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In this snapshot we will outline the mathematical
notion of curvature by means of comparison geometry.
We will then try to address questions as the ways in
which curvature might influence the topology of a
space, and vice versa.

1 Introduct ion

At its origin, geometry is the study of distances and angles in the 2-dimensional
Euclidean plane and has been around in the form of a mathematical theory as
we know it today since the time when Euclid (the famous Greek mathematician
and philosopher who lived between the fourth and third Centuries BC) wrote
the vastly influential “Elements” in circa 300 BC. 1 The concepts expressed
in his treatise are directly inspired by everyday observations – for example,
by lengths, curves or slopes that we can encounter in our surroundings. More
recently, and essentially supported by the development of differential calculus,
curvature started to be understood as a fundamental geometric entity in the
19th century. This new way of looking at curvature was initiated by the work of
Nikolai Iwanowitsch Lobatschewski (1792–1856) and János Bolyai (1802–1860),
who discovered that the parallel postulate is independent of the other axioms
of Euclid’s geometry by constructing a geometry satisfying all but the parallel
postulate (nowadays called hyperbolic geometry, to which we will come back

1 Clearly, other cultures were independently aware of geometric concepts, which are surely
an inevitable ingredient for larger construction projects.
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shortly). 2 Afterwards, it was the work of Georg Friedrich Bernhard Riemann
(1826–1866) that started the conceptual analysis of geometries in mathematics
in terms of structures on spaces; beginning with surfaces and reaching far into
mathematical ground where the human intuition breaks down.

2 Metr ics and curvature bounds

In the broad area of pure mathematics, one is often interested in abstract
notions that are characterized by a minimal number of requirements based on
which a set of concepts can be formulated.

2.1 Metr ic spaces

For the concepts of distance, angle and curvature the nowadays favourable
notion of this kind is a that of a length space. 3 A length space is a metric space
with an additional property that ensures that distances can be understood in
terms of paths between points in the space.

First, let us recall that a metric space is a tuple 4 (X, d), where X is a set
and the metric d : X ×X → [0,∞) is a map satisfying

(i) d(x, x) = 0 for all x ∈ X,
(ii) d(x, y) = d(y, x) for all x, y ∈ X,
(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

The letter “d” stands for “distance”, of course, which is measured between two
points by the metric. For example, every interval [a, b] is a metric space, where
d(x, y) = |y − x| for x, y ∈ [a, b].

Crucially, a metric space yields a notion of continuity for maps as follows.
We call f : (X, dX)→ (Y, dY ) continuous, if for all points x ∈ X and all ε > 0
there exists a δ = δ(x, ε) > 0 such that dX(x, y) < δ implies dY (f(x), f(y)) < ε
for very y ∈ X. A continuous map γ : [0, 1]→ (X, d) from the interval [0, 1] into
X is called a path in X if the length L(γ) defined by

L(γ) := sup


#{ti}∑
i=1

d(γ(ti−1), γ(ti)) | {ti} partition of [0, 1]


2 Euclidean geometry is based on five postulates, of which the parallel postulate states that
“Given any straight line and a point not on it, there exists one and only one straight line
which passes through that point and does not intersect the first line, no matter how far they
are extended.”
3 It is a mathematical object that enables us to speak about such concepts within it, for
example we can tell how far two points are apart or what we mean by the angle between two
paths.
4 A tuple is a finite ordered list (sequence) of elements.
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exists. Here the supremum is taken over all partitions {ti} of the interval [0, 1],
which are characterised by a finite set of numbers 0 = t0 < t1 < · · · < tn−1 <
tn = 1, and the sum runs over the elements in this set. 5 The idea behind this
definition is to approximate the actual path by using line segments between
finer and finer partitions, as illustrated in Figure 1.

Figure 1: Improving the approximation of the curved path by finer partitions
{ti}. The dashed lines depict the distance between points in X.

A metric space (X, d) is called a complete length space, if it satisfies the
following conditions:
(iv) d(x, y) = inf{L(γ) | γ : [0, 1] → (X, d) a path with γ(0) = x, γ(1) = y}

for all x, y ∈ X.
(v) For all x, y ∈ X there exists a path γx,y : [0, 1]→ (X, d) with γx,y(0) =

x, γx,y(1) = y and d(x, y) = L(γx,y).
The first property ensures that the distance in X is intrinsically connected to

the length it induces on paths, while the second property prevents the existence
of situations where the distance is not actually realized by a path but by a
limiting sequence not converging to a path in X, see Figure 2

Figure 2: Limiting sequence of paths {γi}.

5 If the supremum does not exist, γ is usually called a non-rectifiable path. In this text, we
will not be concerned with these objects.
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In this definition the path γx,y, which we will refer to as a minimizing path
from x to y, is not necessarily unique.

2.2 Examples of length spaces

It is in Euclidean space En, which is the length space Rn equipped with the
metric d(x, y) = |y − x|, where |(v1, . . . , vn)>| = (

∑n
i=1 v

2
i ) 1

2 is the usual norm
of a vector.

The minimizing path between two points is in fact unique in Euclidean
space. This first example of a length space is merely the n-dimensional vector
space Rn equipped with the metric given by the length of the difference of two
vectors, where we interpret the vectors in Rn as the points of this space. More
precisely, let x = (x1, . . . , xn)> and y = (y1, . . . , yn)> be vectors in Rn. Then
y−x = (y1−x1, . . . , yn−xn)> is a vector of length |y−x| = (

∑n
i=1(yi−xi)2) 1

2

and we define the Euclidean distance between the points represented by x and
y as d(x, y) := |y − x|.

Another interesting length space is given by the surface of a ball S2(r), which
is called a 2-sphere of radius r and is defined as the set S2(r) := {v ∈ R3 | |v| = r}
equip with the metric defined as follows. If we fix two distinct points x and
y on the sphere then the lines through the points and the coordinate center
0 ∈ R3 intersect forming an angle αx,y ∈ (0, π]. Now define d(x, y) := αx,y · r,
see Figure 3.

Figure 3: The 2-sphere as a length space.

This is precisely the length of a circle segment through x, y and centered at
0, which shows that S2(r) is in fact a complete length space.

An interesting property of a length space (X, d) is its diameter diam(X),
defined by

diam(X) := sup
x,y∈X

{d(x, y) ∈ R≥0} ∪ {∞}. (1)
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It is not difficult to convince oneself that the diameter of Euclidean space is
infinite, while it is well known that the sphere S2(r) has a diameter of πr. Two
length spaces with distinct diameters cannot be the same, and we conclude that
S2(r) and E2 must be fundamentally different.

The final example of a length space is slightly more complicated. Consider
the open ball B2(r) := {v ∈ R2 | |v| < r}, that is, the solid ball of radius r
without its boundary circle, and let x and y be points in B2(r). Now we draw a
circle through x and y that intersects the boundary circle in right angles in the
points a and b, see Figure 4. The labels are chosen in a way that if we move
around the circle counterclockwise, we read: a, x, y, b. It could happen that
the points in fact lie on a straight line, which intersects the boundary circle in
right angles. We will resolve this issue by employing an old trick in geometry –
we simply call a straight line a circle of infinite radius.

Now we define the hyperbolic distance

d(x, y) := log |y − a||x− b|
|x− a||y − b|

. (2)

Figure 4: The distance in hyperbolic space.

The open ball B2(r) equipped with this metric is called hyperbolic plane
of scale r and is denoted by H2(r). The minimizing path between two points
is exactly the circle segment connecting x and y from the definition above.
From the definition given above, it can be calculated that the minimizing path
between any two points x and y in H2(r) is precisely the segment of the circle
through the two points that meets the boundary at right angles.

Note that points on the boundary, that is, points described by vectors of
absolute value r, are not contained in H2(r). If we move x along the arc
closer and closer to a (as shown in Figure 4), we see that the expression (2)
becomes increasingly large and we conclude that diamH2(r) =∞. But what
distinguishes the geometries H2(r) and E2 if the diameter does not? The answer
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should not be surprising to anyone who has read the text so far: They can be
distinguished by their curvature!

Early on in the development of differential geometry the spaces E2,S2(r) and
H2(r) were extensively studied and it turns out that the metrics we have defined
are forerunners of a stronger mathematical structure called a Riemannian metric.
The Killing-Hopf theorem in Riemannian geometry states that these three types
of spaces are in a certain sense the most important spaces of constant curvature.

2.3 Model spaces of constant curvature

From the examples explained so far it is not yet clear what curvature is. It
surely cannot be related to the shape of the minimizing paths – these were lines
in Euclidean space and circle segments in both the spherical and the hyperbolic
cases. The fundamental difference between these three spaces only becomes clear
after examining triangles, by which we refer to three distinct points which are
pairwise interconnected by minimizing paths - the sides. Triangles in Euclidean
space are well-known to have a sum of angles of π, while a triangle on the sphere
looks “thicker” and a triangle in the hyperbolic plane looks “thinner” (as shown
in Figure 5). We will henceforth think of curvature as a real number κ, which
determines to which degree triangles in a space look different from a triangle
in Euclidean space. It is positive, if triangles look “thicker” and negative, if
triangles look “thinner”. After examining the Riemannian structure of these
spaces it turns out that H2(r) has curvature − 1

r2 , E2 has no curvature and
S2(r) has curvature 1

r2 .

Figure 5: Triangles in the hyperbolic plane, the Euclidean plane and the sphere.
Keep in mind, that the sides are minimizing paths in the respective
spaces.

This motivates the definition of these spaces as model spaces of constant
curvature and we introduce the notation:

Mκ :=


S2( 1√

κ
) κ > 0

E2 κ = 0
H2( 1√

−κ ) κ < 0
.
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Here, constant curvature refers to the fact that it does not matter where
and how in the space we consider a triangle with fixed side lengths. The sum of
angles will not be affected by these choices.

2.4 Extending the not ion of curvature

The way to extend this notion of curvature to arbitrary length spaces is by
comparison with these model spaces. If we have a triangle ∆ = ∆(x, y, z) in a
length space (X, d) whose sides are minimizing paths in X, then we can draw
a triangle ∆ with the same side lengths in a model space Mκ. We call ∆ a
comparison triangle for ∆. 6 For every point p on a side of the triangle ∆ we
can find a comparison point p, which has the same distance to the end points
of the side it is located on as in the original triangle.

Note that curvature for length spaces is only defined in this comparison sense,
which implies that all triangles in a space we have in this way in comparison to
triangles in Mκ. Moreover, this κ does not have to be optimal.

Figure 6: Triangle in a space and comparison triangle with point p and compari-
son point p. We compare the distances dX(z, p) and dE2(z, p) = |p−z|.

We say that X has curvature at least κ, if the distance between every point on
a side and the opposite vertex is greater or equal to the corresponding distance
for the comparison point. Analogously, we say that X has curvature at most κ,
if this distance is always smaller than the distance in the comparison triangle.

6 It does not matter where in our model space we draw the comparison triangle, since the
curvature is everywhere the same. Moreover, we note that it might not always be possible to
draw a comparison triangle, because the finite diameter of S2 prevents us from considering
larger side lengths.
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3 Recogniz ing topology

3.1 The Euler character ist ic

Topology describes a certain quality of a space, which captures its global structure.
It does not detect changes such as bending, as long as we do not cut or rip apart.
For example, the 2-sphere and the surface of a tetrahedron are topologically
equivalent, as we will see later.

One of the oldest invariant quantities that can be defined on this global
structure is the Euler characteristic. Let us give an intuitive definition of this
important quantity.

Think of a length space X, which is the result of gluing together triangles
along their edges without letting them intersect, and in such a way that the
construct closes up, that is, it forms a closed surface. Then, we can count the
number of triangles we needed – call this the number of faces F . Furthermore,
we count the number of edges E and the number of vertices V after the gluing
procedure in our construct. The Euler characteristic of this object is then
defined as

χ(X) := F − E + V (3)

Quite surprisingly, the Euler characteristic does not depend on the way we
choose to glue the triangles, if we happen to build the same construct. 7 It
measures an entity called the genus of the surface given by X, which we can say
in a very naive way counts the number of holes that are present in the space
(as shown in Figure 7).

3.2 Connect ion between curvature and the Euler character ist ic

Now comes the tricky part. In a length space like the one we described above,
we can “flatten” all the trianglesin such a way that they become like those found
in the Euclidean space, and this can be done without changing the topology
of the space. Think of this as a procedure that “concentrates” all the metric
information on the vertices (as shown in Figure 8). 8

7 A proper definition of this notion requires a few technical assumptions, which I avoid here
to keep the presentation simple. The reader not familiar with this fact is invited to carry this
out for a few triangular subdivions of the 2-sphere. A triangulation requires to give the space
the structure of a simplicial complex (up to a homeomorphism). For all of these the number
χ(S2(r)) turns out to be 2 and is clearly independent of the radius we choose.
8 The more advanced reader will immediately realize that this does not always work in
terms of the pictures that we drew embedded in R3. Nevertheless, this is a valid operation
in a more abstract sense, and we can make it work even for three dimensional figures, if we
choose our triangles small enough.
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Figure 7: Example of a surface with genus 2 glued from triangles.

Figure 8: Flattening a triangular subdivision of the sphere.

That means curvature is only an interesting property if the sides of our
triangles (of minimizing paths) we use to measure it enclose at least one vertex.
Let {v1, . . . , vV } denote the set of vertices in X. Consider a small triangle
around every vertex vi in X and denote by αi the sum of the angles. As we
have seen above αi < π would correspond to negative curvature, αi = π would
mean that at vi we have glued triangles in a plane, while αi > π corresponds to
positive curvature.

The Gauß–Bonnet theorem tells us that we can detect the Euler characteristic
by examining the curvature; more precisely it states

V∑
i=1

(αi − π) = 2πχ(X).

For example, if we have no curvature at all, then X must have Euler charac-
teristic zero. On the other hand if we know that the Euler charasteristic is zero,
as we do for the torus – the surface of a doughnut, which has precisely one hole
– then the sum on the left hand side has to vanish as well, that is, there have to
be points, or areas, with positive curvature that compensate points, or areas,
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Figure 9: Small triangle around a vertex vi, with a sum of all angles αi =
]A + ]B + ]C .

with negative curvature. If we draw the standard picture to depict the torus
this expected property of the space becomes immediately evident, see Figure 10.

Figure 10: Negatively and positively curved triangles on a torus.

Now we want to pose a similar question for a more general complete length
space X – we would like to “detect holes”, which we can see as something
contributing to the topological complexity of X. Recall that we constructed
length spaces by gluing triangles. Next, we would like to consider ’gluings’ from
more general buildings blocks. Note that before we used points as vertices, line
segments as edges and triangles as faces, and all of these entities have something
in common – they arise if we consider 1, 2, or 3 points in Rn and then take the
convex hull. Recall that a subset U ⊂ Rn is called convex, if any two points
within U can be connected by a line segments which lies within U entirely.
Taking the convex hull of a number of points is a procedure that determines the
smallest convex subset in which all of these points are contained. The higher
dimensional building blocks ∆n for n ∈ N, called n-simplices, are defined as the
convex hulls of n+ 1 points in Rn. For n = 3, this is a filled tetrahedron, while
for n ≥ 4 the objects are of course harder to imagine and to visualize.
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We note that the boundary of an n-simplex is composed from (n−1)-simplices
(n+ 1 of them, to be precise) and we can equip an n-simplex with the choice
of labels for each corner point. Namely, we call ∆n, together with a map
o : {1, . . . , n+ 1} → ∆n that sends each number n ∈ {1, . . . , n+ 1} to a distinct
corner point, an oriented simplex.

Now think of a spaceX that is obtained by gluing in an “orderly fashion” from
finitely many of these oriented building blocks, and consider the following device
to keep track of the blocks we used. For every n ∈ N let σn := {∆n

1 , . . . ,∆n
kn
}

be the set of n-simplices in X – recall that we allowed only finitely many, so
most of the σn are just empty, say kn many for every n. If we take σn as the
basis of a real vector space Cn := 〈σn〉 – the vector space spanned by the σn –
we can express every element η ∈ Cn as formal sum η =

∑k
i=1 λi∆n

i for certain
λi ∈ R depending on η. Moreover, we can keep track of the way we glued the
simplices along their boundary by a boundary map ∂n+1 : Cn+1 → Cn, which is
linear. An important observation here is that the boundary of the boundary is
an empty set.

For obvious reasons we would like to ask, which part of the vector space Cn
says something meaningful about the topology of X. The idea is to look at
formal sums of simplices that do not have a boundary, that is, lie in the kernel
of ∂n, and that are not a boundary themselves, that is, are not in the image of
∂n+1. Thus, these elements have to enclose something, which cannot be filled
by higher dimensional simplices – a more general “hole”.

A comment is in place here. The material presented above is a very short
overview of objects that show up once we introduce simplicial homology. A
proper definition is surely beyond the scope of this note and the entire ma-
terial should be considered as an outlook on topological invariants for higher
dimensional objects. I refer to the bibliography for the more interested reader.

To measure how many of these we have in X, we define the Betti numbers
of X as bi(X) := dim(Ker ∂n/ Im ∂n+1).

IfX is a surface as in the beginning of this section, then b0(X)−b1(X)+b3(X)
turns out to be precisely the Euler characteristic of X and thus we define the
Euler characteristic for a more general length space X glued from building
blocks as

χ(X) :=
l∑
i=1

(−1)ibi(X),

where l is the largest number such that σl 6= ∅.
The Euler characterstic and Betti numbers are powerful tools to distinguish

two spaces in terms of their topology.
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4 A gl impse at Riemannian geometry

As mentioned earlier, some of the examples of length spaces, such as S2(r),
H2(r), En or the torus T 2, can be endowed with a much stronger structure
encoding their metric. First of all, they are examples of smooth manifolds of
dimension n, which are spaces locally homeomorphic to Rn (this means that the
proximity of every point looks topologically like a ball in Rn) and maps between
them admit a notion of differentiability. Naively, we think of these spaces as
glued from building blocks (for example, triangular surfaces in dimension 2) in
a way which does not produce corners or sharp edges (see Figure 7). Secondly,
they are equipped with a Riemannian metric, which enables us to consider
certain derivatives of the metric that determine curvature by means of functions
on M . Thereby, in a Riemannian manifold, which is an (underlying) smooth
manifold equipped with a Riemannian metric, we can think of curvature as an
actual value (not just as a bound on the shape of triangles).

Riemannian geometry was kicked off by a twist of fate, namely Johann Carl
Friedrich Gauß 1777–1855) picking the topic for Riemann’s habilitation from
a list of suggestions. In his inaugural lecture entitled “Über die Hypothesen,
welche der Geometrie zu Grunde liegen” (held on June 10, 1854) B. Riemann
laid the foundation of this important area of mathematics, which was then
further studied by geometers such as H. A. Lorentz, H. Minkowski and H.
Poincaré, leading Albert Einstein (1879–1955) to choose a (pseudo-)Riemannian
manifold to model space-time in his theory of general relativity published in
1915. Only afterwards, thanks to the work of Hermann Klaus Hugo Weyl (1885–
1955) and Hassler Whitney (1907–1989), mathematicians came to understand a
Riemannian manifold by means of the definition we briefly outlined above – this
applies especially to the theory of Hausdorff topological spaces and differential
structures, that had not been studied in a rigourous axiomatic treatment before.
In contrast, the idea to study geometric entities such as curvature in terms of
metric spaces is even younger and owes much to the work of Heinrich Hopf
(1894–1971) and Willi Ludwig August Rinow (1907–1979) from 1932.

For Riemannian manifolds, there are several remarkable theorems that inter-
connect their curvature with the topology of the underlying smooth manifold.
The first we would like to mention is a theorem of Jacques Salomon Hadamard
(1865–1963) and Élie Joseph Cartan (1869–1951)

Hadamard-Cartan’s Theorem. Let M be a simply-connected complete Rie-
mannian manifold with curvature at most 0 (in other words, M has non-positive
curvature). Then M has the same topology as Rn.

If not familiar with simply-connectedness, think of it as an assumption that
makes absolutely sure that there are no “one dimensional holes” – in particular
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it implies b1(M) = 0. Therefore, this roughly says that there is only one simply-
connected smooth manifold that allows us to endow it with a Riemannian metric
with curvature at most 0. On the other hand, there is a “gigantic” number
of complete Riemannian manifolds with non-positive curvature and arbitrarily
large first Betti number.

This picture changes fundamentally if we are interested in non-negative
curvature, that is, in curvature at least 0. In this regime “too much” curvature
restricts the size of the space in terms of the diameter. 9 Even stronger, if the
curvature in a Riemannian manifold is larger than a certain threshold, while the
diameter is not too small as well, then the manifold must be the sphere. The
latter statement is called the Grove-Shiohama diameter sphere Theorem (1977).

Somewhat complementary to the Hadamard-Cartan theorem for non-positive
curvature, Mikhail Leonidovich Gromov proved the following surprising state-
ment for manifolds of non-negative curvature

Gromov’s Theorem. LetM be a complete Riemannian manifold of dimension
n with curvature at least 0. Then, the Betti numbers bi(M) cannot be larger
than a certain constant C(n), which only depends on the dimension n. 10

With this at hand, it becomes easy to construct manifolds that do not even
allow us to find a single metric with non-negative curvature on them.

Although the above mentioned results are important theorems that provide
great insight in the topic at hand and require quite a bit of mathematical tools
and dexterity to state the proofs, geometers are still only scratching the surface
of Riemannian geometry.

5 Where to proceed from here?

In case the discussion up until this point raised the appetite for modern geometry
in the reader, there are numerous places to continue the investigation certainly
depending on your mathematical background.

To start off, one could begin reading K. Jänich’s “Topology” [6], which is a
gentle introduction to the realm of topology and continue into geometry with
C. Bär’s “Elementary Differential Geometry” [1].

From there, one can advance deeper into Riemannian and differential geom-
etry, e.g. with “An Introduction to Differentiable Manifolds and Riemannian
Geometry” [3] by W. Boothby or “Riemannian Geometry and Geometric Anal-
ysis” [7] by J. Jost. Alternatively, the book “A Course in Metric Geometry”

9 This is called the Bonnet-Myers Theorem in classical Riemannian geometry, though it
actually requires curvature at least C for a positive constant C.
10 It is a conjecture of Gromov that C(n) = 2n, but the upper bounds found so far are off
by several orders of magnitude.
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[4] by D. Burago, Yu. Burago and S. Ivanov tends more towards the metric
viewpoint that we have employed in beginning of the text.

Ultimately, the article “Sign and geometric meaning of curvature” [5] by
M. L. Gromov paints a clear picture of modern global Riemannian geometry
and anticipates the development of Alexandrov geometry by Yu. Burago, M.
Gromov and G. Perelman. An introduction to the latter is currently being
written by S. Alexander, V. Kapovitch and A. Petrunin.

A delightfully complete overview of current trends in Riemannian geometry
is given in the book “A Panoramic View of Riemannian Geometry” [2], which
was written by M. Berger – one of the most influential figures in geometry of
the late 20th century and a member of the enigmatic group Arthur L. Besse.

Finally, even the very starting point – B. Riemann’s “Über die Hypothesen,
welche der Geometrie zu Grunde liegen” – has an interesting viewpoint to offer
and is available in several commented versions, e.g. by J. Jost [8]. Then maybe
you will find a reason to light a candle on June 10, celebrating the day of birth
of Riemannian geometry and tip your hat to C. F. Gauß for his neat choice.
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