (53). Here, we address the problem of architecture-
induced increase of bottlebrush persistence length as the key feature
underlying physical properties of bottlebrush melts and elastomers.

In this work, we present the results of systematic coarse-grained
molecular dynamics simulations and scaling analysis of the equilibrium
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Fig. 1. Molecular architecture and conformation of a bottlebrush polymer.
(A) Architecture of a bottlebrush molecule consisting of a backbone with Nbb mono-
mers (red beads) and z side chains (blue beads) per backbone monomer. Each side
chain is made of Nsc monomers. The total number of monomers of bottlebrush mac-
romolecule is N = Nbb(1 + zNsc). All beads in the simulation are considered to be
identical and interact via bonded and nonbonded potential (see Materials and
Methods for details). Here, Nbb = 20, Nsc = 4, and z = 2. (B) The bottlebrush molecule
in a melt state can be represented as a chain of effective persistence segments of
length ℓp and thickness Rsc. R denotes end-to-end distance of bottlebrush backbone.
Here, Nbb = 150, Nsc = 10, and z = 2.
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structure of bottlebrush polymer melts for a range of degrees of polym-
erization of the backbone Nbb, side chains Nsc, and backbone spacer
between the neighboring side chains. The latter is inversely propor-
tional to the grafting density z, which is the number of side chains
per backbone monomer. We show that the persistence length ℓp for
z = 1 and z = 2 bottlebrushes is on the order of the size of side chains
〈R2

sc〉
1=2 and scales as ℓpº〈R2

sc〉
1=2ºN1=2

sc . This finding suggests that
the entanglement plateau modulus of bottlebrush melts decreases as
(27) Geº1=Vperv ≈ 1=〈R2

sc〉
3=2ºN�3=2

sc , where Vperv is the volume
of the effective bottlebrush Kuhn segment proportional to the per-
vaded volume of a side chain Vperv ≈ 〈R2

sc〉
3=2. The pervaded volume

Vperv of a side chain is the volume of a sphere that encompasses this
side chain. Our results also indicate that the backbones of bottlebrushes
for z = 1 and z = 2 in a melt state obey Gaussian statistics with their size
R (root mean square radius of gyration and end-to-end distance) scaling
as 〈R2〉1=2ºN1=2

bb N1=4
sc for Nbb ≫ Nsc. Furthermore, our molecular

modeling provided vital insights into the internal organization of bottle-
brush melts, including limited interpenetration of side chains of
neighboring molecules, radial distribution function of backbone mono-
mers, and the form factor of individual bottlebrushes inside melt. We con-
clude that bottlebrushmelts behave as melts of thick and flexible filaments,
with a persistence length proportional to the size of the side chains.

RESULTS
Scaling theory of combs and bottlebrush molecules
Conformations of combs and bottlebrushes depend on the degree of
polymerization of the side chainsNsc and their grafting density z. Although
most of the paper concentrates on bottlebrushes with z≥ 1, in the present
section, we consider a broader set of parameters, including loosely grafted
bottlebrushes (LBs) and loosely grafted combs (LCs) with z < 1. Depend-
ing on grafting density, we identify four conformational regimes of comb
and bottlebrushmelts (27), depicted in Fig. 2. At lower grafting density, we
distinguish two comblike regimes characterized by Gaussian conforma-
tions of both backbone and side chains: (i) loosely grafted combs
(LCs) with long backbone spacers between side chains z < 1/Nsc and with
strongly interpenetrating neighboring molecules and (ii) densely
grafted combs (DCs) for 1/Nsc < z < z* with weak interpenetration
between molecules, where z* is defined in Eq. 1 below. There are also
two regimes at higher grafting density: (iii) loosely grafted bottle-
brushes (LBs) with extended backbones and Gaussian side chains
for intermediate grafting density z* < z < z** and (iv) densely grafted
bottlebrushes (DBs) with extended backbones and side chains for high
grafting density of side chains z > z**, where z** is defined in Eq. 3
below. The boundary between the comb and bottlebrush regimes can
be found from the space-filling condition of zNsc side chains with physical
volume vNsc, each within their pervaded volume (blNsc)

3/2, resulting in
reduced interpenetration of side chains from neighboring molecules

z* ≈
ðblÞ3=2

v
N�1=2
sc ð1Þ

where b is the Kuhn length, l is themonomer length, and v is themono-
mer volume. The present paper focuses on the melts of densely grafted
bottlebrushes, whereas below we briefly review conformations of other
types of molecules.

The low grafting density regime with z < z* (combs) includes two
subregimes: LC and DC. Loosely grafted combs (LC part of Fig. 2),
with spacers between side chains longer than the side chains (z < 1/Nsc)

and a high volume fraction of backbones (> 50%), fully interpenetrate each
other in melts. Densely grafted combs (DC part of Fig. 2), with spacers
shorter than the side chains 1/Nsc < z < z*, allow only partial inter-
penetration of the side chains because there is not enough space to accom-
modate side chains of neighboring molecules near the backbone of a
host molecule. Both the side chains and backbones in melts of combs (LC
and DC regimes) are in almost unperturbed Gaussian conformations.

Macromolecules with z > z* correspond to the so-called bottle-
brush regime, which onsets because of a lack of space for side chains
emanating from the unperturbed Gaussian backbone. Interpenetration
of these side chains without their significant deformation is only
possible upon extension of the backbone. We can estimate z* (Eq. 1)
by considering a side chain with an unperturbed Gaussian size
〈R2

sc;0〉
1=2 ≈ ðblNscÞ1=2 and with pervaded volume Vperv ≈ 〈R2

sc;0〉
3=2 ≈

ðblNscÞ3=2. This pervaded volume can only fitVperv=Vsc ≈ ðblÞ3=2N1=2
sc =v

side chains, each with a physical volume Vsc ≈ vNsc. A section of
the backbone of size 〈R2

sc;0〉
1=2 passing through this pervaded volume

contains Nsc monomers if it is in its unperturbed Gaussian conforma-
tion (assuming the same conformational statistics of backbone and side
chains). Therefore, if grafting density is too high (z > z*), the Nscz side
chains grafted to the undeformed section of the backbone with com-
bined physical volume vN2

scz > Vperv can no longer fit in the pervaded
volume Vperv, forcing the backbone to extend.

The backbone extension on the length scale 〈R2
sc;0〉

1=2 assures a
fixed number of grafting points along the backbone section of
this size 〈R2

sc;0〉
1=2 equal to the number of overlapping side chains

〈R2
sc;0〉

3=2=ðvNscÞ ≈ ðblÞ3=2N1=2
sc =v. On the small length scales, up to

the size of the tension blob (54), the backbone remains unperturbed.
The size of the tension blob x ≈ (blg)1/2 consisting of g monomers
is estimated from the condition that gz side chains emanated from this
section of the backbone densely fill its pervaded volume x3 [there are
x3/(vg) ≈ gz such overlapping chain sections]. Therefore, the ten-
sion blob size is x ≈ (lb)2/(vz). There is no crowding issue on length
scales r smaller than the tension blob (r < x), and bottlebrush back-
bones maintain the unperturbed Gaussian conformations with bare
Kuhn length b. On the intermediate length scales (x < r < 〈R2

sc;0〉
1=2),

Fig. 2. Diagram of states of combs and bottlebrush molecules. Molecular con-
formations are determined by the degree of polymerization Nsc of side chains (blue
circles) and the number z of side chains per backbone monomer (red circles). Four
conformational regimes are distinguished: loosely grafted comb-like polymer (LC)
with z < 1/Nsc, densely grafted comb (DC) with 1/Nsc < z < z*, loosely grafted
bottlebrush (LB) with z* < z < z**, and densely grafted bottlebrush (DB) with z >
z** (see Eqs. 1 and 3 for the definitions of z* and z**). The solid lines indicate cross-
overs between regimes [green, LC-DC boundary at z ≈ 1/Nsc; blue, DC-LB crossover
line at z ¼ z� ¼ ðblÞ3=2=ðvN1=2

sc Þ; red, LB-DB boundary at z** (see Eq. 3)].
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a backbone can be visualized as an extended array of tension blobs with a
constant average distance between grafting points v/(bl). On larger length
scales (r > 〈R2

sc;0〉
1=2), backbones of bottlebrushes in amelt are represented

as random walks of these extended arrays of tension blobs. The loosely
grafted bottlebrush (LB part of Fig. 2) is described as a thick filament
with contour length L ≈ Nbbvz/(bl), thickness equal to the end-to-end
distance of its side chains 〈R2

sc;0〉
1=2, and persistence length on the same

order of magnitude (see detailed derivation in the subsection “Persistence
length of a bottlebrush in a melt”). Thus, bottlebrush macromolecules are
considered as chains ofL=〈R2

sc;0〉
1=2 effective monomers of size 〈R2

sc;0〉
1=2.

The mean square end-to-end distance of the backbone of an LB

〈R2〉 ≈ L〈R2
sc;0〉

1=2 ≈
vz

ðblÞ1=2
NbbN

1=2
sc z* < z < z** ð2Þ

increases with increasing degree of polymerization Nsc and grafting
density z of side chains. Considering bottlebrush as a dense “sausage-
like” random walk, we can estimate its mean square size from its phys-
ical volume Vchain ≈ vzNbbNsc as 〈R2〉 ≈ Vchain=〈R2

sc;0〉
1=2.

Side chains begin to extend at the crossover between loosely grafted
and densely grafted bottlebrush regimes (red line in Fig. 2 at z ≈ z**).
The crossover value of the grafting density is given by

z** ¼ l2b
v

min
b2l
v
; 1

� �
ð3Þ

This crossover occurs either if the backbone spacer between neigh-
boring grafting points begins to extend (for v > b2l) or if the backbone
approached the fully extended state (for v < b2l). In the former case at
z ≈ z** ≈ (bl)3/v2, the scale associated with the tension blob of the
backbone x ≈ (lb)2/(vz) becomes comparable to the unperturbed spacer
size (bl/z)1/2. At high grafting density (z** < z < l3/2/v1/2), the balance
of side chain and backbone spacer stretching leads to the equilib-
rium size of extended side chains 〈R2

sc〉
1=2 ≈ N1=2

sc v1=3z1=6, with the corre-
sponding average spacer length (v/z)1/3 and the contour length of the
bottlebrush Lbb ≈ v1/3z2/3Nbb. The mean square size of the bottlebrush
in this regime is

〈R2〉 ≈ 〈R2
sc〉

1=2Lbb ≈
Vchain

〈R2
sc〉

1=2
≈ v2=3z5=6N1=2

sc Nbb

for v > b2l and
ðblÞ3
v2

< z <
l3=2

v1=2
ð4Þ

The backbone is almost fully stretched in the case of lower monomer
volume v < b2l if z > z** ≈ (l2b)/v or, for higher grafting density, z >
l3/2/v1/2 in the case of higher monomer volume v > b2l. In this case, the
dense packing of side chains forces them to extend to themean square size

〈R2
sc〉 ≈

vz
l
Nsc for z >

l2b
v

if v < b2l or

for z >
l3=2

v1=2
if v > b2l ð5Þ

The filament-like bottlebrush with both thickness and persistence
length on the order of 〈R2

sc〉
1=2 and bottlebrush contour length on the

order of the contour of the backbone lNbb has mean square size

〈R2〉 ≈ ðvlzNscÞ1=2Nbb for z >
l2b
v

if v < b2l or

for z >
l3=2

v1=2
if v > b2l ð6Þ

The dependence of backbone and side-chain size of combs and
bottlebrushes on z is summarized in Fig. 3.

The size of side chains of densely grafted bottlebrushes
with almost fully stretched backbones
The size of side chains increases with degree of polymerization Nsc (see
fig. S1 and table S1). Their size also increases with grafting density z
along the backbone. This effect is illustrated in Fig. 4A, which exhibits
the variationof the ratio of themean square distance〈R2

scðsÞ〉of side-chain
monomer s from the grafting point and the corresponding Gaussian size
ss2 as a function of the bond index s for different grafting densities z.
Different colors and symbols correspond to bottlebrushes with different
values ofNbb,NSC, and z, as shown in Fig. 4B and table S2. To understand
the bond index s dependence of the mean square distance 〈R2

scðsÞ〉, we
consider the average of the square of the size Rsc(s) = 〈Rsc(s)〉 + dRsc(s) of
these side-chain segments containing smonomers

〈R2
scðsÞ〉 ¼ 〈RscðsÞ〉2 þ 〈dR2

scðsÞ〉 ð7Þ

We assume that the nontrivial s dependence of 〈R2
scðsÞ〉 observed in

Fig. 4A is due to chain extension 〈Rsc(s)〉, whereas the fluctuations
〈dR2

scðsÞ〉 of the size of these s-segments can be described by the mean
square size of chain sections containing s monomers of a free linear
16-mer (z = 0, red crosses).

For monomers near the free ends of side chains, the mean distance
〈Rsc(s)〉 can be expanded in the Taylor series of the variable 1 − s/Nsc:

〈RscðsÞ〉 ¼ 〈Rsc〉 1þ ∑
n>0

an 1� s
Nsc

� �n� �
ð8Þ

Fig. 3. Size of combs and bottlebrushes in different regimes. With increasing
grafting density, the dimensions of both backbone 〈R2〉1/2 (red solid line) and side chain
〈R2sc〉

1=2 (blue dashed line) undergo characteristic variations in the comb (LC and DC)
andbottlebrush (LB andDB) regimes. This figure corresponds to the caseof lowermonomer
volume v < b2l. Abbreviations are the same as in Fig. 2. In addition,R1 ≡ ðvlzNscÞ1=4N1=2

bb ,
R2 ≡ ðl3bNscÞ1=4N1=2

bb , R3 ≡ (blNbb)
1/2, R4 ≡ ðvz=lÞ1=2N1=2

sc , and R5 ≡ (blNsc)
1/2.
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where 〈Rsc〉 = 〈Rsc(Nsc)〉 is the average size of a side chain. The first
coefficient is a1 = 0 due to the boundary condition dRsc/ds = 0 at the
free end s = Nsc. The condition 〈Rsc(s)〉 ≪ 〈Rsc〉 for small s ≪ Nsc

leads to the constraint for the sum of all coefficients ∑nan = −1. Note
that the asymptotic expressions for the higher-order coefficients an in
Eq. 8 can be found by expanding the dependence 〈Rsc(s)〉º (s/Nsc)

1/2 =
[1 − (1 − s/Nsc)]

1/2 (see Eq. 14 below) in the power series of (1 − s/Nsc).
Comparing this expansion with expansion in Eq. 8 term by term, we
estimate a3 ≈ −1/16 and coefficients an decay with n as n−3/2. The
small values of these coefficients justify omission of the higher-order
terms in the expansion in Eq. 8. Thus, we take all an>2 = 0 and a2 = −1
and obtain

〈RscðsÞ〉 ≃ s
Nsc

2� s
Nsc

� �
〈Rsc〉 for gNsc ≲ s ≤ Nsc ð9Þ

The parameter g ~ 0.3 to 0.5 defines the lower boundary of the
interval of validity of the above approximation. The mean square size
of linear chain segments containing s monomers 〈dR2

scðsÞ〉 obtained
from molecular dynamics simulations is presented by the lowest set
of points denoted by × symbols in Fig. 4A. This dependence can be ap-
proximated by 〈dR2

scðsÞ〉 ≃ ss2Clin
∞ =ð1þ~s=sÞ, where Clin

∞ ¼ 1:55 and
s̃ ¼ 0:61, as shown by the dashed line (see Eq. 22 below for the similar
approximation for bottlebrush backbones). In Fig. 4A, we compare
our prediction from Eqs. 7 and 9

〈R2
scðsÞ〉
ss2

¼ s
Nsc

2� s
Nsc

� �2
〈Rsc〉

2

Nscs2
þ Clin

∞

1þ~s=s

for gNsc ≲ s ≤ Nsc ð10Þ

with the data obtained from simulations of bottlebrushes with grafting
density z = 1, 2, and 4 using single fitting parameter 〈Rsc〉 and the
value of Clin

∞ ¼ 1:55 and s̃ ¼ 0:61 from the fit to linear chain data
(z = 0). This simple estimate (Eq. 10) demonstrates excellent agree-
ment with the simulation data.

The average side-chain size 〈Rsc〉 can be estimated from the mono-
mer dense packing condition. The transverse slice of a bottlebrush can
be approximated by a disc of volume d〈Rsc〉

2 and thickness d ≈ s of
the backbone bond projection onto the contour of the molecule.
Assuming that there is no (or limited) overlap between the side chains
of neighboring bottlebrushes, the disc volume is occupied by z side
chains of volume vNsc each, where v≈ s3 is the volume of one monomer.
Therefore, the square of the average size of side chains can be estimated as

〈Rsc〉
2 ≃

vNscz
d

¼ CscNsczs
2 ð11Þ

where Csc is the numerical coefficient accounting for the scaling form
of this expression. The inset in Fig. 4A shows good agreement with
Eq. 11, with the value of the fitting parameter Csc = 0.17.

Combining Eqs. 9 and 11, we can write

〈RscðsÞ〉 ≃ C1=2
sc 2� s

Nsc

� �
ssz1=2

N1=2
sc

for gNsc ≲ s ≤ Nsc ð12Þ

In Fig. 4C, we test this prediction by plotting the s dependence of the ratio
of the average distance 〈RscðsÞ〉 ¼ ½〈R2

scðsÞ〉� 〈dR2
scðsÞ〉�1=2 and ssz1/2

using the simulation data presented in Fig. 4A. For larger values of s for
gNsc ≲ s ≤ Nsc, this rescaled function is z-independent and exhibits
linear dependence on s,〈RscðsÞ〉=ðssz1=2Þ ≃ C1=2

sc ð2� s=NscÞ=N1=2
sc , with

Nsc-dependent negative slope predicted by Eq. 12. The red and black
dashed lines in Fig. 4C (for s > 6) have slopes of −0.012 and −0.0064 for
Nsc = 10 and Nsc = 16, respectively, which are consistent with the pre-
dicted negative slopes�C1=2

sc =N
3=2
sc ¼ �0:013 and −0.0063 from Eq. 12.

z = 0

z = 1

z = 2

z = 4
A CB

1/
2

z = 4

z = 1

z = 2

z
0   1   2   4

0
1
2
3
4
6
8

10
16
32

10
20
50
100
150

Nsc

sc sc

N colorbb

+

+

Nsc = 10

Nsc = 16

Fig. 4. Size of side chains of bottlebrushes in a melt. (A) Dependence of the rescaled values of the mean square distance of a side-chain monomer s from the grafting
point 〈R2scðsÞ〉=ðss2Þ for side chains with Nsc = 10 and Nsc = 16 monomers as a function of the bond index s counting from the grafting point for molecules with different
number z of grafted side chains per backbone monomer. The mean square fluctuations of the size of an s-segment 〈dR2scðsÞ〉 are assumed to be equal to their value for linear
16-mer in a melt (z = 0, crosses). The dashed line is the fit to these z = 0 points by Clin

∞ =ð1 ~s=sÞ+ with two adjustable parameters Clin
∞ 1:55= and s̃ 0:61= . Curves for z ≥ 1 show

theoretical predictions of Eq. 10 with fitting parameter 〈Rsc〉. (Inset) Dependence of 〈Rsc〉
2/(Nscs

2) on parameter z for 〈Rsc〉 obtained from the separate fit to Eq. 10 for each curve.
Dashed line represents the theoretical prediction of Eq. 11 with scaling parameter Csc = 0.17. (B) Convention of symbols used in all figures to denote a particular bottlebrush
melt. Color and shape of symbols denote the values of Nbb and Nsc, respectively. Crosses represent the data for linear chains (z = 0), solid symbols correspond to bottlebrushes
with z = 1, open symbols are for bottlebrushes with z = 2, and plus symbols denote the data for bottlebrushes with z = 4 (see table S2 for more details). (C) Dependence of the
rescaled values 〈Rsc(s)〉/(sz

1/2s) of the corresponding mean distance 〈RscðsÞ〉 ½〈R2scðsÞ〉 〈dR2scðsÞ〉�1=2= − on the bond index s. Dashed lines are the theoretical predictions (see text
for details).
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The mean square fluctuations of the size of chain segments con-
taining large number s≫ 1 of monomers are Gaussian. Therefore, the
normalized mean square size of side-chain segments (Eq. 10) can be
approximated for large s by

〈R2
scðsÞ〉
ss2

¼ Csc
zs
Nsc

2� s
Nsc

� �2

þ Clin
∞

1þ~s=s

≃ Csc
zs
Nsc

2� s
Nsc

� �2

þ Clin
∞ for gNsc ≲ s ≤ Nsc

ð13Þ

This equation predicts a maximum at smax = 2Nsc/3. This predic-
tion is in good agreement with the simulations (see Fig. 4A). Note that
the position of the maximum (for both points and lines) has a slightly
higher value of s than 2Nsc/3 because of the residual s dependence of
the ratio 〈dR2

scðsÞ〉=ðss2Þ for short side chains. The physical explana-
tion of this peak is that not all of the chains extend all the way to 〈Rsc〉.
There is a wide distribution of the positions of side-chain ends around
their average value 〈Rsc〉. Because fewer side chains extend to larger
radial distances from the backbone, they provide an additional contri-
bution to the ratio 〈R2

scðsÞ〉=ðss2Þ in Eq. 13 for gNsc < s < smax and a
relatively smaller contribution for larger values of s > smax. As a result
of side chains that do not extend to large radial distances from the
backbone, the crowding of remaining side chains at these large radial
distances decreases. This decrease in crowding weakens the stretching
of the remote side-chain sections, resulting in a relatively smaller av-
erage extension of chain sections with s > 2Nsc/3. The stretching
decreases with s and vanishes at the free side-chain ends in the over-
lapping zone of neighboring bottlebrushes.

Conformations of side-chain segments with s ≲ gNsc near the graft-
ing point are determined by the monomer packing condition due to the
limited penetration of monomers with index s′ > s into this zone near
the backbone, similar to packing restrictions for the entire side chain
(see Eq. 11)

〈RscðsÞ〉2 ≃
zvs
d

≃ zss2 for s ≲ gNsc ð14Þ

Therefore, the ratio 〈Rsc(s)〉/(ssz
1/2) should be independent of Nsc

for small s ≲ gNsc, as observed in Fig. 4C. However, note that the s
dependence of 〈Rsc(s)〉 for s ≲ 6 differs from our prediction (Eq. 14)
because of strong crowding of side-chains near the backbone and the
non-Gaussian behavior of these short chain segments. The s depen-
dence of 〈dR2

scðsÞ〉=ðss2Þ significantly deviates from a constant for s ≲ 6
(see red crosses in Fig. 4A), as described by the crossover expression
Clin
∞ =ð1þ~s=sÞ.

Persistence length of a bottlebrush in a melt
The rigidity of bottlebrush is only due to the mutual repulsion of the
crowded side chains. The excluded volume interactions in a melt state
are highly screened. In the unrealistic case of complete screening of steric
interactions, the resulting persistence length of a bottlebrush is on the
order of its monomer size≈ s. To estimate the persistence length of “real”
bottlebrushes, we have to account for partially screened excluded volume
interactions between side chains. The physical volume of spz side chains
grafted to a persistent bottlebrush section is vspzNsc, whereas the radius of
this section is 〈R2

sc〉
1=2. Therefore, the length of this cylindrical-like section is

vspzNsc=〈R2
sc〉 and its pervaded volume is ≈ ðvspzNsc=〈R2

sc〉Þ3 . The
pervaded volume of a persistent bottlebrush section is the volume

of a sphere that encompasses this cylindrical-like persistent segment.
The excluded volume interactions between polymer sections in the
melt are reduced by the degree of polymerization Pw = spzNsc of these
sections (54) (see Fig. 5). Thus, the free energy of the excluded volume
interactions between these persistent bottlebrush sections within their
pervaded volume is

Esc ¼ kBT
v
Pw

ðspzNscÞ2
ðvspzNsc=〈R2

sc〉Þ3
ð15Þ

The persistent segment sp is determined by the condition that the
excluded volume interaction energy Esc is on the order of thermal
energy kBT, resulting in

sp ≈
〈R2

sc〉
3=2

vzNsc
≈

ðzvNscÞ1=2
d3=2

ð16Þ

where Eq. 11 〈R2
sc〉

1=2 ≈ ðzvNsc=dÞ1=2 was used. In this case, the size of
the persistence segment ℓp is

ℓp ≈ spd ≈
zvNsc

d

� �1=2
≈ 〈R2

sc〉
1=2 ð17Þ

The conformations of bottlebrush backbones at small length scales
are similar to those of flexible polyelectrolytes that are almost un-
deformed on scales up to electrostatic blob size but extended into a
linear array of electrostatic blobs on larger length scales with persist-
ence length determined by the screening length (55). By analogy with
the polyelectrolytes, bottlebrushes are flexible on small length scales
and have large persistence length, induced by side-chain repulsion,
on intermediate length scales.

Our simulations confirm the scaling prediction that the persistence
length of bottlebrush backbones in a melt state is comparable to the
size of side chains. To determine the length of persistence segments sp,

Fig. 5. Geometry of a bottlebrush polymer. A bottlebrush is composed of z side
chains with Nsc monomers each grafted to every backbone monomer (z = 2 in this
figure). Rsc ≡ Rsc(Nsc) and Rsc(s) denote instantaneous values of size of side chains
(bottlebrush thickness) and distance of a side-chain monomer s from the grafting
point, respectively. The number of monomers per persistence segment is sp, and
persistence length is ℓp. Pw ≈ spzNsc is the total degree of polymerization of cylindrical-like
section composed of sp backbone monomers and spzNsc side-chain monomers. d is
average projection of a backbone bond onto the direction of the backbone contour.
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we calculated the decay rate of the correlations between bond orienta-
tions gðsÞ ≡ 〈 cos q〉ºe�s=sp (see simulation data in Fig. 6A and fig.
S2). The cosine of the angle is cos q = (ri/|ri|) ⋅ (ri+s/|ri+s|), where ri =
Ri+1 − Ri is the bond vector i between monomers i and i + 1, and ri+s =
Ri+s+1 − Ri+s is the bond vector i + s between monomers i + s and i + s +
1. The data obtained from simulations (symbols) have been fitted to the
function (dashed lines) of the following form

gðsÞ ¼ ð1� AÞe�s=sf þ Ae�s=sp þ zs�3=2 tanh ½ðs=3Þ3� ð18Þ

where A, sf, sp, and z are fitting parameters (see table S3) and denote
the following: (1 − A) and A are the magnitudes of short- and long-
range correlations, respectively, between bond vectors of the backbone;
sf is the characteristic number of beads in the backbone, which
undergo “local” bond vector correlations; sp is the number of beads
per persistence segment; and z is the magnitude of long-range inter-

actions induced by the connectivity of backbone bonds (see the section
on persistence length in the Supplementary Materials for details). The
power-law decay º s−3/2 at s ≫ 1 was reported for polymers melts
(56) and for q solutions (57). The origin of these interactions is ex-
plained either by effective compression of polymer coils due to the
correlation hole effect (56) or by the shift of the monomeric Mayer
f-function due to the finite interaction range and chain connectivity
(57). The function tanh[(s/3)3] presented in Eq. 18 describes a cutoff
at minimal loop size s = 3.

In Fig. 6B, the number of monomers along the bottlebrush
backbone in the persistent segment sp is presented as a function of
the degree of polymerization of side chains Nsc for grafting densities
z = 1 and 2 and various backbone degrees of polymerization Nbb.
These data demonstrate the effect of backbone straightening with
the increasing Nsc and z. The exponents of the observed power laws

sp ¼ 1:91N0:53±0:04
sc for z ¼ 1 ð19Þ

sp ¼ 2:75N0:48±0:03
sc for z ¼ 2 ð20Þ

agree with the exponent 1
2= predicted from the scaling arguments, as

presented in the beginning of this subsection (see Eq. 16), and indicate
that the number of monomers sp in the persistence segments of the
bottlebrush backbones with z = 1 or 2 side chain per backbone mono-
mer and Nbb ≳ 50 is proportional to the brush radius (side-chain size
〈R2

sc〉
1=2) (see fig. S3).

Size of a bottlebrush in a melt
The size of a bottlebrush in a melt state can be estimated from a
simple physical picture of nonoverlapping flexible filaments with
ℓpº〈R2

sc〉
1=2. Consider a bottlebrush backbone that is much longer than

persistence segment Nbb ≫ sp (see Fig. 1B). The bottlebrush confor-
mation can be represented as a chain of effective monomers consisting
of sp backbone monomers and spz side chains of size 〈R2

sc〉
1=2. The mean

square end-to-end distance of the backbone can be estimated as the
number of these effective monomers Nbb/sp times the square of their
size, which is proportional to the mean square size of side chains 〈R2

sc〉,
resulting in 〈R2〉 ≈ 〈R2

sc〉Nbb=sp. Because the number of monomers in
a persistence segment sp is proportional to the size of a side chain
〈R2

sc〉
1=2≈ sN1=2

sc (see Eqs. 17, 19, and 20), we predict that the mean
square size of the backbone is also proportional to the size of a side chain
〈R2〉 ≈ s〈R2

sc〉
1=2Nbb ¼ s2NbbN

1=2
sc . Our simulation results corrobo-

rate this prediction (cf. Eq. 6), as discussed below.
The mean square end-to-end distance of the backbone 〈R2〉 and the

mean square radius of gyration 〈R2
g〉 of the whole bottlebrush are

plotted as functions of the degree of polymerization of side chains
Nsc and backbone Nbb in Fig. 7 and fig. S4 (for the definition of
symbols, see Fig. 4B and the corresponding caption as well as table
S2). The mean square size increases with Nbb and Nsc and obeys
the power law

〈R2〉=Nbb ¼ 1:33N0:47±0:01
sc s2 for z ¼ 1

〈R2〉=Nbb ¼ 2:76N0:47±0:01
sc s2 for z ¼ 2

ð21Þ

and 〈R2
g〉=Nbb ¼ 0:23N0:49±0:01

sc s2 for z = 1 and 〈R2
g〉=Nbb ¼

0:46N0:47±0:01
sc s2 for z = 2. Similar to linear chains in melts, the

0 5 10 15 20 25
s

10
–2

10
0A

B

g(
s)

Fig. 6. Persistence segment of a bottlebrush in a melt. (A) Decay of backbone
bond orientational correlations g(s) as a function of the number of monomers s be-
tween two bonds for bottlebrushes with various degrees of polymerization Nsc of
side chains and number z of side chains grafted per backbone monomer (see Fig. 4B
and the corresponding caption for the definition of symbols). Dashed lines represent
best fits to the expression for g(s) given by Eq. 18. (B) Persistence segments obtained
from the decay of bond orientational correlations plotted as a function of the side-
chain polymerization degree Nsc for various backbones Nbb and grafting densities z of
side chains, as indicated. The dashed lines represent the best power-law fit for data
sets with Nbb = 100: sp ¼ 1:91N0:53±0:04

sc for z = 1 and sp ¼ 2:75N0:48±0:03
sc for z = 2.
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conformations of bottlebrushes with long backbones are well described
by the ideal chain statistics, that is, 〈R2〉=〈R2

g〉 ≈ 6, as verified by the
distributions of the end-to-end distances R and the radii of gyration
Rg (cf. fig. S5). From Fig. 7A, one can observe that the mean square
end-to-end distance of molecules with backbones Nbb = 10 and 20
becomes insensitive to further increase in Nsc. This is attributed to the
crossover from the crew-cut bottlebrushes to the starlike configurations.

The mean square internal distances 〈R2(s)〉 between backbone
monomers are plotted in Fig. 8 as a function of the number of bonds
s in a backbone section for molecules with various side-chain degrees
of polymerization Nsc and different number z of side chains grafted
per backbone monomer (the definition of symbols is displayed in
Fig. 4B and described in the corresponding caption). The simulation
data for all z values were fitted to the crossover expression

〈R2ðsÞ〉 ¼ ss2
Cbb
∞

1þ~s=s
ð22Þ

with fitting parameters Cbb
∞ and ~s plotted in Fig. 8B and reported in

table S4. The overall good agreement between the crossover expression
and simulation data is observed by the overlap between points
(simulation data) and lines (Eq. 22) in Fig. 8A. The backbone
stretching (characterized by both parameters Cbb

∞ and ~s) increases sig-
nificantly with the grafting density of side chains z and with the degree
of polymerization of side chains Nsc because of steric repulsion between
densely grafted side chains. The Flory characteristic ratio Cbb

∞ and
parameter ~s increase proportionally to the power of the degree of po-
lymerization of side chainsCbb

∞ ¼ 1:3N0:52±0:01
sc and~s ¼ 2:1N0:51±0:1

sc for
z = 1 and Cbb

∞ ¼ 2:8N0:53±0:01
sc and ~s ¼ 3:4N0:55±0:01

sc for z = 2 (see Fig.
8B and table S4). The scaling exponents are close to 1

2= , indicating that s
dependence of distances between backbone bonds separated by smono-
mers for s > ~s is consistent with the backbone size scaling (Eq. 21). We
observe that~s is 60% and 25% larger than correspondingCbb

∞ values (see

Fig. 7. Size of bottlebrushes in a melt. Mean square end-to-end distance 〈R2〉 (A) and mean square radius of gyration 〈R2g〉 (including side chains) (B) of bottlebrushes in a
melt normalized by the ideal mean square size of backbones Nbbs

2 as functions of the degree of polymerization of side chains Nsc. (C) Mean square radius of gyration 〈R2g〉 of
bottlebrushes normalized by s times the ideal root mean square size of side chainsN1=2

sc s2 as a function of the degree of polymerization of backbones Nbb. See Fig. 4B and the
corresponding caption for the definition of symbols. In (A) and (B), the number of side chains grafted per backbone monomer is z = 1 and 2. (C) displays data for z = 2. Dashed
lines represent fitted scaling laws: (A) 1:33N0:47±0:01

sc for z = 1 and Nbb = 100 and 2:76N0:47±0:01
sc for z = 2 and Nbb = 100, (B) 0:23N0:49±0:01

sc for z = 1 and Nbb = 100 and
0:46N0:47±0:01

sc for z = 2 and Nbb = 100, and (C) 0:39N1:01±0:04
bb for z = 2 and Nsc = 10. The error bars for all data points are smaller than the size of symbols.
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Fig. 8. Extension of a bottlebrush in a melt. (A) Dependence of the mean square
internal distances 〈R2(s)〉 between bottlebrush backbone monomers normalized by
their ideal mean square size ss2 on the number of monomers s in the backbone
sections plotted for various side-chain polymerization degrees Nsc and grafting den-
sities z (see Fig. 4B and its caption for the definition of symbols). Solid lines represent
best fits to the crossover expression 〈R2ðsÞ〉= ss2ð Þ ¼ Cbb

∞
1þ~s=s, with fitting parameters

Cbb
∞ and ~s listed in table S4. (B) Fitting parameters Cbb

∞ and ~s plotted as a function of
side-chain polymerization degree Nsc for z = 1 (full symbols) and z = 2 (open
symbols). Dashed lines represent fitted scaling laws: Cbb

∞ ¼ 1:3N0:52±0:01
sc and ~s ¼

2:1N0:51±0:01
sc for z = 1, whereas Cbb

∞ ¼ 2:8N0:53±0:01
sc and ~s ¼ 3:4N0:55±0:01

sc for z = 2.
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Fig. 8B and table S4) for z = 1 and 2, respectively, pointing out the
wiggling of the backbone 〈R2(s)〉1/2≈ s1/2 s on length scales smaller than
the tension blob. The bottlebrushes undergo a conformational transform-
ation from a random coil to a rod as the grafting density z increases from
1 to 4, which is evidenced by the increase of both the Flory characteristic
ratioCbb

∞ and the crossover value~s by more than an order of magnitude.
Because the backbone degree of polymerization Nbb≪~s, the simulated
bottlebrush with side-chain grafting density z = 4 is effectively rodlike.
Note that it is hardly possible to determine persistence segment sp from
correlations of bond orientations (see Eq. 18) for simulated bottlebrushes
with short backbones Nbb≲ 50 and z = 4 because the corresponding g(s)
functions do not decay sufficiently.

Interpenetration of neighboring bottlebrushes in a melt
As discussed below, reduced interpenetration of side chains from
neighboring macromolecules is a distinct feature that distinguishes
segregated filaments (bottlebrushes) from overlapped molecules
(linear chains and combs). This interpenetration is crucial for the
understanding of the friction between these molecules and for the ex-
planation of the complex rheological response of bottlebrush-based
materials observed in recent experiments (12, 26, 27, 58, 59). We have
analyzed the number of intramolecular hs and intermolecular gs
contacts between side-chain monomers. Contacts were defined be-
tween pairs of monomers within distance rshell = 1.5s from each other.
This separation corresponds to the position of the minimum in the
interbead correlation function g(r), as discussed below. We denote
by 〈hs〉 the average number of intramolecular nonbonded contacts
between sth monomer of a side chain and monomers within the same
host molecule, whereas 〈gs〉 stands for the average number of inter-
molecular contacts between the ith monomer of a side chain of a given
molecule with monomers belonging to all other molecules. Both
quantities were calculated as functions of monomer index s along a
side chain and normalized by the average number of nonbonded
neighbors per sth monomer Zs = 〈hs〉 + 〈gs〉. The average value of Zs
is independent of the monomer index s, Zs ≈ 〈Z〉 ≈ 4.7, except for
terminal monomers Z1 ≈ 5.0 and ZNsc ≈ 5:3. The results of this anal-
ysis are presented in Fig. 9A (for the definition of symbols, see Fig. 4B
and the corresponding caption as well as table S2). The average frac-
tion of intermolecular contacts for the first side-chain monomers (s = 1)
is low and decreases with increasing grafting density z: 〈g1〉/〈Z1〉 ≈ 0.2 for
z = 1, 〈g1〉/〈Z1〉 ≈ 0.1 for z = 2, and 〈g1〉/〈Z1〉 < 0.01 for z = 4. The limited
interpenetration is ascribed to dense crowding of the side-chain monomers
belonging to the same bottlebrush in the vicinity of its backbone,
which hinders penetration of guest monomers to the central region
of the host bottlebrush. The probability of encountering guest mono-
mers 〈gs〉/〈Zs〉 increases with s and reaches the maximum value for
terminal monomers of the side chains. This maximum value was
found to be 〈gNsc 〉=〈ZNsc 〉 ≈ 1=2 independent of grafting density z
and degree of polymerization of side chains Nsc. The terminal mono-
mers are in the interpenetration zone between two neighboring bot-
tlebrushes. This zone contains 50:50 composition of monomers from
both molecules. The low interpenetration of bottlebrushes in a melt
state is demonstrated by the “territorial map” (60–62) of the simulation
box snapshot in Fig. 9B.

For a reference system, we have calculated the number of contacts
between monomers of neighboring linear chains in a melt (cf. the inset
of Fig. 9A). The interchain contacts for linear polymers are almost
uniformly distributed along the backbone except for the chain ends.
The estimated fraction of guest monomers for linear chains was found

to be 〈gs〉/〈Zs〉 ≈ 0.65 (independent of the degree of polymerization)
and is higher than the maximum fraction of 0.5 (encountered by end
monomers of bottlebrush side chains). The increase in the fraction of
intermolecular contacts of up to ≈ 0.78 is observed at the ends of
linear chains. The intrachain nonbonded contacts in linear chains
are due to the formation of self-loops. For inner monomers of a linear
chain, one can have self-loops at both sides, whereas for end mono-
mers, self-loops can only be formed from one side. This explains the
higher number of interchain contacts for end monomers of linear
chains in a melt. The main conclusion of this analysis is that the
overlap of bottlebrush molecules in the melt is qualitatively different
on a monomer level from that of linear chains. Below, we show that
melts of bottlebrushes become qualitatively similar to those of linear
chains if we describe bottlebrushes as thick flexible filaments, which
are chains of “effective monomers” of size 〈R2

sc〉
1=2.
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Fig. 9. Interpenetration of bottlebrushes in a melt. (A) Average number of
contacts 〈gs〉 between bottlebrush side-chain monomer s and monomers of other
molecules. The value of 〈gs〉 is normalized by the average number of nonbonded
neighbors 〈Zs〉 and plotted as a function of monomer index i (counting from the
backbone) normalized by the degree of polymerization of side chains Nsc. Data for
Nsc = 10 and Nsc = 16, with grafting density z = 1, 2, and 4 of side chains per
backbone monomer (see Fig. 4B and the corresponding caption for the definition
of symbols). The inset displays the average number of contacts 〈gs〉 between sth
monomer of a linear chain and monomers of surrounding linear chains in a melt
normalized by the average number of nonbonded neighbors. (B) The “map of
territories” for an equilibrated melt of bottlebrushes with Nbb = 100, Nsc = 10,
and z = 2 demonstrates reduced overlap between neighboring molecules.
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Local structure
The internal structure of melts composed of linear chains or bottle-
brushes is illustrated in Fig. 10 by the pair correlation functions g(r)
of backbone monomers. The intrabackbone pair correlation function
gintra(r) has several peaks, as shown in Fig. 10A, for both linear chains
and bottlebrush melts with different side-chain grafting densities z.
There are two peaks in melts of bottlebrushes with short side chains:
one at r ≈ 0.96 s that corresponds to bonded (nearest) neighbors and
the peak at r ≈ 1.87 s that corresponds to second-nearest neighbors.
As the degree of polymerization of side chains Nsc increases, one ob-
serves that, for the grafting density of z = 2 side chains per backbone
monomer (solid lines), new peaks appear at r≈ 2.6 s and 3.4 s, which

are due to stretching of the backbone. As the number of side chains
attached to a backbone monomer increases to z = 4 (dashed line), the
backbone stiffens and more peaks appear, indicating stronger intra-
molecular correlations. In this case, a series of clearly distinguishable
subsequent and equidistant maxima is observed: 1.92s, 2.79s, 3.63s,
4.48s, 5.32s, … The existence of local structure for bottlebrush melts
is due to long-range interactions between backbone monomers in-
duced by side chains. The strength of the intramolecular interaction
increases with grafting density z and with length of side chains. The
longer the side chains are, the stronger the interaction is between
backbone monomers and the longer the range of these interactions
is. The interaction range along the backbone is comparable to the size
of the persistence segment, which scales with the size of side chains as
〈R2

sc〉
1=2.

The information about bottlebrush packing in the melt is contained
in the interbackbone correlation function ginter(r) presented in Fig. 10B.
In the case of linear chain melts, ginter(r) reveals the structure at very
small length scales. ginter(r) is zero for distances r below first peak be-
cause of Lennard-Jones (LJ) core repulsion between monomers. The
sharp peak at r ≈ 1.1 s corresponds to the first “solvation shell,” which
is the optimal distance between pairs of nearest-neighbor monomers.
The second peak at r ≈ 1.9 s displays the influence from the shell of
the second-nearest neighbors. In contrast to melts of linear chains, the
large-scale structure is observed in bottlebrush melts. Bottlebrush back-
bones are shielded by densely grafted side chains and do not approach
each other. This fact is clearly demonstrated in the case of bottlebrushes
with the long side chains, that is, Nsc = 10 (solid red line for z = 2 and
dashed red line for z = 4). At distances comparable to bottlebrush thick-
ness, equal to the average side-chain size 〈R2

sc〉
1=2 ≈ 4:18 s for z = 2 and

at 〈R2
sc〉

1=2 ≈ 4:58 s for z = 4, the corresponding values of ginter(r) are
low ginter(r)/rbb ≈ 0.1 because the “coat” of side chains around a given
backbone prevents neighboring backbones from approaching it. Note
that the highest probability to find monomers of neighboring backbones
does not exactly match the brush diameter 2〈R2

sc〉
1=2 but is rather at a

shorter distance because of partial interpenetration of side chains. The
first maxima are observed at rmax≈ 7.25 s for z = 2 and≈ 8.35 s for z =
4, respectively. The smaller value of rmax=ð2〈R2

sc〉
1=2Þ for z = 2 (≈0.87)

with respect to z = 4 (≈0.91) implies a stronger overlap of grafted side
chains in bottlebrush melts with lower z (see Fig. 9). The inset of Fig. 10B
shows the correlation functions ginter(r), with the abscissa rescaled by the
position of the first maximum rmax. The positions of the peaks for
bottlebrush systems correlate very well with the peaks observed for linear
chain, indicating a similar “liquid-like” origin of melt structure (63, 64) but
with stronger correlations at correspondingly larger distances. This result
justifies representing bottlebrushes in melts by chains of “effective” mono-
mers of size º〈R2

sc〉
1=2, which are thick flexible filamentous objects.

The form factor of a bottlebrush backbone in a melt
The form factor S(q) of the backbones of bottlebrushes with different
grafting densities z of side chains is presented as the Holtzer plot in
Fig. 11. The form factor of linear chains (z = 0) in a melt state (solid
black line) is well represented by the Debye function (black dashed
line) and scales as S(q) º q−2 for large wave vectors q. The backbone
form factors of bottlebrushes exhibit different behavior because of the
backbone extension induced by side chains. For bottlebrushes with z = 2
(solid red line), the backbone S(q) at intermediate values of wave
vector q < 0. 5 s−1 is similar to the form factor of a semiflexible chain.
The simulation data for z = 2 (solid red line) were fitted to the theo-
retical prediction of the structure factor of a semiflexible chain (blue
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Fig. 10. Radial distribution function of bottlebrushes in a melt. Pair correla-
tion functions between (A) intrabackbone monomers gintra(r) and (B) interback-
bone monomers ginter(r) normalized by melt density r and density of backbone
monomers in a melt rbb, respectively. Correlation functions were plotted for var-
ious degrees of polymerization of side chains Nsc. As indicated in the legend, var-
ious colors are used to distinguish between the lines with different values of Nsc.
Solid gray lines denote results for linear melts, that is, with grafting density z = 0
(Nsc = 0), whereas other solid lines correspond to z = 2. Dashed lines represent
results for z = 4 and Nsc = 10.
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dashed line) (65). Note that the form factor of a semiflexible chain
(blue dashed line) interpolates between the Debye function (red dashed
line) at large length scales (small q values) and rigid rod form factor
(dotted black line) at small length scales (high q values). The overall
very good agreement between simulation data and theoretical predic-
tion (65) is observed. The only difference is the presence of a hump
located between q ≈ 0.65 s−1 and 1.96 s−1. The nonmonotonicity of
Holtzer plot qS(q) for high q values is attributed to the local flexibility
of bottlebrushes at small length scales. Flexibility of bottlebrushes at
length scales below tension blob size x is also confirmed by the exis-
tence of the fast initial decay of backbone bond correlations (see Fig.
6A and Eq. 18). The case of bottlebrushes with z = 4 (solid green line)
cannot be fitted by the theoretical structure factor of a semiflexible
chain. Larger crowding of side-chain monomers around the backbone
gives rise to its increased extension for bottlebrushes with z = 4. The
persistence length in this case is much larger than bottlebrush thick-
ness, and structure factor is well approximated by the rigid rod–like
scattering (dotted green line).

DISCUSSION
The conformations of bottlebrush macromolecules in melts depend
on the side-chain grafting density z and the degree of polymerization
of side chains Nsc. We demonstrated that the increase of z and Nsc

leads to the extension of the bottlebrush backbone at intermediate
length scales and enhancement of long-range interactions between
backbone monomers, causing stronger intra- and intermolecular cor-
relations similar to semidilute polyelectrolyte solutions. These interac-
tions also result in significant reduction of the overlap between side
chains of neighboring molecules. For moderate grafting densities with
z ≤ 2, the conformation of bottlebrush is similar to a filament com-
posed of “effective monomers” of size comparable with bottlebrush
thickness (size of side chains). The bottlebrush size follows ideal
(Gaussian) chain statistics for z ≤ 2, and the mean square size of

a bottlebrush is proportional to the product of the backbone de-
gree of polymerization Nbb and the persistence length of the mol-
ecule ºN1=2

sc , that is, 〈R2〉ºNbbN
1=2
sc . For high grafting densities

z > 3, bottlebrushes with short backbones Nbb ≲ 50 adopt rodlike
conformations.

MATERIALS AND METHODS
Simulations of bottlebrush melts were performed using three-dimensional
coarse-grained bead-spring model (63). An individual bottlebrush
molecule is composed of Nbb backbone monomers (beads) connected
by bonds and z side chains of Nsc monomers grafted to every
backbone monomer (see Fig. 1A). Thus, the total number of beads
in a bottlebrush is N = Nbb + zNbbNsc, where z is the grafting density.
The case of Nsc = 0 (or z = 0) corresponds to a linear chain.

The nonbonded interactions between monomers separated by dis-
tance r were modeled by the truncated and shifted LJ potential

VLJ rð Þ ¼ 4D½ðs=rÞ12 � ðs=rÞ6 þ ðs=rcÞ6 � ðs=rcÞ12� r ≤ rc
0 r > rc

�
ð23Þ

where the interaction strength D is measured in units of thermal en-
ergy kBT, s is the monomer diameter, and rc is the cutoff. In the NVT
ensemble, we have used D ¼ kBT and rc = 21/6s. This choice of LJ
potential results in purely repulsive interactions between monomers.
The bonded interactions in a molecule were described by the Kremer-
Grest potential (63), VKG(r) = VFENE(r) + VLJ(r), with the “finitely ex-
tensible nonlinear elastic” (FENE) potential

VFENE ¼ � 1
2
kr20 ln 1� r

r0

� �2
" #

ð24Þ

where the bond stiffness k ¼ 30 D=s2 and the maximum bond length
r0 = 1.5 s (63). All simulations were performed in a cubic box with
periodic boundary conditions imposed in all spatial dimensions. In the
NVT ensemble, the simulations were carried out at the overall mono-
mer density r = 0.85 s−3 corresponding to the intermolecular pressure
〈P〉 ≈ 4.75 D/s3. In a separate set of simulations, we have also inves-
tigated melts of bottlebrushes with attractive LJ potential with the in-
teraction strength D ¼ 0:84kBT and the cutoff rc = 2.5 s using NPT
ensemble with P = 0, ensuring that the average density 〈r〉 ≈ 0.85 s−3

is the same as in the NVT runs. The static properties obtained from
both NVT and NPT simulations, for example, the average bottle-
brush size, demonstrate good agreement with each other within
the error bars after rescaling by the corresponding average bond
length l (bonds in NPT simulations are 1% shorter than those in
NVT simulations).

The molecular dynamics simulations were performed by solving
the Langevin equation of motion for the position ri = [xi, yi, zi] of each
bead (66)

m€ri ¼ FLJi þ FFENEi � zr:i þ FRi ; i ¼ 1;…;N ð25Þ

which describes the motion of a set of interacting monomers. Forces
FLJi andFFENEi in Eq. 25 above are obtained from the LJ (Eq. 23) and FENE
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Fig. 11. The form factor of a bottlebrush in a melt. The Holtzer representation
of the backbone form factor of bottlebrush melts with different grafting densities
of side chains per backbone monomer z = 2 (red solid line) and z = 4 (green solid
line). The black solid line represents the form factor of a linear chain (z = 0). The
blue dashed line depicts the theoretical prediction for the form factor of a semiflexible
chain (65). The dotted lines (black and green) represent form factors of a rigid rod,
whereas black and red dashed lines are Debye form factors of a flexible chain. The inset
shows simulation data in the standard, S(q) versus q, representation. The scaling laws
of the ideal chain º q−2 for z = 0 and the rigid rod º q−1 for z = 4 are denoted.
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(Eq. 24) interaction potentials between the ith monomer and
surrounding monomers. The third and fourth terms on the right-hand
side of Eq. 25 are a slowly evolving viscous force �z ̇ri and a rapidly
fluctuating stochastic force FRi , respectively. This random force FRi is
related to the friction coefficient z by the fluctuation-dissipation
theorem 〈FRi ðtÞFRj ðt0Þ〉 ¼ kBTzdijdðt � t0Þ. The friction coefficient used
in simulations was z = 0.5 mt−1, where m is the monomer mass and
t ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

ms2=D
p

is the LJ time. The velocity Verlet scheme (67) was used
for numerical integration of equations of motion in Eq. 25. The inte-
gration step was taken to be Dt = 0.01t. A Langevin thermostat was
used to keep the temperature constant. All simulations were carried
out using Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) (68). Simulation snapshots were rendered using Visual
Molecular Dynamics (VMD) (69). Initially, molecules were grown
using a self-avoiding random walk technique and placed randomly
in the simulation cell. The initial density of all systems was small
(≈ 0.03 s−3). Overlapping monomers in the initial configuration were
pushed off using soft potential with slowly ramped interaction
strength. To obtain the desired melt density (r = 0.85 s−3), the
simulation box was gradually decreased in size (see fig. S6) at constant
velocity 10−3s/t. Equivalently, a short (≈ 104t) NPT simulation was
performed at pressureP ¼ 0:01D=s3. We have verified that the results
do not depend on the sample preparation method. Once the target
density was reached, simulations were continued for up to at least
three relaxation times of the corresponding system. During the equi-
libration stage, the molecules diffused, on average, at least the root
mean square end-to-end distance of their backbones.

Simulations of bottlebrush and linear chain melts were carried out
for the following number of backbone monomers Nbb = 10, 16, 20, 50,
100, and 150. The number of side-chain monomers Nsc was varied
between 0 and 32 for bottlebrushes with z = 1 and between 0 and
16 for bottlebrushes with z = 2 side chains attached to each backbone
monomer. We assign unique symbols to denote data for each particular
system. The convention of symbols used throughout the article is
displayed in Fig. 4B. The complete list of symbols can be found in table
S2. In addition, for molecules with Nbb = 50, the number of side chains
per backbone monomer was varied (z = 0, 1, 2 and 4). To avoid the
finite size effects, the number of molecules M in a simulation box
was changed; thus, the box size a was at least ≈ 2.5 times larger
than the root mean square end-to-end distance 〈R2〉1/2 of bottlebrush
backbones. Table S2 summarizes all parameters used in our computer
simulations.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/2/11/e1601478/DC1
The size of a bottlebrush side chains in a melt
Persistence length of a bottlebrush in a melt
The size of a bottlebrush in a melt
Bottlebrush melt preparation
table S1. Summary of the adjustable parametersCsc

∞ and Ñsc describing the mean square size of
side chains.
table S2. Summary of system parameters for simulations of bottlebrush melts and linear chain
melts.
table S3. Summary of the adjustable parameters A, sf, sp, and z for the bond angle correlation
function.
table S4. Parameters Cbb

∞ and ~s describing the sizes of backbone sections.
fig. S1. The size of side chains of a bottlebrush in a melt.
fig. S2. The bond angle correlation functions g(s).
fig. S3. Persistent segments of bottlebrushes in a melt.
fig. S4. The size of backbones for bottlebrushes in a melt.

fig. S5. Distribution of sizes of bottlebrushes in a melt.
fig. S6. A scheme demonstrating sample preparation of a bottlebrush melt.
fig. S7. Snapshots displaying conformations of bottlebrush molecules in a melt state.
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