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Diophant ine equat ions
and why they are hard

Hector Pasten 1

Diophantine equations are polynomial equations whose
solutions are required to be integer numbers. They
have captured the attention of mathematicians during
millennia and are at the center of much of contempo-
rary research. Some Diophantine equations are easy,
while some others are truly difficult. After some time
spent with these equations, it might seem that no
matter what powerful methods we learn or develop,
there will always be a Diophantine equation immune
to them, which requires a new trick, a better idea, or
a refined technique. In this snapshot we explain why.

1 Diophant ine equat ions

Let’s start with a simple question. Is 3 the sum of two squares? Well, yes. With
no further instructions, here are some solutions:

02 + (
√

3)2 = 3, 12 + (
√

2)2 = 3,

22 + i2 = 3, 32 + (i
√

6)2 = 3

where i is the usual imaginary unit which yields i2 = −1. Perhaps a more
interesting question is the following: is 3 the sum of two integer squares? In

1 Hector Pasten was supported by a Benjamin Peirce Fellowship at Harvard University.
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this case the answer is negative. In other words, the equation x2 + y2 = 3 has
no integer solutions, as one can quickly check.

Definition 1 (Diophantine equation) — A Diophantine equation is a poly-
nomial equation with integer coefficients, possibly in several variables, for which
we require integer solutions.

For instance, x2 +y2 = 3 is a Diophantine equation with no solutions. On the
other hand, x = 1, y = 2 is a solution of the Diophantine equation x2 + y2 = 5.

The word “Diophantine” is derived from the name of Diophantus of Alexan-
dria. He was a Greek mathematician who lived in the third century and who
wrote the very influential series of books Arithmetica. The central topic of
Arithmetica were algebraic equations and methods for solving them in (pos-
itive) integers or rational numbers, depending on the problem. It is worth
pointing out that integer solutions to equations have been investigated long
before Diophantus; the earliest known record of such an investigation is the
Babylonian tablet Plimpton 322, dating to 1800 BC, which records a number of
Pythagorean triples. (Note that this is long before Pythagoras of Samos, who
lived in the sixth century BC.)

The most basic Diophantine problem that one can ask is the following: given
a Diophantine equation, does it have integer solutions? There are a number of
methods to approach this problem, either to show that there is a solution or to
prove rigorously that there is none. Just to mention some:

• Brute force. Search for solutions until you find one. There is no guarantee
that we will ever find a solution, but if we do, then we know for sure that
the equation can be solved.

• Congruences. Show that an equation has no solutions by reducing modulo
a suitable integer and proving that there is no solution to the resulting
congruence. For instance, the equation x2 + 3y5 = 2 doesn’t have integer
solutions. This is because the equation seen modulo 3 gives the congruence

x2 ≡ 2 mod 3,

which doesn’t have solutions as we can check with finitely many calculations.
• Infinite descent. One proves that an equation has no solution by showing

that if any (hypothetical) integer solution is given, then one can construct
a smaller one (where smaller is meant in the sense of absolute value), and
then a smaller one, and so on, which is not possible because one cannot find
integers with smaller and smaller absolute value. This contradiction shows
that there is no solution to start with.

Mathematicians have developed much more sophisticated methods to search
for solutions of a Diophantine equation, and to prove that there is no solution
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in suitable cases. Unfortunately, some simple Diophantine equations remain
resistant to all our techniques. For example, it is a well-known open problem to
decide (with a complete and rigorous proof!) whether the Diophantine equation

x3 + y3 + z3 = 42

has integer solutions or not. (Negative numbers are allowed.) Can you answer
this question? If so, you would become famous! 2

Sometimes it is more convenient to focus only on Diophantine equations
for which non-negative integer solutions are required. It turns out that this
problem is of equal difficulty to the problem of existence of integer solutions.

For instance, suppose that we want to study integral solutions of a Diophan-
tine equation such as x3 + y3 + z3 = 42 (mentioned above). If we want to use
only techniques that apply to non-negative integer solutions of Diophantine
equations, then we could instead study non-negative integer solutions of the
6–variables equation

(x1 − x2)3 + (y1 − y2)3 + (z1 − z2)3 = 42.

Note that for a solution of the first equation with positive x, we have a solution
of the second equation with x1 − x2 = x− 0 and for a solution with negative x,
we have a solution with x1−x2 = 0− (−x). In the other direction a similar trick
works. For this we use a theorem by the Italian mathematician Joseph-Louis
Lagrange (1736–1813), called Lagrange’s Four Squares Theorem:

Theorem 1 (Lagrange) — If an integer number n is the sum of four squares
of integers, then we have n ≥ 0. And on the other hand, if n ≥ 0 is an integer
number, then it can be written as the sum of four squares of integers.

So, solving a Diophantine equation F (x, y) = 0 in non-negative integers is
“the same” as solving the equation

F (x2
1 + x2

2 + x2
3 + x2

4, y2
1 + y2

2 + y2
3 + y2

4) = 0

with xi, yj integers, negative numbers allowed. Of course the same remark
applies to any number of variables, not just two.

2 Hi lber t ’s Tenth Problem

The German mathematician David Hilbert (1862–1943) was a speaker at the
International Congress of Mathematicians in 1900. In relation to his talk,

2 For a long time, it was not known whether 33 could be written as sum of three cubes.
This was recently shown to be possible by Andrew Booker.
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he proposed a list of 23 problems that proved to be very influential in the
development of mathematics in the last century, see [9]. The tenth problem in
the list was the following:

Hilbert’s Tenth Problem — Given a Diophantine equation with any number
of unknown quantities and with rational integral numerical coefficients: To
devise a process according to which it can be determined in a finite number of
operations whether the equation is solvable in rational integers. 3

It took some time to make sense of the question. First of all, what is a
“process” and what is a “finite number of operations”? It is now understood that
the correct notion of “process” working with a “finite number of operations” is
a Turing machine: an idealized, precise, and rigorous mathematical model of a
computer. These theoretical objects were introduced by Alan Turing in 1936, in
his paper [22]. For the purpose of clarity, the reader can safely think of Turing
machines as “computers with no randomness”.

Long after Hilbert posed the problem, in 1961 Martin Davis, Hilary Putnam,
and Julia Robinson proved the following astonishing result in [5]:

Theorem 2 (DPR) — The Diophantine problem for exponential Diophantine
equations is unsolvable:

There is no Turing machine that takes as input an exponential Diophantine
equation and, no matter how complicated the equation is, after a finite number of
steps decides correctly whether the equation has a non-negative integer solution
or not.

Here, an exponential Diophantine equation is an equation involving polyno-
mial expressions as well as exponential terms of the form 2x, whose solutions
are required to be non-negative integers. This is certainly a very interesting
class of equations of number theoretical relevance, but unfortunately not quite
the same class of equations about which Hilbert wondered in his Tenth Problem.
Nevertheless, the authors were convinced that they were on the right track: as
we explained before, it doesn’t really make a crucial difference whether we use
all integers or just non-negative integers. With respect to the exponential, it
was expected that the exponential terms of the form 2x could also be expressed
in terms of polynomial Diophantine equations.

Here we make a brief pause to clarify an important point. As the reader
is surely aware, the function 2x is not a polynomial. However, the hope was
that the solutions of a polynomial in several variables would suffice to “describe”
this function. This idea of using polynomials to “describe” functions or sets

3 Here, “rational integers” simply means “integers”. The word “rational” is used to distinguish
them from other generalizations of integers studied by mathematicians.
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that don’t quite look like coming from polynomials will be explained in detail
in the next section. For the moment let us simply say that Davis, Putnam
and Robinson were absolutely right: about a decade later, Yuri Matiyasevich
in [12] used an ingenious construction based on properties of Fibonacci numbers
to show that the required exponential function can indeed be expressed by
polynomial Diophantine equations! The result thus obtained was:

Theorem 3 (Matiyasevich) — Hilbert’s Tenth Problem is unsolvable:
There is no Turing machine that takes as input a Diophantine equation and,

no matter how complicated the equation is, after a finite number of steps decides
correctly whether the equation has an integer solution or not.

3 Diophant ine sets

What can we express using Diophantine equations? An example is the property
of being non-negative: as mentioned at the end of Section 1, by Lagrange’s Four
Squares Theorem we see that the property that an integer n be non-negative
can be expressed by requiring that the Diophantine equation

n = x2
1 + x2

2 + x2
3 + x2

4

has an integer solution.
Can you express the condition “m ≤ n” using Diophantine equations? Of

course! We can write the condition as “0 ≤ n −m” and this is the same as
requiring that the Diophantine equation

n = m + x2
1 + x2

2 + x2
3 + x2

4

has an integer solution. Here are some more examples of properties that we can
express using Diophantine equations:

• “n is a square” : this is the same as requiring that x2 = n has an integer
solution.

• “n is odd”: this is the same as requiring that 2x + 1 = n has an integer
solution.

• “n is an odd positive number”: this is a bit trickier. We already know how
to express “n is odd” and how to express “n ≥ 0”. Can we do both at the
same time? We (momentarily) leave it to the reader to understand why the
following Diophantine equation does the trick:

(2x + 1− n)2 + (x2
1 + x2

2 + x2
3 + x2

4 − n)2 = 0.
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• “n is a square or is odd (or both)”: similarly, we already know how to
express squareness and oddness. For the union of these two properties,
we (momentarily) leave it to the reader to understand why the following
Diophantine equation works:

(x2 − n) · (2y + 1− n) = 0.

(See the lemma at the end of this section to understand the general pattern in
the last two examples.)

At this point it is appropriate to make a definition. As usual, the symbol Z
denotes the set of all integers.

Definition 2 (Diophantine set) — A set of integers S ⊆ Z is Diophantine
if there is a polynomial F (t, x1, ..., xr) with integer coefficients such that the
set S is precisely the set of integer values n (for the variable t), for which the
Diophantine equation

F (n, x1, ..., xr) = 0
has an integer solution in the variables x1, ..., xr.

If you are familiar with the properties of Pell equations, here is a fun exercise
for you:

Exercise — Show that the set of non-square integers is Diophantine.

Diophantine sets have several nice properties. For instance, we have the
following:

Lemma 1 — Let A and B be Diophantine sets. Then the intersection A ∩B
and the union A ∪B are Diophantine too.

Proof. Since A and B are Diophantine, there are polynomials F (t, x1, ..., xr)
and G(t, y1, ..., ys) defining them. Then A∩B is Diophantine because n ∈ A∩B
if and only if both equations

F (n, x1, ..., xr) = 0 and G(n, y1, ..., ys) = 0

have integer solutions, which is the same as requiring that the single equation

F (n, x1, ..., xr)2 + G(n, y1, ..., ys)2 = 0

has integer solutions. (Why? two integer squares add up to 0 if and only if each
one is 0.)

Similarly, A∪B is Diophantine because n ∈ A∪B if and only if at least one
of the equations

F (n, x1, ..., xr) = 0 or G(n, y1, ..., ys) = 0
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has integer solutions, which is the same as requiring that the single equation

F (n, x1, ..., xr) ·G(n, y1, ..., ys) = 0

has integer solutions. (Why? the product of two integers is 0 if and only if at
least one of them is 0.) Q.E.D.

4 More about Tur ing machines

For simplicity, let’s think about Turing machines as deterministic (that is,
non-random) computers, with as much memory for their computations as
needed. Also, let’s not worry about the running time. Our question is simply
the following: what can such a computer do? It should be able to do basic
arithmetic. It should also be able to do brute force search, although there is no
guarantee that it will ever stop if we don’t instruct it to search only up to a
predetermined bound. Also, it should be able to compute using “sub-routines”:
if a function can be computed by such a computer, then we can freely use this
function in other computer programs. It is also natural to allow the program to
do computations recursively (that is, by repeated application of a function).

When spelled out in a rigorous mathematical formalism, the previous ideas
lead to a solid notion of computability called Turing-computability, nowadays
accepted as the standard notion of algorithm.

Definition 3 (Listable set) — A set of integers A ⊆ Z is listable if there is
a Turing machine which, if left running forever, prints every element of A and
no element outside A. (We allow the machine to be slow, to print the elements
of A in any order, or even to print repetitions!)

In simple terms, one can say that any set of integers for which there is an
algorithm for writing down its elements is by definition listable (even if your
algorithm is very slow). For instance the primes, the squares, the powers of 2,
those integers whose digits are odd, and more.

Note that the definition doesn’t require that we know how to write down
the elements outside a listable set A; it suffices to know how to produce all
the elements of A. The following definition, instead, requires knowledge about
both A and its complement.

Definition 4 (Recursive set) — A set of integers A ⊆ Z is recursive if there
is a Turing machine which computes the characteristic function of A. That
is, the machine takes as input an integer n, and after a finite computation it
prints “0” if n is not contained in the set A and “1” if n is contained in A.
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In simple terms, A is recursive if there is an algorithm to decide whether an
integer is a member of the set A.

Every recursive set is listable, as we now explain. If A is recursive and there
is a Turing machine T that decides membership in A, then here is an algorithm
to list the elements of A: use T to decide whether 0 ∈ A, in which case print 0,
otherwise skip 0 and test 1 using T . If 1 ∈ A print 1, otherwise skip 1 and go
to −1. If −1 ∈ A print −1, otherwise skip it and go to 2. Continue in this
fashion with 2, −2, 3, −3, and so on. In this way, you have an algorithm to
print the elements of A, so A is listable.

However, not every listable set is recursive. There are bizarre sets of integers A
for which one knows how to print its elements, but for which it is impossible
that some algorithm decides membership in A. Here, the word “impossible”
doesn’t simply mean that we have not found the algorithm; it actually means
that mathematicians know a rigorous proof that the required Turing machine
doesn’t exist. This is a foundational theorem by Alan Turing.

Theorem 4 (Turing) — There is a set of integers H which is listable, but it
is not recursive.

The set H constructed by Turing arises from the halting problem, introduced
in his paper [22]. We will not review here the construction of H, and for our
discussion is suffices to know that not every listable set is recursive.

5 Diophant ine sets again

Let C be the set of all integers that can be written as the sum of three integer
cubes. Here are some examples:

• 0 ∈ C. This is because 0 = 03 + 03 + 03.
• −1 ∈ C. This is because −1 = (−1)3 + 03 + 03.
• 6 ∈ C. This is because 6 = 23 + (−1)3 + (−1)3.

We note that C is Diophantine: an integer n belongs to C if and only if the
Diophantine equation

x3
1 + x3

2 + x3
3 = n

has integer solutions. As mentioned before, it is an open problem whether or
not the previous equation has integer solutions for n = 42, so, as of today, we
don’t know whether 42 is an element of C or not.

Despite the fact that it is complicated to decide (with a rigorous proof)
whether an integer is in C or not, here is a completely rigorous way to list the
elements of C:

8



Evaluate x3
1+x3

2+x3
3 over the triples of integers in Z in a sequential systematic

way – for instance, first at (0, 0, 0), then at (1, 0, 0), then at (−1, 0, 0), then
at (0, 1, 0), and continue taking all possible triples of integers in some order.
Print the values. That (infinite) list of printed values consists precisely of the
elements of C, in some order, possibly repeated.

We have just described an algorithm to list all the elements of the Diophantine
set C by using the polynomial that defines it. So, now we know that the
Diophantine set C is listable. A similar idea works in complete generality, and
one can prove:

Lemma 2 — Every Diophantine set of integers is listable.

This is somehow not very surprising: the definition of a listable set is
extremely broad. Basically, any set of integers that we can describe in a
sensible and constructive way is going to be listable, so it is not a surprise that
Diophantine sets are of this kind.

However, behold the results of the next section!

6 The DPRM theorem: the good news, the bad news, and
the bizarre news

Now we are in a position to state a more accurate version of the theorem proved
by the works of Davis, Putnam and Robinson [5] and by Matiyasevich [12].

Theorem 5 (DPRM) — Every listable set of integers is Diophantine. (There-
fore, in view of Lemma 2, listable sets and Diophantine sets are the same thing!)

The statement of this theorem is short, but it takes some more space to
actually understand what it really means.

First, by Turing’s Theorem 4, this implies that there is a Diophantine set
which is not recursive. Unravelling the definitions of “recursive set” and “Dio-
phantine set”, this means the following: there is some polynomial F (t, x1, ..., xr)
with integer coefficients such that there is no Turing machine that takes n as
input and prints 1 if the Diophantine equation

F (n, x1, ..., xr) = 0

has integer solutions in the variables x1, ..., xr, and prints 0 otherwise.
Or in simpler terms: there is a family of Diophantine equations such that

there is no algorithm that can correctly decide existence of integer solutions for
all equations in this family.

In particular, there is no algorithm that can correctly decide existence of
integer solutions of each Diophantine equation. In this way we see that the
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DPRM theorem implies the negative solution to Hilbert’s Tenth Problem, which
was stated before as Theorem 3.

Good news. Hilbert’s Tenth Problem is solved (negatively): there is no
algorithm as the one that Hilbert wanted.

Bad news. Any method to study solvability of Diophantine equations is
known in advance to be incomplete, in the sense that there will be Diophantine
equations beyond the scope of that method.

Bizarre news. Wait a minute. So the theorem really says that every listable
set is Diophantine? Yes, it does. So, for instance, the prime numbers form a
Diophantine set: thus, they can be described using a polynomial. Similarly
the factorials, the powers of 2, or any strange non-polynomially-looking set
that you can construct is a Diophantine set. In fact, there is a whole paper [4]
written by Davis, Matiyasevich, and Robinson explaining all sorts of unexpected
consequences.

A word about the proof of DPRM. The basic idea is that the functioning
of a Turing machine can be completely described by the application of three
basic types of functions (successor, constants, and projections) and three basic
computation schemata (minimalization, composition, and recursion). Thus, one
“only” needs to simulate these six kinds of operations by using Diophantine
equations. This requires a number of ingenious applications of methods from
elementary number theory. These turn out to be rich enough to simulate
the necessary parts of a Turing machine by using only Diophantine equations.
See [3] for a self-contained accessible presentation of the proof.

7 Other direct ions

Surprisingly, the analogue of Hilbert’s Tenth Problem for the field of rational
numbers Q remains open. There is a natural strategy: one tries to show that Z is
Diophantine in Q (with the obvious adaptation of the definition of “Diophantine
set” in Q by requiring a polynomial with rational coefficients), and then a
general argument transfers the negative solution of Hilbert’s Tenth Problem
from Z to Q.

However, there is some skepticism about this approach to the problem, and
it is now a conjecture (believed by many) that Z is not Diophantine in Q.
Some research articles that elaborate on this are [2, 13, 19]. Remarkably,
the non-integers are known to form a Diophantine set in Q, as proved by
Koenigsmann [11].

There is another natural extension of the problem to the context of “rings
of integers of number fields”. Here we are talking about generalizations of the
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integers Z, such as the ring of Gaussian integers Z[i] = {a + bi : a, b ∈ Z}. In
the particular case of the Gaussian integers, it is known that the analogue of
Hilbert’s Tenth Problem also has a negative solution, see [6]. In fact, there are
several families of rings of integers of number fields where the same is known,
see [7, 8, 16, 20, 23]. But the problem in full generality remains open.

Nevertheless, assuming certain algebraic conjectures about elliptic curves (an
important type of cubic equations), Mazur and Rubin proved a negative solution
in complete generality [14]. On the other hand, if one assumes certain analytic
conjectures about elliptic curves, then one arrives at the same conclusion in
a different way, by work of Murty and yours truly [15]. Let us mention that
the connection with elliptic curves is due to Denef [7], Poonen [17], Cornelissen,
Pheidas, and Zahidi [1], and Shlapentokh [21].

Several other problems remain open in this very active area of research (see
for instance [18, 10]) and it seems that new ideas – maybe your ideas, dear
reader – are necessary to make further progress on these fundamental questions.
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