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A few shades of interpolat ion

Justyna Szpond

The topic of this snapshot is interpolation. In the
ordinary sense, interpolation means to insert some-
thing of a different nature into something else. In
mathematics, interpolation means constructing new
data points from given data points. The new points
usually lie in between the already-known points. The
purpose of this snapshot is to introduce a particular
type of interpolation, namely, polynomial interpola-
tion. This will be explained starting from basic ideas
that go back to the ancient Babylonians and Greeks,
and will arrive at subjects of current research activity.

1 Introduct ion

In both experimental science and practical applications, one is often faced with
a situation in which a finite collection of data depending on a finite number of
parameters is given and it is desirable to interpolate this set, that is, to insert
more data points without having to do more experiments or more measurements.
The aim is to find a suitably simple mathematical formula to allow us to do the
interpolation on the given data set. This means that we try to find a function
which for a provided list of parameter values attains the measured given values
and (hopefully) predicts in a meaningful way data which would have been
obtained if the given initial parameters had been perturbed a little bit.

One common example of such a situation is found in map making. If we
want to create a terrain map with contour lines, as shown in Figure 1, we must
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measure the altitude of the terrain over sea level. This can only be done at a
finite number of discrete points, usually arranged in a grid formation. In other
words, when location data is collected it does not make up a continuous coverage
of information, there are gaps between the known values. To create a continuous
data coverage by filling in the contour lines of the map, an interpolation function
is used. Figure 1 illustrates the outcome of applying a linear interpolation,
which means that the given data is completed using a linear function. The
measured points are the points at the intersection of the grid lines.
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Figure 1: Terrain map

How is the interpolation function obtained? In order to explain the ideas
behind this, we will first illustrate how to interpolate a data set using a function
depending on one parameter only.

As an example, let us consider the average exchange rate of USD versus EUR
in five consecutive years. The data is given in Table 1. If we simply plot the five

year 2011 2012 2013 2014 2015
USD/EUR 1.39243 1.28577 1.31797 1.32898 1.11040

Table 1: Exchange rates
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values in a graph of rate vs. year, we obtain the five discrete points as indicated
in Figure 2. If we then join the points in Figure 2 using straight-line segments,

rate

year

Figure 2: Data in Table 1 as points in the coordinate system

we obtain the zig-zag pictured in Figure 3. This is called linear interpolation
and is perhaps the easiest, although somewhat rough, way to interpolate the
given data.

rate

year

Figure 3: Linear interpolation of points in Figure 2

There is plenty of evidence for the use of linear interpolation in Mesopotamia
c. 300 BC and also in ancient Greece, where around the year 150 BC Hipparchus
of Rhodes used linear interpolation in order to predict positions of the moon.
However, traces of the use of linear interpolation can be found as far back as
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2000–1700 BC, in the Old Babylonian period, as described in a survey article
for the general reader by Higgins [4]. Linear interpolation is very simple to use,
but the problem is that for most applications it is too rough a technique. Most
physical processes depend in a smooth way on changing parameters, so the
actual functions describing them do not make any sudden turns as the zig-zag
curve does. Moreover, linear interpolation is usually not meaningful for future
predictions. For example, extending the function in Figure 3 in a natural way
would lead us to make conclusions about the exchange rate in 2016 based only
on the last segment, that is, only on the data from 2014 and 2015, not taking
into account all the previous data.

The idea is to find a “reasonable” function f(x), where by reasonable we
mean that the function can be considered in some sense mathematically simple,
with the property that

f(2011) = 1.39243
f(2012) = 1.28577
f(2013) = 1.31797
f(2014) = 1.32898
f(2015) = 1.11040

(1)

There are infinitely many functions f(x) satisfying the conditions in (1), since,
in principle, we can “join the dots” in Figure 2 with any curve we like. Therefore,
we impose further conditions. For instance, we might ask that the function
should be continuous (as the zig-zag curve is) or perhaps that it be “differen-
tiable” everywhere (which the zig-zag curve is not). “Differentiable” roughly
means that the function is smooth, so the graph does not have any sharp
corners. Polynomials are a family of functions which satisfy both of these
(and more) conditions and can also be considered simple, or at least familiar.
Thus the attention of mathematicians has naturally turned to the the family of
polynomials.

2 The interpolat ion polynomial

Let us recall first of all that a polynomial f(x) is defined by the sum formula:

f(x) = adx
d + ad−1x

d−1 + . . .+ a1x+ a0, (2)

where each summand akx
k is a term xk multiplied by a real number ak. The

numbers ak are referred to as the coefficients of f(x). The number d appearing
in the formula (2) is said to be the degree of f(x), provided that ad 6= 0.

Thus each polynomial f(x) is determined by a finite set of data (namely,
finitely many terms xk and their coefficients) and its value f(x0) for any given
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number x0 can be computed by finitely many arithmetic operations, that is, ad-
ditions and multiplications. This is in contrast, for example, with trigonometric
functions like sin(x), which require an infinite number of arithmetic operations
to determine their values at given points 1 . This computational property of
polynomials has been a great advantage over the ages and remains so today in
the computer era, because our computers are also only capable of performing a
finite number of operations on finite sets of data. We refer also to [7] for an
even more explicit introduction to polynomials.

As noted above, polynomials are not only continuous but also differentiable
functions. One can introduce their derivatives in a formal way, avoiding the
fairly involved analytic machinery, as follows. The first order derivative of the
polynomial in (2) is denoted by f ′(x) and is given by the formula

f ′(x) = d · adx
d−1 + (d− 1) · ad−1x

d−2 + . . .+ 2 · a2x+ a1. (3)

The derivatives of higher order are defined recursively, that is, the second order
derivative of f(x), denoted by f ′′(x), is the first order derivative of f ′(x) and
so on. For example, for the cubic polynomial f(x) := x3 + 2x2 + 3x+ 4 we find
that

f ′(x) = 3x2 + 4x+ 3 and f ′′(x) = 6x+ 4.

Looking at formula (2), it is clear that a polynomial of small degree is simpler
than a polynomial of large degree because it involves fewer coefficients. Thus
we define the interpolation polynomial of a finite set of data

{(x1, y1), (x2, y2), (x3, y3), . . . , (xs, ys)}

to be the polynomial f(x) of smallest degree such that

f(xi) = yi for all i = 1, . . . , s.

For example the interpolation polynomial f(x) of the data in Table 1 is given
by the formula

−0.201458·x4+16.190720·x3−48795.17890·x2+65358734·x−32829187100 (4)

and depicted in Figure 4.
Now it is natural to ask the following question: How was this polynomial

computed? We will give the answer in the next section.

1 This is the Taylor series representation. For the definition of the Taylor series, see
https://en.wikipedia.org/wiki/Taylor_series.
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Figure 4: The interpolation polynomial of the data in Table 1

3 Interpolat ion polynomial formulas

As can be seen in formula (4), working with explicit data quickly leads to coef-
ficients with many digits, which obscure the ideas leading to their computation.
For this reason, it is more convenient to work with abstract data encoded in
mathematical symbols.

Interpolation Problem. Let {(x1, y1), (x2, y2), . . . , (xs, ys)} be a given finite
set of data points. We now want to find the interpolation polynomial f(x) for
this data set, that is, the polynomial of least degree that satisfies the conditions

f(xi) = yi for i = 1, . . . , s. (5)

If there is just one point (x1, y1) given, then the simplest polynomial inter-
polating this point is the constant polynomial f(x) = y1. It is a polynomial of
degree 0. If there are two points (x1, y1) and (x2, y2) given, then they determine
exactly one line and this line is given by the linear polynomial

f(x) = a1x+ a0

and the problem is to determine the coefficients a1 and a0. One way is to write
down the conditions in (5):

a1x1 + a0 = y1 and a1x2 + a0 = y2.

The above pair of equations determines a0 and a1. The solutions are given by
the formulas

a0 = y1 −
y2 − y1

x2 − x1
· x1 and a1 = y2 − y1

x2 − x1
.
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Therefore we have that f(x) is given by the equation

f(x) = y2 − y1

x2 − x1
(x− x1) + y1. (6)

If y1 = y2, then a1 = 0 and a0 = y1, so that we obtain again the constant
interpolation polynomial f(x) = y1, otherwise the interpolation polynomial f(x)
is of degree 1. Typically we would expect the values of y1 and y2 to differ, so
that in general we expect for two given data points an interpolation polynomial
of degree 1. Given s data points (or, to use technical language, interpolation
nodes), we expect the interpolation polynomial to be of degree s− 1. Motivated
by formula (6) and following Sir Isaac Newton (1642–1727) we introduce the
following notation:

[y1] = y1

[y1, y2] = y2−y1
x2−x1

[y1, y2, . . . , yk−1, yk] = [y2,...,yk−1,yk]−[y1,y2,...,yk−1]
xk−x1

(7)

The formulas in (7) define in a recursive way what are now known as divided
differences. For example

[y1, y2, y3] = [y2, y3]− [y1, y2]
x3 − x1

= 1
x3 − x1

(
y3 − y2

x3 − x2
− y2 − y1

x2 − x1

)
.

With this notation the Newton interpolation polynomial of the data in (5) is
given by

f(x) = [y1, y2, . . . , ys](x−x1)(x−x2)·. . .·(x−xs−1)+. . .+[y1, y2](x−x1)+[y1].

It is worth mentioning here that this formula did not occur to Newton out of
the blue. His work was preceded by that of Sir Thomas Harriot (1560–1621)
who expanded ancient interpolation formulas to polynomials of degree three and
four and by Henry Briggs (1561–1630). Newton introduced divided differences
in his book Regula Differentiarum in 1676, see [5]. The idea of using divided
differences, though brilliant and, in principle, allowing interpolation on any
finite set of data, has the hidden drawback of the complication of actually
computing the divided differences. About one hundred years after Newton,
another interpolation formula was proposed by Edward Waring (1736–1798) and
Leonard Euler (1707–1783), and published in 1795 by Joseph-Louis Lagrange
(1736–1813). The formula, which today is called the Lagrange polynomial, is
given by

L(x) = y1`1(x) + . . .+ ys`s(x), (8)
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where the polynomials `k(x) are defined in the following way:

`k(x) = (x− x1) · . . . · (x− xk−1)(x− xk+1) · . . . · (x− xs)
(xk − x1) · . . . · (xk − xk−1)(xk − xk+1) · . . . · (xk − xs) .

Note that we have

lk(xi) =
{

0 for i 6= k

1 for i = k

so that L(x) does indeed solve the interpolation problem.
The main advantage of Lagrange’s approach lies in the flexibility of the

polynomial when new nodes are added. That is, we can continue to use the
previously computed terms and then simply compute some further terms, instead
of having to re-compute everything from the beginning. The addition of new
data points is a common occurrence in experimental science, so the Lagrange
polynomial can be more useful than the Newton one in this setting.

4 Hermit ian interpolat ion

In this section we take a brief look at how the Interpolation Problem as defined
in Section 3 can be generalized by imposing conditions on the derivatives of
f(x). In its simplest form, this kind of data can be introduced if we know
additionally that the function attains a local maximum or minimum at a given
node. In our initial example provided by Table 1, let us say that in the year
2015 the average exchange rate was minimal, at least in the couple of years
before and after 2015. This assumption translates into the additional condition

f ′(2015) = 0,

where f ′(x) is the first derivative of f(x) as explained in (3). We have the value
zero because it is a known fact that the first derivative of a differentiable function
f is zero at all minima and maxima of f . This condition is not satisfied by the
interpolation polynomial stated in (4), indeed the graph of the polynomial in
Figure 4 goes through the node (2015, 1.11040) and drops further down, whereas
the local minimum condition requires the graph to go down to the node and
then go back up. The correct formula in this case is given by a polynomial of
degree one more than that in (4). The explicit formula is

0.17288x5 − 2.61345x4 + 14.6301x3 − 37.3099x2 + 42.2946x− 3.24995

and its graph is shown in Figure 5. In general we have the following problem to
solve.
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Figure 5: The Hermite interpolation polynomial

Hermitian Interpolation Problem. Given a finite set of data

{(x1; y1,0, y1,1, . . . , y1,k1), (x2; y2,0, y2,1, . . . , y2,k2), . . . , (xs; ys,0, ys,1, . . . , ys,ks
)}

we seek the interpolation polynomial H(x), that is, the polynomial of the
smallest degree which satisfies that

H(xi) = yi,0 for i = 1, . . . , s, (9)

and, for each i = 1, . . . , s, the j-th derivative of H(x) evaluated at the point xi

is equal to yi,j for each j = 1, . . . , ki.

For our example of exchange rates, with the added assumption that 2015
was a local minimum, the data (to 2 decimal places) written in the form above
looks like:

{(2011; 1.39), (2012; 1.20), (2013; 1.32), (2014; 1.33), (2015; 1.11, 0)}

This kind of interpolation was explored by Charles Hermite (1822–1901).
There is a formula, based on properly interpreted divided differences which
allows one to compute the Hermite interpolation polynomial H(x). Its degree
is at most k1 + k2 + . . .+ ks − 1 and if the initial data is sufficiently general,
then this sum gives the actual degree.

5 Mult ivar iate Hermit ian interpolat ion

So far we have considered the Interpolation Problem for data depending on
only one parameter (or variable). We have seen already in Figure 1 that it is
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useful in applications to interpolate data depending on two or more parameters.
In fact most physical or industrial processes depend on multiple parameters.
So it is necessary to develop what is called a multivariate, that is, depending on
multiple variables, version of the theory. We have already seen that univariate
interpolation goes back to ancient Babylon and Greece, but the multivariate
version of the problem is much more recent. According to [3], it originates
in the works of Carl Wilhelm Borchardt (1817–1880) and Leopold Kronecker
(1823–1891), with their first publications devoted to rather special cases around
1860. Compared to the univariate interpolation, the multivariate version is still
in its beginning stages. In fact it is a subject of intensive ongoing research
in many branches of mathematics. Our motivation is more theoretical, and
the particular problem we want to mention here belongs to algebraic geometry
and commutative algebra. The Multivariate Interpolation Problem itself is a
straightforward generalization of the one-dimensional version of the problem
stated in the previous section, the only difference being that we seek now a
polynomial f(y1, . . . , yn) depending on n variables and we may impose conditions
on the values taken by the polynomial as well as on the values of its derivatives
taken with respect to various variables. For a particular special case (where all
values and derivatives are equal to zero), the problem for just two variables can
be stated as follows. To avoid any possible confusion, note here that (xi, yi)
denotes a point in the plane.

Nagata Problem. Given a set of points {(x1, y1), . . . , (xs, ys)} ∈ R2, find the
smallest degree d of a non-zero polynomial f(x, y) such that the polynomial and
all its derivatives up to order m ≥ 0 are equal to zero at the given set of points.

Interestingly, Masayoshi Nagata (1927–2008) came to this problem in 1959
after he solved another problem which was stated by David Hilbert (1862–1943)
at the International Congress of Mathematicians in Paris in 1900. Important
problems in mathematics may take years, sometimes even centuries, to settle.
Nagata made the following conjecture:

Nagata Conjecture. If s ≥ 10 and the points in the Nagata Problem are
sufficiently general, then

d > m
√
s.

It is known that the conjecture fails for s ≤ 9 points. This conjecture can be
put in a larger framework. Let Z be a finite set of sufficiently general points in
the plane (here the number of points is irrelevant). For a positive integer m,
we denote by I(mZ) the set of all polynomials f(x, y) such that f “vanishes to
order at least m” at all points in Z, which means that all the derivatives of f up
to order m− 1 are equal to zero at all points in Z. These sets are non-empty as
among polynomials of very large degree, there will be certainly some satisfying
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this requirement. There are obvious containment relations

I(Z) ⊃ I(2Z) ⊃ . . . ⊃ I((m− 1)Z) ⊃ I(mZ) ⊃ I((m+ 1)Z) ⊃ . . .

Let αm(Z) denote the minimal degree of all polynomials in I(mZ). The sequence
of integers {αm(Z)} is called the initial sequence of Z. The determination of this
sequence would solve the Nagata problem and an expected answer is provided
by the Nagata Conjecture. Regardless of the fact that the exact values of αm(Z)
are not known and hard to compute, some information on the structure of
the initial sequence is available. For example the sequence is monotonically
increasing, so

α1(Z) < α2(Z) < . . . < αm−1(Z) < αm(Z) < αm+1(Z) < . . .

The rate of growth of the initial sequence is measured by the Waldschmidt
constant α̂(Z), which is defined to be

α̂(Z) = inf
m≥1

αm(Z)
m

.

Here, the symbol “inf” stands for the infimum or smallest value of αm(Z)/m
obtained as we letm range over the natural numbers. The Waldschmidt constant
has been studied in the past in the area of complex analysis and has gained
a lot of interest recently in algebraic geometry and commutative algebra, in
particular because of the following problem, which we state generally, in an
n-dimensional space (for intuition, n = 2 is the plane), see [6] for recent account
of this problem.

Chudnovsky-Demailly Conjecture. For all m ≥ 1

α̂(Z) ≥ αm(Z) + n− 1
m+ n− 1 .

It is striking that the Nagata problem, even though its formulation is very
simple, has been waiting already for more than half a century for a solution. On
the other hand, problems of this kind propel a lot of research in mathematics,
sometimes in unexpected areas. We recommend the very nice survey [1] for
further reading. Recent progress on problems revolving around the Nagata
Conjecture is reported in [2] and [6].
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