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Platonic solids, Felix Klein, H.S.M. Coxeter and a
flap of a swallowtail: The five Platonic solids tetra-
hedron, cube, octahedron, icosahedron and dodeca-
hedron have always attracted much curiosity from
mathematicians, not only for their sheer beauty but
also because of their many symmetry properties. In
this snapshot we will start from these symmetries,
move on to groups, singularities, and finally find the
connection between a tetrahedron and a “swallow-
tail”. Our running example is the tetrahedron, but
every construction can be carried out with any other
of the Platonic solids.

1 Set the stage: Symmetry

Look at the regular tetrahedron in three-dimensional space R3, see Fig. 1. Let
us call it T for later reference. How can we transform T without changing its
shape and position in space?

We are only allowed to perform symmetries, i.e., transformations in R3 that
preserve the shape and position in space of T : essentially, we may “reorder”
the vertices of T through rotating or reflecting T repeatedly. Each rotation is
uniquely defined by its rotation axis and a fixed angle, a reflection is given by its
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Figure 1: The Tetrahedron T (left) and the Icosahedron I (right).

mirror plane, i.e., the plane where any point is reflected on. 1 Only considering
rotations, we obtain for the tetrahedron 12 rotational symmetries in total:

For rotations fixing the tetrahedron one has two different kinds of rotation axes:
on the one hand, going perpendicular through the center of a face and meeting
the opposite vertex (there are four of them, one for each face; see Fig. 2) and
on the other hand axes connecting the midpoints of two vis-á-vis edges (three
of them). For the “face-vertex” axes one can rotate two times by 120 degree
about the axes and for the “vis-á-vis-edges” axes once about 180 degrees before
reaching the initial position. So one gets 2 ·4+1 ·3+1 ·1 = 12 different rotations,
where 1 · 1 comes from the identity rotation that does nothing.

Figure 2: An example for a rotation axis going through one vertex and meeting
the opposite face perpendicularly

1 Note that the rotation axis is exactly the set of points, which is not moved when performing
the rotation. Similarly, the mirror plane is the set of fixed points of a reflection. In general, we
can write each rotation as the composition of two reflections. Also, by a theorem of Leonard
Euler (1707-1783), a composition of two rotations is again a rotation.
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These rotational symmetries form a group, 2 the so-called tetrahedral group
T . Also allowing reflections, one gets additional symmetries: 6 reflections in
planes perpendicular to the edges and 6 reflections in a plane followed by a 90
degree rotation about an axis perpendicular to this plane. In total we get a
group with 24 elements, the so-called full symmetry group T of the tetrahedron.
If we had started for example with an icosahedron I instead (see Fig. 1), its
rotational symmetry group consisted of 60 rotations and the full icosahedral
group of 120.

The full symmetry group T can also be described with the help of a funda-
mental triangle on the two-dimensional sphere S (the ball in R3 around the
origin with radius 1): Just by applying reflections in T, any point in S can be
transported to a point in the red spherical triangle on S, whose angles 3 are π

2 ,
π
3 ,

π
3 (see Fig. 3).

Figure 3: The fundamental triangle of T (left) and the six mirrors of T, forming
the Hyperplane arrangement A3 (right).

One can also find the fundamental regions for the other Platonic solids.
One striking result is that for each finite reflection group (see later for the
explanation of this term), there is a fundamental triangle with angles (πp ,

π
q ,

π
r ),

where p, q, r are natural numbers that satisfy the following so-called diophantine

2 The concept of a group is basic in mathematics (in short: a group is a set where “addition”
and “subtraction” makes sense). A group is a set of elements G together with an operation ◦
(variably denoted, most frequently: addition, multiplication or composition) satisfying three
properties: (1) there exists an identity element eG ∈ G, (2) for each g exists an inverse g−1

such that g ◦g−1 = eG and (3) for any g, h, f ∈ G: (g ◦h)◦f = g ◦ (h◦f). For our tetrahedron
T , the rotational symmetry group consists of the 12 rotations and ◦ is the composition of two
of them, the inverse of a rotation is the same rotation backwards and the identity eG means
not moving T at all.
3 For convenience, we rather write here the angles in radians, π corresponds to 180 degrees,
π
2 to 90 degrees, π3 to 60 degrees and so on.
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inequality:
1
p

+ 1
q

+ 1
r
> 1.

Thinking a bit more about this image, one sees that the only possibilities for
(p, q, r) are:

• (1, n, n), n ≥ 1 - degenerated triangles (so-called di-gons), corresponding to
the symmetries of an n-gon in the plane;

• (2, 2, n) - the symmetries of a n-dihedron 4 ;
• (2, 3, 3) - symmetries of the tetrahedron;
• (2, 3, 4) - symmetries of the cube/octahedron and finally
• (2, 3, 5) - symmetries of the dodecahedron/icosahedron.

And these are in fact the only symmetry groups of R3 generated by reflections.

2 Snap: Singular i t ies!

The German mathematician Felix Klein (1849–1925) studied finite rotation
groups 5 in R3. The symmetry group of the sphere S is the set of all rotations
of R3 about any axis through the origin, and thus an infinite group. This
group is denoted by SO3(R) and one says that T is a finite subgroup of
SO3(R). Klein found that the only finite rotation subgroups of SO3(R) are the
(rotation) symmetry groups of the five Platonic solids, the symmetry group of a
2-dimensional n-gon and the symmetry group of an n-dihedron (where n ≥ 2!),
see [2].
It is no coincidence that this is the same list as before, when we considered
fundamental triangles on the sphere. By covering the sphere into fundamental
triangles (as in fig. 3) with angles (πp ,

π
q ,

π
r ), one can reconstruct the rotations

and the corresponding platonic solid (remember that the only possibilities for
(p, q, r) are (1, n, n) for n ≥ 1, (2, 3, 3), (2, 3, 4) and (2, 3, 5)): there is an axis
through each vertex of the triangle and its antipode (the point diametrically
opposite on the sphere) and the angles of a rotation correspond to twice the
angle of the triangle. Relating these finite rotations in R3 with complex rotations
in C2 (the so-called double cover of SU2(C)→ SO3(R)), Klein found a relation
of singular algebraic surfaces 6 with Platonic solids: to any finite subgroup of

4 A n-dihedron in R3 consists of two regular n-gons lying above each other such that the
edges coincide — think of a box whose top and bottom are regular n–gons.
5 A finite group is a group containing only finitely many elements, such as our groups T
and T.
6 An algebraic surface is the zero set of a polynomial in three variables. A singular point on
a surface is a “special” point, where the surface has a cusp or branches out. Mathematically
speaking, this means that one cannot find a unique tangent plane to a singular point.
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SO3(R), one can relate a complex subgroup of SU2(C), which acts 7 on complex
polynomials in two variables.
In the case of the tetrahedron, one looks at so-called invariant polynomials of
the complex group T̄ in SU2(C) corresponding to T . These are all polynomials
which are not changed under the group action, meaning that

f(x1, x2) = f(ϕ−1(x1, x2))

for all ϕ in T̄ ). Finally, one finds 3 polynomials u, v, w in 2 variables with
complex coefficients such that any other invariant polynomial is a polynomial in
u, v, w. These three invariants satisfy the equation u2 + v3 + w4 = 0. Consider
R3 as the set of all points (x, y, z), then

X = {(x, y, z) ∈ R3 such that x2 + y3 + z4 = 0}

is a singular algebraic surface, which has a singular point at the origin, see
Fig. 4. In the last century, the connections of Platonic solids to singular algebraic
surfaces were studied further, for example via resolution of singularities and in
the theory of Lie groups.

Figure 4: The algebraic surface x2 + y3 + z4 = 0 (left), which is called an
E6-singularity. This name comes from its so-called resolution graph
(right), which is the E6 Dynkin diagram.

3 Snap: Ref lect ions!

The Canadian mathematician H.S.M. Coxeter (1907–2003) looked at groups
consisting of reflections in hyperplanes, called reflection groups, see [1]. One

7 A transformation ϕ in the group sends a point P = (p1, p2, p3) ∈ R3 to a point
ϕ(p1, p2, p3) ∈ R3. In this context one says that SO3(R) (or any of its subgroups) acts
on a polynomial f(x1, x2, x3) via f(ϕ−1(x1, x2, x3)). Similarly for complex rotations in the
plane on polynomials in two variables.
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says that reflections generate 8 the group. In the case of our tetrahedron T ,
one finds six reflection planes (let us call them mirrors), going through the
opposite edge midpoints of T , see Fig. 3. Three of these mirrors are enough
to generate the group, one can obtain any of the rotations. But even more:
Any other symmetry transforming a tetrahedron into itself can be written as a
composition of these three reflections.
This can be seen by a more general observation, which starts one dimension
lower, i.e., one looks at reflections fixing an equilateral triangle. In this case, we
can easily see that there are exactly 3 mirrors (note: we are in dimension 2, so
we have mirror lines instead of planes) generating the group, namely the three
perpendicular lines through the opposite vertex of an edge (see Fig. 6). In this
setting, one only needs two of the mirror-lines to obtain all possible symmetries:
these two lines are called the generators of the group. Now one can associate a
so-called Coxeter diagram to each reflection group: each generator is visualized
by a dot, two dots are connected when the angle between the corresponding
mirrors is π

3 and they are not connected if there is an angle of π2 between them.
For the equilateral triangle we thus obtain the so-called A2-diagram: • • .

In the three dimensional space R3, the same procedure yields that the group
T is generated by three mirror planes, where the angles of intersection are π

2
and π

3 , as we saw above.
where each two of them intersect in an angle of π3 degrees. So, one gets the

Coxeter diagram A3:

• • •

Figure 5: The fundamental triangle and the Coxeter diagram A3.

Note that in this case, the tetrahedron corresponds to the diagram A3,
whereas in Klein’s approach, the binary tetrahedral group was related to the
E6-diagram (see fig. 4) via its so-called resolution graph 9 .

8 This means that every element of the group can be obtained by composing the generating
reflections. Most of the time one wants to find the minimal number of generators.
9 These are instances of the so-called ADE-classification, which occurs in many areas of
mathematics.
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4 Snap: . . .Swal lowtai l?!

The swallowtail is the so-called “discriminant of the A3-arrangement”, which is
just the discriminant of a quartic equation in one variable t of the form

Q : t4 + at2 + bt+ c = 0, for a, b, c ∈ R,

i.e., the set of points (a, b, c) in R3 for which Q does not have four distinct
solutions 10 . To understand the connection of the tetrahedron and the swallow-
tail, let us again descend one dimension and consider an equilateral triangle.
By Coxeter’s reasoning, the symmetry group of the triangle is the group A2
generated by two mirrors, in total there are three mirrors. We can view them
as the planes x1 = x2, x1 = x3 and x2 = x3 in R3, see Fig. 6.

P

Figure 6: Mirrors for A2 (left), action of A2 on a point P in the triangle
(right).

The reflections in the three mirrors leave points on the diagonal (x, x, x) of
R3 where they are. Said differently, reflections leave points P = (x1, x2, x3)
with x1 = x2 = x3 invariant, and hence also its perpendicular plane

H : x1 + x2 + x3 = 0

Thus, the group A2 acts on points in the plane H and we may consider our
triangle lying in this plane. In this setting, the three mirrors correspond to the
lines joining an edge of the triangle perpendicularly with the opposite vertex.
Let us consider the effect of the group on a point in H: One point can be
transported to at most six different points (one then says that these points all
lie in the same orbit), see Fig. 6. It is clear that any point not lying on a mirror

10 For a quadratic equation t2 + pt+ q = 0 the discriminant is p2

4 − q. So in this case, the
discriminant is the expression under the root in the solution formula of the quadratic equation.
For equations of higher degree, there does not exist a general solution formula but one can
still look at discriminants.
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has a six point orbit, whereas the mirror points lie in smaller orbits 11 (these
are called irregular orbits).
The idea is now to relate the space of all orbits of points in the plane H to the
space of roots of cubic polynomials such that the irregular orbits correspond to
those cubic polynomials which have a multiple root. As in the case of a quadratic
equation, a cubic equation has a multiple root whenever its discriminant vanishes.
So let us set up this correspondence for A2: consider the space of all orbits of
A2. A polynomial defined on our surrounding space R3 is invariant under the
transformations of A2 if its value is the same on all points in the same orbit.
For example, take the function

f(x1, x2, x3) = x1 · x2 · x3.

Its evaluation at the point p = (1,−1, 0) is just f(1,−1, 0) = 0. The orbit of p
consists of the six points (−1, 1, 0), (0,−1, 1), (0, 1,−1), (1, 0,−1) and (−1, 0, 1),
and one can easily check that f evaluated at each of these six points equals
0. This means that the invariants can be viewed as functions on the space of
orbits, meaning that for each orbit, f has a uniquely determined value. As
“basic” invariants of A2, one gets exactly three polynomials

σ1 = x1 + x2 + x3, σ2 = x1x2 + x2x3 + x3x1, σ3 = x1x2x3,

all other invariants are polynomials in σ1, σ2, σ3. Conversely, for any value of
σ1, σ2, σ3 or their polynomial combination, there is one corresponding orbit. On
the plane H, the invariant σ1 is zero, and we are left with σ2 and σ3. They
determine the polynomial

(t− x1)(t− x2)(t− x3)
= t3 − t2(x1 + x2 + x3) + t(x1x2 + x2x3 + x3x1)− x1x2x3

= t3 + tσ2 − σ3

and as a result the set of roots {x1, x2, x3}. In this way, an orbit of the
group action of A2 on H corresponds to the set of roots of a cubic polynomial
t3 +λ1t+λ2. (In order for these notions to be well-defined, we need to consider
λ1, λ2 ∈ C and solutions x1, x2 in C2.) As we are in H, one can substitute
x3 = −x1 − x2 and obtain the so called Vieta map

σ : C2 → C2, (x1, x2) 7→ (λ1(x1, x2), λ2(x1, x2)),

with λ1(x1, x2) = σ2 and λ2(x1, x2) = −σ3, sending a point in H to the space
of its orbit. This correspondence works in the other direction as well. The

11 How many points lie in the orbit of a mirror point that is not the center?
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so-called critical set 12 of the Vieta mapping is the union of the mirrors in H,
which corresponds to the polynomials having a multiple root. So the irregular
orbits of A2 are exactly the points

(λ1, λ2) = (λ1(x1, x2), λ2(x1, x2))

such that t3 + λ1t + λ2 = 0 has a multiple solution. Similar to the case of a
quadratic equation, these multiple solutions are described by the vanishing of
the discriminant, which in this case is 9λ2

2 − λ3
1 (see Fig. 7).

9λ2
2 − λ3

1

Figure 7: The cusp, discriminant of the polynomial t3 + λ1t+ λ2 = 0.

The same ideas can be generalized and lead to discriminants of reflection
arrangements. For our favorite example, the tetrahedral group A3, the discrimi-
nant is that of the quartic polynomial

t4 + λ1t
2 + λ2t+ λ3 = 0.

This discriminant can still be computed (as the determinant of a 3× 3-matrix).
If we rename x = λ1, y = λ2, z = λ3, the equation is

16x4z − 4x3y2 − 128x2z2 + 144xy2z − 27y4 + 256z3 = 0,

and the set of real solutions is a singular surface in R3. Can you guess why this
surface (see Fig. 8) is called the Swallowtail 13 ?

12 The critical set is the set of points p = (p1, p2) such that the vectors of derivatives
v1(p) =

(
∂λ1
∂x1

(p), ∂λ1
∂x2

(p)
)
and v2(p) =

(
∂λ2
∂x1

(p), ∂λ2
∂x2

(p)
)
of λ1(p) and λ2(p) are linearly

dependent, that is, the vector v1(p) is a multiple of v2(p).
13 An animation of the swallowtail can be found under
https://www.youtube.com/watch?v=MV2uVYqGiNc&list=UUNuhwFeHg6EIqQaVIs1KRRg
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Figure 8: Swallowtail from above (left) and below (right).
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