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Abstract
In this contribution, field-induced interactions of magnetizable particles embedded into a soft
elastomer matrix are analyzed with regard to the resulting mechanical deformations. By
comparing experiments for two-, three- and four-particle systems with the results of finite
element simulations, a fully coupled continuum model for magneto-active elastomers is
validated with the help of real data for the first time. The model under consideration permits the
investigation of magneto-active elastomers with arbitrary particle distances, shapes and volume
fractions as well as magnetic and mechanical properties of the individual constituents. It thus
represents a basis for future studies on more complex, realistic systems. Our results show a very
good agreement between experiments and numerical simulations—the deformation behavior of
all systems is captured by the model qualitatively as well as quantitatively. Within a sensitivity
analysis, the influence of the initial particle positions on the systems’ response is examined.
Furthermore, a comparison of the full three-dimensional model with the often used, simplified
two-dimensional approach shows the typical overestimation of resulting interactions in
magneto-active elastomers.

keywords: magneto-active elastomers, field-induced interactions, nonlinear finite
element-method

(Some figures may appear in colour only in the online journal)

1. Introduction

Field-controllable materials facilitate a variety of engineer-
ing applications and are therefore of increasing interest in

Original Content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

today’s materials sciences. Their particular advantage over
other material classes is the potential to tune their macro-
scopic properties by different external fields. If, for example,
micron-sized, magnetizable particles are embedded into a
soft elastomer matrix, magnetic fields can be used as an
external stimulus that either changes the stiffness of the com-
pound material or induces a macroscopic deformation. Based
on these effects, such magneto-active elastomers (MAEs)
have recently been proposed for applications as actuators and
sensors [1–4], tunable valves [5] and vibration absorbers [6,
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7], medical robots [8] as well as prosthetic and orthotic devices
with controllable stiffness [9].

In order to optimize MAEs for specific applications, their
material behavior has to be understood properly. Present
theories regarding the modeling of these materials range from
numerically efficient particle-interaction models [10–16] over
highly-resolving, microscopic continuum approaches [17–25]
to macroscopic models [26–32]. In the latter, the composite
material is considered as a homogeneous medium and effects
of the underlying microstructure are captured implicitly via
magneto-mechanical coupling terms—see the work of Metsch
et al [22] and references therein for more details on the differ-
ent strategies.

The selection of a microscopic continuum approach for the
modeling of MAEs allows to account for their microstructure
and, with that, identify and gain insight into the underlying
mechanisms that influence the materials’ macroscopic beha-
vior: local magnetic and mechanical fields are resolved for
systems with arbitrary particle distances, shapes and volume
fractions. Moreover, this strategy offers the possibility to be
easily adaptable for materials with different dissipative and
non-dissipative properties of the individual constituents as,
e.g. shown in Kalina et al [21] for the modeling of MAEs
with magnetic hystereses. While the constitutive behavior of
the materials’ components is normally known from experi-
ments and used as input data, the model still has to be validated
with regard to its capability to reproduce the compound beha-
vior. To the authors’ knowledge, none of the models presen-
ted in the literature have been checked against real data so
far since experiments, see e.g. [33–38], are performed with
complex MAE samples which involve a lot of variables such
as the exact particle shapes and their distribution within the
system.

Within this contribution, a different approach is conduc-
ted: simulation results obtained by using the microscopically
motivated continuum model that is proposed in Metsch et al
[22] are compared to experiments for simplified two-, three-
and four-particle systems. This procedure facilitates a detailed
analysis of the samples’ behavior with a manageable num-
ber of influencing factors—it makes a validation of the model
possible. The applied experimental configuration is similar to
the one used in the work of Puljiz et al [39]: the samples are
exposed to a constant external magnetic field with varying
angle—the motion of the particles is tracked with a CCD cam-
era. However, in this work, the distance of the magnetizable
particles is decreased. Thus, in contrast to particle interaction
models, the effects of an inhomogeneous, non-linear magnet-
ization can be accounted for. Additionally, the necessity for a
finite deformation framework is highlighted.

The organization of the paper is as follows: in section 2,
the experimental configuration is described. Details on the
materials under consideration and the measuring procedures
are given. The applied modeling framework is briefly sum-
marized in section 3 while the model validation is carried
out in the subsequent section 4: experimental and simula-
tion results are compared for different systems using the full
three-dimensional and widely used two-dimensional model-
ing approaches. Additionally, a sensitivity analysis regarding

the influence of the initial particle positions within the sample
is performed. After a discussion of the results, the paper is
closed by concluding remarks and an outlook to necessary
future work in section 5.

2. Experimental configuration

In order to perform a validation of the modeling approach
presented in section 3, appropriate simplified MAE samples
have to be produced and analyzed with regard to their deform-
ation behavior in an external magnetic field. The associ-
ated experimental procedures are specified in the subsequent
subsection 2.1. Moreover, the magnetization behavior of the
embedded particles serves as an important input parameter for
the numerical simulations. Its characterization is described in
subsection 2.2.

2.1. Deformation behavior of simplified MAE samples

For the sample preparation, different requirements have to be
met: all particles must be placed in the same layer, to allow a
tracking of their displacements with in-plane measurements.
Moreover, the particle shape has to be close to spherical and
their distances must be sufficiently small, i.e. in the range of
one particle diameter or lower, in order to capture effects of
an inhomogeneous, non-linear magnetization. Concurrently,
the stiffness of the surrounding elastomer material must pre-
vent the particles from colliding since such effects, see the
works of Puljiz et al [40] as well as Biller et al [15, 41] for
details, are outside the scope of this contribution and impede
the numerical simulations. Finally, the size of the samples has
to be chosen in a way, that the external magnetic field can be
assumed as homogeneous and well-defined: this is of particu-
lar importance for the application of magnetic boundary con-
ditions within the numerical simulations [42].

In a first step of the sample preparation, a Polydimethyl-
siloxan (PDMS) layer with a thickness of 2mm and a quad-
ratic cross section of 15mm length is cured at a temperat-
ure of 60 ◦C for 24h. It consists of three components that
were purchased from Alfa Aesar and Gelest Inc., respectively:
19wt% of PDMSwith molecular weight 770 is added to a mix-
ture of 9,1wt% HMS-151 as crosslinking agent and 90.9wt%
DMS-V25 as functionalized polymer. The crosslinking reac-
tion is started with a platinum catalyst. After casting the first
layer of PDMS, superparamagnetic nickel particles, also pur-
chased from Alfa Aesar, with nearly identical size and spher-
icity are selected and placed onto the layer with tweezers—
using a micro manipulator device, they are pushed into their
final positions which are given in table 1. For all samples, the
aim is to achieve comparable distances between the particles,
see figure 1. The final preparation step includes the encapsu-
lation of the particles with another PDMS layer of the same
size and composition. It is allowed to cure sufficiently long
in order to ensure a good connection between the layers. The
applied procedure facilitates a positioning of the particles with
defined distances in the center layer of the surrounding matrix.
Rheology measurements of the bulk material indicate that the
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Figure 1. Samples under consideration: arrangement of the magnetizable particles for the (a) two-, (b) three-, and (c) four-particle system.

Table 1. Particle centers and equivalent diameters for the two-,
three- and four-particle systems shown in figure 1. For each sample,
the origin of the coordinate system is located in the center of the
upper left particle - due to the symmetry of the experimental
configuration with respect to the out-of-plane direction, the
z-coordinate is equal for all inclusions. An upper limit for the error
of the optical measurements is given by ±4µm.

two-particle system (np = 2)
i xi/µm yi/µm zi/µm Di/µm

1 0 0 0 208
2 329 -29 0 223

three-particle system (np = 3)
i xi/µm yi/µm zi/µm Di/µm

1 0 0 0 180
2 104 -279 0 182
3 269 -14 0 188

four-particle system (np = 4)
i xi/µm yi/µm zi/µm Di/µm

1 0 0 0 200
2 303 -27 0 208
3 -25 -309 0 189
4 275 -344 0 211

initial shear modulus of the elastomer is in the range of 2 kPa.
However, uncertainties in the sample generation and the lack
of a full experimental characterization required it to be determ-
ined by means of a fitting algorithm during simulation. This
procedure is in line with the previous work of Puljiz et al [39].

For the measurements, the 32-magnet Halbach array
described by Huang et al in [43] is used to subject the samples
to a homogeneousmagnetic field with a flux density of 170mT.
Bearings allow for a rotation of the array in order to change the
direction of the field. To ensure reproducibility of the exper-
iments, a preconditioning step is performed: changes of the
sample behavior due to, e.g. the well-knownMullins effect are
overcome by applying a full loading cycle prior to the meas-
urements. After an identification of the initial particle positions
which are required as an input for the numerical simulations,
the samples are placed in the center of the Halbach array. Thus,
the magnetic field is applied instantaneously. Using a step size
of ∆φ= 5◦, the movement of the particles is then tracked
with a Matrix Vision mvBlueCOUGAR-S CCD camera and a
Mitutoyo lens with 10x magnification. This setup allows for

Figure 2. Size distribution of the nickel particles: for each class the
number of particles Np with a diameter dp in the specified range is
counted.

an optical resolution of 1.33µm px−1. Finally, an extraction
of the particle positions and a calculation of their distances is
conducted with the open-source software tool TrackMate [44].

2.2. Magnetization behavior of the particles

In order to determine the magnetization behavior of the
particles, a novel approach is pursued. Instead of putting
powder of the material under consideration into a cylindrical
sample and using a vibrating sample magnetometer (VSM)
[39, 45], the behavior of just one particle with high sphericity
is analyzed in a superconducting quantum interference device
(SQUID). By doing this, the influences of an inhomogeneous
distribution of the local magnetic field and enclosed air within
the sample are expected to be minimized.

The extraction of appropriate particles is carried out with
the assistance of a digital optical microscope, Keyence VHX-
100, with integrated zoom lens. Due to a large variance in
the particles’ sizes, see figure 2, adequate working space
for a manual manipulation of the powder is necessary. For
the extraction of individual particles, a glass tip is thermally
formed into a manipulator and the tip diameter adapted to
the size of the selected particle—a suitable, slightly adhesive
material at the glass tip enables prehension.

For the measurements within the SQUID magnetometer,
the particle is embedded in a resin ball that is cast into a sil-
icone mould. The glass tip with the particle is pressed into
a prepared, partially cross-linked resin hemisphere, so that it

3
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Figure 3. Magnetization behavior of the particles: experimental
data obtained using the SQUID magnetometer and corresponding fit.
Additionally, the fit for the same material using data obtained with a
vibrating sample magnetometer is shown for a comparison [40].

adheres to the cut surface. Using a microscope with transmit-
ted and simultaneous incident light, the presence and position
of the particle on the cut surface are checked. The final spher-
ical shape is achieved by pouring resin into the silicone mould.
Since the cross-linked resin does not allow any further optical
measurements, the presence of themagnetic particle within the
sample is checked again without direct contact using aMatesy
CMOS-MagView magnetic field camera.

As the particle cannot be detected by its own magnetism,
the weak magnetic field of a large-area permanent magnet is
used to generate a homogeneous magnetic background in front
of which the particle emerges by a change in the field. In order
to obtain the materials magnetization behavior, the diamag-
netic background of the resin, which can be identified when
the particle is fully saturated, as well as the demagnetization
field caused by the particles’ spherical shape have to be sub-
tracted from the experimental data. Along with a fit using the
hyperbolic tangent function

M(H) =Ms tanh(αH), (1)

the result is shown in figure 3. The calculation of the saturation
magnetization, the scaling parameter and the relative permeab-
ility which crucially influences the initial slope and, with that,
the magnetization behavior within the linear regime, yields
Ms = 314.5 kA m−1, α= 188.6 m/kA and µr = 5.9, respect-
ively. A comparison with the magnetization behavior that is
found for the samematerial using a vibrating sample magneto-
meter in the work of Puljiz et al [40] reveals that, although the
parameter Ms differs only by approximately 5%, the relative
permeabilities show a difference of nearly 140%, see figure 3.

3. Continuum approach

In order to compare the experimental data to numerical res-
ults, the modeling framework presented in Metsch et al [22]
is applied. It is based on a microscopic continuum approach
which fully resolves the fields within the individual samples.
Due to negligible magneto-mechanical coupling effects of the

constituents, a decomposition of the free energy

ϱ0Ψ
∗(C,H) = ϱ0Ψ

∗mech(C)+ ϱ0Ψ
∗mag(H) (2)

into a magnetic contribution that only depends on the Lag-
rangian magnetic fieldH and a mechanical contribution which
is a function of the right Cauchy-Green deformation tensor C
is admissible, see [22].

For the mechanical part of the energy, the compressible
Mooney-Rivlin model

ϱ0Ψ
∗mech(C) =

G
2

[
p
(̄
IC1 − 3

)
+(1− p)

(̄
IC2 − 3

)]
+
K
4

(
J2 − 2lnJ− 1

)
(3)

is applied. Herein, the quantities J, ĪC1 and ĪC2 denote the Jacobi
determinant as well as the first two principle invariants of the
isochoric part of C, see the works of Flory [46] and Metsch et
al [22] for more details. The split of the energy into a deviat-
oric term connected to the shear modulus G= E/(2(1+ ν))
and a volumetric term that is linked to the bulk modulus
K= E/(3(1− 2ν)) is an extension of the compressible neo-
Hookean material model which is proposed by Wriggers [47].
The dimensionless parameter p controls the energy contribu-
tions of the invariants ĪC1 and ĪC2 , respectively.

To complete the model, the magnetic part of the energy
must still be specified: while ϱ0Ψ∗mag(H) = 0 holds within the
non-magnetizable matrix material, the isotropic relation

ϱ0Ψ
∗mag(H) =−µ0Ms

α
lncosh(αH) (4)

is used for the embedded particles [19, 22]. It is a function
of the norm H of the magnetic field H and—in accordance
with the experiments shown in the preceding section 2—yields
equation (1) for the particles’ magnetization behavior. The
quantity µ0 represents the permeability of free space.

4. Numerical simulations

In order to ensure a good comparability of experimental and
numerical results, the full samples are considered within the
finite element simulations. Assuming spherical particles with
center points located in the same plane x3 = const., see fig-
ure 4, a symmetry with respect to the out-of-plane direction
is used to reduce the computational effort. A visualization of
the resulting meshes using ParaView [48] is depicted in fig-
ure 4: to account for rapid changes of the fields under con-
sideration and prevent volumetric locking effects within the
quasi-incompressible matrix [49, 50], a high resolution of the
particles and their surroundings can be seen. The meshes are
coarsened towards the boundaries of the samples.

The loading in the simulations is implemented as follows:
regarding the mechanical field, the displacement u is fixed
on the lower and lateral boundaries of the samples while
the symmetry condition u3 = 0 is imposed on its top layer.
Corresponding to the experimentally applied magnetic induc-
tion B̄max = 170mT, the external magnetic field is increased

4
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Figure 4. Meshes for the finite element simulations: (a) two-, (b) three-, and (c) four-particle system. For all samples, symmetry with
respect to the out-of-plane direction is assumed. For visualization purposes, only the surroundings of the magnetizable particles are
shown—the outer parts of the meshes are omitted.

Figure 5. Components of the external magnetic field H̄ for the
applied magnetic loading: the field is increased to its maximum
value within 10 ramping increments. Subsequently, a clockwise
rotation of ∆φ= 5◦ is performed within 36 increments.

to a maximum value H̄max = 135.3kA m−1 within 10 ramping
increments. This is in contrast to the instantaneous application
of the magnetic field within the experiments but, since no rate
dependent processes are involved, results in the same initial
state. During the following 36 increments, the angle φ of the
magnetic field is changed in steps of ∆φ= 5◦. This results in
a clockwise rotation of 180◦ and allows for a pointwise com-
parison of experimental and numerical results. The magnetic
loading is illustrated in figure 5.

In all simulations, a Youngs’ modulus Ep = 197 GPa, a
Poissons’ ratio νp = 0.3 and a parameter pp = 1 are applied
for the embedded nickel particles. In conjunction with equa-
tion (3), this choice yields the special case of a compress-
ible neo-Hookean material law [47] which allows to cap-
ture effects of finite rotations but accounts for the fact that
the particles are comparatively stiff. Moreover, the saturation
magnetizationMs and the scaling parameterα determinedwith
the experiments shown in section 2 are used to describe the
particles’ magnetization behavior. The deformation behavior
of the non-magnetizable elastomer matrix is captured with the
full Mooney-Rivlin material law. To account for its quasi-
incompressibility, the Poissons’ ratio νm = 0.49 is chosen.
Assuming equal contributions of the invariants ĪC1 and ĪC2 to the
deviatoric part of the energy, see equation (3), the parameter
pm = 0.5 is used. Since the Youngs’ modulus Em is not known

a priori and will be different for the individually prepared
samples, the finite element analyses are performed covering
a range of different values. Using the normalized measure

ε=
2

np (np − 1)

np∑
i

np∑
j>i

(
∆dsimij −∆dexpij

)2
(5)

which identifies the error of the simulation regarding the
change in the inter-particle distances ∆dij, the optimal values
Em are determined in a least-squares sense for each sample. In
the final comparisons of the experimental and numerical res-
ults, these values are used to validate the model.

All results presented in this section were obtained with
finite element simulations using FEniCS1 [51, 52]; the asso-
ciated meshes were generated with Gmsh [53].

4.1. Two-particle system

The results for the two-particle system are summarized in
figure 6: in order to determine the optimal Youngs’ modu-
lus of the matrix for a comparison to the experimental data, a
range 6600 Pa≤ EM ≤ 8100 Pa is covered in steps of∆EM =
150 Pa. In figure 6 (a), the trend of the squared error ε shows
a distinct minimum for EM = 7244 Pa – it is found using a fit
with a fourth-order polynomial. Since it was the aim of the fab-
rication process to work with a matrix material which is cap-
able of preventing inclusions with a comparatively low initial
distance from colliding, see the work of Puljiz et al [40] for a
detailed analysis on such effects, the value seems reasonable.

In figure 6 (b), the change of the inter-particle distance
∆d12 is shown for varying angles of the external magnetic
field. Attraction of the particles can be observed over a wide
range. Only in a small band, in this case 65◦≤φ≤ 125◦, repul-
sion occurs. This is in accordance with the findings of Biller et
al [15]. The comparison of experimental and simulation data
reveals a very good qualitative and quantitative agreement:
the results almost coincide for all values of φ. A maximum
discrepancy of around 2.5µm can be found between φ= 55◦

and φ= 60◦ which is close to the transition from attraction
to repulsion. The accuracy of the simulation shows that the
assumption of magnetizable particles with a spherical shape is

1 For details on the implementation, please contact the authors.

5



Smart Mater. Struct. 29 (2020) 085026 P Metsch et al

Figure 6. Results for the two-particle system: (a) summed squared errors for simulations with different Youngs’ moduli EM of the matrix
and corresponding fit using a fourth order polynomial, and (b) comparison of experimental and simulation data for the change of the
inter-particle distance ∆d12 in a rotating magnetic field. The comparison is carried out for the optimal Youngs’ modulus EM = 7244 Pa.

an appropriate first approximation although the experimental
configuration in figure 1 (a) illustrates a clear deviation from
that.

The comparison of 2D and 3D simulations with the same
Youngs’ modulus, which is also shown in figure 6 (b), reveals
a qualitatively good agreement of both approaches: attraction
of the particles is found over a wide range of directions of the
external magnetic field and also the transitions from attraction
to repulsion occur at nearly identical angles φ. However, it is
apparent that the two-dimensional approach overestimates the
resulting change in the particle distances for a given magnetic
field. This is in good accordance with the findings presented
in Metsch et al [22]. The underlying assumption of a cylinder
in the simplified two-dimensional setting yields differences in
the particle-particle interactions due to changes in the particle-
volume fraction and themagnetization.Moreover, the particle-
matrix interactions are different since, for cylinders, the matrix
motion in the out-of-plane direction is hindered. Accordingly,
the particle displacements within the plane must be increased.

4.2. Three-particle system

The procedure for the three-particle system is similar to the
one explained in the preceding section: a range 6150 Pa≤
EM ≤ 7650 Pa is covered in steps of ∆EM = 150 Pa in order
to determine the optimal value for the Youngs’ modulus of the
matrix material in a least-squares sense. Since the behavior of
MAEs is expected to be significantly influenced by the distri-
bution of the magnetizable particles and—due to their non-
sphericity, see figure 1 (b)—the specification of their center
points can only be accurate to a certain level, this particular
system is chosen to additionally analyze the sensitivity of the
numerical results with respect to the initial particle positions.
To this end, the position of the center particle 2, see figure 1 (b),
within the finite elementmesh is changed by±5µm in the hori-
zontal and vertical directions. In view of the system specifica-
tions given in table 1, this corresponds to a slight modification
of only 2.7% of the particle diameter. The resulting configur-
ations are summarized in table 2.

Regarding the original configuration, the summed squared
error ε in figure 7 (a) shows a minimum for EM = 6842 Pa –

Table 2. Sensitivity analysis regarding the influence of the initial
particle position on the simulation results: updated coordinates of
the center particle 2 for the considered configurations. The names of
the additional configurations indicate a position change in the
horizontal (H) or vertical (V) directions by plus (P) or minus (M)
5µm.

x2/µm y2/µm z2/µm

Orig 104 -279 0
HM5 99 -279 0
HP5 109 -279 0
VM5 104 -274 0
VP5 104 -284 0

this corresponds to a shear modulus of approximately GM =
2300 Pa and is therefore in good agreement with the exper-
imental estimation. With a reached minimum of ε≈ 60µm2,
the accuracy of the numerical simulation is also comparable to
the one of the two-particle system. A closer look on the con-
figurations with modified initial particle distances reveals that
a positive horizontal as well as a negative vertical displace-
ment of the center particle decrease the error of the numer-
ical simulation whereas displacements in the opposite direc-
tions tend to increase ε. The best result is achieved with the
VM5 configuration: it reduces the minimum error level of
the prediction to ε≈ 32µm2 while the optimal value for EM

remains unchanged. Along with the results of the original set-
ting, it is therefore included in the subsequent comparison to
the experimental data. In figure 7(b), the results for different
directions of the external magnetic field are shown. The com-
parison indicates a good qualitative and quantitative agree-
ment for all inter-particle distances. While the numerical and
experimental values nearly coincide for∆d13 and∆d23, small
deviations can be found for the change in the distance ∆d12.
These could be related to a non-sphericity of the particles or a
lack of symmetry with respect to the out-of-plane direction—
their elimination requires a consideration of the full sample
with data gained using, e.g. microtomography measurements
[54]. Regarding the VM5 configuration which is also shown in
figure 7 (b), an improvement of the numerical simulation can
especially be seen for∆d12. This implies that the actual initial

6
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Figure 7. Results for the three-particle system: (a) summed squared errors for simulations with different Youngs’ moduli EM of the matrix
and corresponding fits using a fourth order polynomial. The individual curves represent results for different initial positions of the center
particle according to table 2. In (b), the comparison of experimental and simulation data for the change of the inter-particle distances∆dij in
a rotating magnetic field is carried out for the optimal Youngs’ modulus EM = 6842 Pa. Additionally, the improvement of the solution for
the VM5 configuration is shown—it is indicated with dashed lines.

Figure 8. Results for the four-particle system: (a) summed squared errors for simulations with different Youngs’ moduli EM of the matrix
and corresponding fit using a fourth order polynomial, and (b) comparison of experimental and simulation data for the change of the
inter-particle distances ∆dij in a rotating magnetic field. The comparison is carried out for the optimal Youngs’ modulus EM = 7265 Pa.

position of the center particle 2 might slightly deviate from the
experimentally determined one and underlines the sensitivity
ofMAE samples with respect to the particle distribution. How-
ever, the good agreement between experiment and simulation
indicates that the applied modeling strategy allows to capture
all relevant effects which govern the samples’ behavior.

4.3. Four-particle system

The results for the last andmost complex sample under consid-
eration are summarized in figure 8. Using a range 6600 Pa≤
EM ≤ 8100 Pa with steps of∆EM = 150 Pa and a fourth-order
polynomial for the determination of the optimal value EM

of the matrix, figure 8 (a) shows a minimum of the summed
squared error ε for EM = 7265 Pa. It is apparent that the
reached minimum error level is not as low as for the preced-
ing samples. Since every particle increases the probability that
one of the underlying assumptions—spherical particles, sym-
metry with respect to the out-of-plane direction—is not fully
met, this effect is unavoidable. However, with a minimum
error level ε≈ 82µm2, the accuracy of the simulation is still
comparable to the one reached for the two- and three-particle
systems.

The comparison of experiment and simulation by means of
the change in the inter-particle distances is shown in figure
8 (b). Again, a very good qualitative and quantitative agree-
ment can be found for all values∆dij over the whole range of
directions of the external magnetic field. The fact that the max-
imum discrepancies occur in connection with particle 4 could
indicate a slightly wrong initial position. Additionally, minor
deviations can be seen for∆d23 in the range 125◦≤φ≤ 160◦:
regarding the apparent non-sphericity of particle 3, see figure
1 (c), these errors can again only be eliminated with a detailed
analysis of the real sample.

5. Concluding remarks

Within this work, field-induced interactions in simplified
samples are analyzed in order to validate a microscopically
motivated, fully coupled continuum model for MAEs with
experimental data. To this end, samples comprising two, three
and four particles are prepared and the effect of an external
magnetic field with varying angle on the resulting mechanical
deformations is tracked experimentally. Moreover, a novel
approach to determine the particles’ magnetization behavior
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is presented. This reduces uncertainties known from other
methods and provides important data for the numerical simu-
lations.

For all samples, a very good agreement between exper-
iments and simulations is found: the change of the inter-
particle distances within the individual systems is captured
in all situations although simplifying assumptions such as
a sphericity of all particles and a symmetry of the systems
with respect to the out-of-plane direction have been made.
This shows that the applied modeling strategy represents an
adequate approach to describe the microstructural interactions
in MAEs—consequently, it is also applicable to the analysis
of more complex, realistic systems. With an additional com-
parison between the full, three-dimensional simulations and
frequently used simplified, two-dimensional approaches, the
typical resulting overestimation of the latter is observed. This
confirms findings of former studies [22] and points out that
two-dimensional simulations are at best only applicable to get
a rough impression of the MAEs qualitative behavior. Finally,
the performed sensitivity analysis of the samples with respect
to the initial particle positions highlights the crucial import-
ance of a profound knowledge of the MAE microstructure in
order to be able to provide accurate quantitative predictions of
the sample behavior.

Future research must strive for better agreement between
experimental and simulation results by analyzing the actual
sample geometry. This can be achieved by incorporating data
gained from, e.g. microtomography measurements [54] in the
meshing procedure of the simulation. However, since real-
istic MAE specimens comprise multiple particles with com-
plex shapes and distributions, numerical simulations of whole
samples with a reasonable computational effort will remain
impossible. For this reason, an appropriate computational
homogenization framework has to be applied to deduce an
accurate macroscopic model for MAEs from data obtained
with simulations that are carried out for a representative sec-
tion of the microstructure. To this end, an extension of the
recent contribution by Kalina et al [55] to the general, three-
dimensional case appears to be promising.
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