
Demonstration of a Customizable Knowledge
Graph Visualization Framework∗

Vitalis Wiens1,2 and Steffen Lohmann3

1 L3S Research Center, Leibniz University of Hannover, Germany
wiens@l3s.de

2 TIB Leibniz Information Centre for Science and Technology,
Hannover, Germany

3 Fraunhofer Institute for Intelligent Analysis and Information Systems IAIS
St. Augustin, Germany

Abstract. In the context of the Semantic Web, various visualization
methods and tools exist. However, suitable visualizations are highly de-
pendent on individual use cases and targeted user groups. Therefore,
existing solutions require modifications and adjustments to meet the de-
mands of other use cases and user groups. In this demo, we present an
approach for a unified framework addressing customizable visual rep-
resentations of knowledge graphs. Our approach refines the commonly
used steps in the visualization generation process (i.e., data access, map-
ping to visual primitives, and rendering) for Semantic Web contexts.
Separation of concerns for individual steps and a modular and customiz-
able architecture build the foundation for a pipeline-based visualization
framework. The framework enables the creation and selection of the right
components for the right tasks, realizing a variety of use cases and visual
representations in Semantic Web contexts.

Keywords: Ontology visualization, knowledge graph visualization, cus-
tomization, visual representation, visualization pipeline framework.

1 Introduction

In Semantic Web contexts, various visualization methods and tools are available,
and new ones are being developed every year. The applied visualization meth-
ods range from indented trees and chord diagrams to treemaps and Euler dia-
grams. According to a recent survey [1], most applications use two-dimensional
graph-based representations in the form of node-link diagrams. Furthermore, this
survey indicates that “new visualization methods and tools are often developed
from scratch, omitting opportunities to learn from previous mistakes or to reuse
advanced techniques provided by other researchers and developers.”

The number of visualization methods, tailor-suited tools, along with the re-
quirements and necessity for customization indicate that a one-size-fits-all so-
lution is challenging, if not impossible, nor feasible, to realize. This particular

∗Copyright c© 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).



Fig. 1. An example pipeline using components for creating node-link diagrams.

observation, and the fact that applications are often developed from scratch, mo-
tivates the design for a unified visualization framework approach. The challenge
of unification is realised through divergence of different components, allowing for
adjustments and customization for the visualization of the data at hand. This
conceptualization allows to create various visualizations through the exchange
of components for individual use cases and data source. As our approach tar-
gets a unified visualization framework approach, we address this through the
divergence of customizable components and convergence in data models.

Our approach builds on the identification of commonly used steps in the cre-
ation of visual representations for the Semantic Web. Furthermore, the approach
employs the paradigm of separation of concerns for individual steps, increasing
its flexibility. Our framework realizes the approach and provides a modular and
customizable visualization pipeline that serves as a foundation for creating vi-
sual representations of knowledge graphs for different data sources, use cases,
and user groups. Customizable components serve as stand-alone artifacts for
different steps in the creation process of visualizations. The framework orga-
nizes the different components in a pipeline. The data models, provided as input
and output for various components, serve as convergence points within the visu-
alization pipeline. Therefore, we argue that the data models further contribute
to the reusability of components and sections of visualization pipelines. Figure 1
illustrates an example pipeline realizing node-link diagrams.

2 Approach

Most visualization tools employ the following steps to create visual representa-
tions: i) access the data; ii) map it to visual primitives (e.g., geometric shapes);
iii) render the primitives; and iv) optionally add animations and user interac-
tions. Typically, these steps are created within an application addressing a single
use case and a single user group. In order to address the various requirements
of different use cases and user groups, our approach employs a separation of
concern paradigm and refines the visualization generation process.

We argue that due to the variety of Semantic Web technologies, visualiza-
tion methods, and tools, a unified visualization framework is achievable through
divergence. Components perform specialized tasks, whereas their results are con-
verged into corresponding data models. The refined visualization process focus-
ing on the creation of node-link diagrams is presented in Table 1.



Step Component Responsibility

1 Data Access Handler Specify Semantic Web data source and parameters for
data retrieval in JSON format.

2 Parser Process retrieved Semantic Web data and organize it
in the Resource-Relation Model.

3 Vertex-Edge Mapper Select data for visual representation and create graph
structure.

4 Node-Link Mapper Modify the graph structure using merge, split, and ag-
gregation operations.

5 Rendering Create visual primitives and integrate the specifica-
tions of other components (6–8).

6 Visual Appearance Specify how nodes and links are rendered.

7 Spatial Layout Specify how elements are organized in the layout.

8 Interactions Specify interactions for graph, nodes, and links.

Table 1. Tabular representations of different components and their responsibilities.

3 Customizable Visualization Pipeline Framework

The visualization generation process typically involves the identification of data
sources, its mappings to visual primitives, and optionally the creation of user
interactions. Our framework4 provides a customizable visualization pipeline, al-
lowing users to configure data sources, apply graph manipulations, and define
the visual appearance of rendering elements. This conceptualization allows to
create various visualizations through the exchange of components for individual
use cases and data sources.

In this demo, the pipeline can access four example data sources. The node-
link mappers demonstrate different graph manipulations. The rendering module
creates node-link diagram visualizations that are adjustable w.r.t. their visual
appearance that is based on GizMO [2]. Additionally, the rendering module
implements basic user interactions such as zooming, dragging and panning. A
force-directed layout is used to create the spatial assignment of nodes and links
in the graph visualization.

The framework provides basic implementations for individual components.
All data models and the components for the data access module and the map-
per module are implemented in plain JavaScript. The rendering components use
D3.js additionally for creating interactions and visual primitives as SVG ele-
ments. Furthermore, this framework allows users to export the pipeline as a
bundle which includes the implementation of the components and a React ap-
plication frame. We argue that the bundle serves as a basic infrastructure for
extending and adjusting the implementation to the requirements of different use
cases and user groups. Figure 2 gives an overview of the UI of the framework.

4https://github.com/vitalis-wiens/donatello-pipelines

https://github.com/vitalis-wiens/donatello-pipelines


Fig. 2. Overview of the UI of the framework. Left side: Module selection for data
sources, vertex-edge mapper, and node-link mapper. Note: In this version we imple-
mented only a single vertex-edge mapper. Top: Pipeline configuration. Bottom: Visual-
ization preview based on the selected components and their configurations.

4 Discussion

The limitations of the current prototype implementation for this demonstration
are twofold. First, the UI for creating pipelines is fixed w.r.t. to the arrangement
of the components, i.e., data-source selection, vertex-edge mapper, node-link
mapper, and rendering module. Second, our prototype implementation addresses
only the visual representations in the form of node-link diagrams. Thus, the data
models and the pipeline composition are tailor-suited for such visualizations.

Furthermore, the components use a top-down communication where their
results feed into the next component in the pipeline. We envision the bottom-up
communications to enable the creation of applications that allow through means
of visual editing also to modify the data source. For example, changes in the
graph propagate backward through the pipeline and create updates for the data
source, e.g., SPARQL query updates, REST-API calls for creating new data, or
integration with version control systems such as git.

Our approach exports the created pipeline as a zip file creating source code
for a fully functional React core application that serves as an entrance point for
development. Separation of concerns for individual components and the pipeline
organization allow developers to adjust and customize individual components to
their needs and the requirements of the underlying use case. Due to the aspects
that our components are derived through the separation of concern paradigm,
and their conceptualization as stand-alone artifacts, (i.e., each component takes
inputs, process them, and provides one output), allow for their reuse in other
visualizations. The implementation of our components uses class inheritance,
thus new components can be derived from existing ones that serve as examples.



5 Demonstration

In the demonstration, we will introduce the approach realizing customizable
visualization pipelines in Semantic Web contexts. While our demo application
targets to showcase the flexibility and ease-of-use to create visualizations in the
form of node-link diagrams, its current implementation is a prototype, realizing
the necessary configurations and modifications in pre-selected components. We
will introduce the individual components, their responsibilities, their interplay,
and how to extend and configure individual parts of the pipeline to create vi-
sual representations for knowledge graphs. Furthermore, we will explain how the
pipeline configuration is used to create a bundle comprising of the implemented
components, the pipeline configuration, its initialization, and a core React ap-
plication framework.

At ISWC, we will provide a hands-on experience of the demo application:
Users will be enabled to create custom visualization pipelines using the configu-
ration UI of the application. The configured pipelines can be downloaded as zip
files, thus users are equipped with an infrastructure to directly start developing
and adjusting the pipeline to their needs. We will direct the audience to the
demo web application, allowing for independent testing. The application is open
source and available under the MIT license, thus allowing for reusing, extending,
and contributing to the project.

Finally, we hope that discussions with Semantic Web experts in the context of
the conference will allow us to identify further requirements, needs, and features
for the approach and its implementation. An overview of the application, its
features, and usage is illustrated in the corresponding demo video5.

Acknowledgments

This work is co-funded by the European Research Council project Science-
GRAPH (Grant agreement #819536).

References

1. Dudáš, M., Lohmann, S., Svátek, V., Pavlov, D.: Ontology visualization methods
and tools: a survey of the state of the art. Knowledge Eng. Review 33 (2018)

2. Wiens, V., Lohmann, S., Auer, S.: Gizmo–a customizable representation model for
graph-based visualizations of ontologies. In: Proceedings of the 10th International
Conference on Knowledge Capture. pp. 163–170 (2019)

5https://drive.google.com/file/d/17cSLjDNq7kpepfbmZiYevM10eWUE9gRh/

preview

https://drive.google.com/file/d/17cSLjDNq7kpepfbmZiYevM10eWUE9gRh/preview
https://drive.google.com/file/d/17cSLjDNq7kpepfbmZiYevM10eWUE9gRh/preview

	Demonstration of a Customizable Knowledge Graph Visualization FrameworkCopyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). 
	Introduction
	Approach
	Customizable Visualization Pipeline Framework
	Discussion
	Demonstration


