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Abstract: The pyrolysis and hydrothermal carbonization (HTC) of sewage sludge (SS) resulted in
products free of pathogens, with the potential for being used as soil amendment. With this work,
we evaluated the impact of dry pyrolysis-treated (600 ◦C, 1 h) and HTC-treated (200 ◦C, 260 ◦C; 0.5 h,
3 h) SS on the germination, survival, and growth of Lolium perenne during an 80 day greenhouse
experiment. Therefore, the hydrochars and pyrochars were amended to a Calcic Cambisol at doses of
5 and 25 t ha−1. The addition of sludge pyrochars to the Cambisol did not affect Lolium germination,
survival rates or plant yields. However, the use 25 t ha−1 of wood biochar reduced germination and
survival rates, which may be related to the low N availability of this sample. In comparison to the
control, higher or equal plant biomass was produced in the hydrochar-amended pots, even though
some hydrochars decreased plant germination and survival rates. Among all the evaluated char
properties, only the organic and inorganic N contents of the chars, along with their organic C
values, positively correlated with total and shoot biomass production. Our work demonstrates the
N fertilization potential of the hydrochar produced at low temperature, whereas the hydrochar
produced at 260 ◦C and the pyrochars were less efficient with respect to plant yields.
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1. Introduction

Sewage sludge (SS) is a nutrient-rich organic waste, which is produced in increasing amounts.
More than 10 million tons (dry weight) are produced annually in Europe [1]. Recycling of SS for
agriculture can return N, P, other plant nutrients and organic matter to the soil and may help to reduce
the dependency on fossil fuel-consuming synthetic N fertilizer and non-renewable P sources. However,
its application poses some environmental risks such as nutrient leaching, reduced soil biodiversity,
increased greenhouse gas emissions [1], and health risks if not pre-treated properly. One possibility
for hygienization of SS before its application to soil represents composting. However, this process
consumes not only space and time but also releases greenhouse gases such as CO2 and volatile N.
An alternative may be a thermal treatment of SS through pyrolysis or hydrothermal carbonization
(HTC). These technologies allow efficient hygienization while concomitantly stabilizing organic C and
N within a relative short process time. Of course, during thermal treatment greenhouse gases are also
released, but this emission may be compensated by recycling the produced thermal energy for other
energy requiring purposes. Both pyrolysis and HTC carbonize biomass in low oxygen environments.
Temperatures between 300 and 700 ◦C are typically used during dry pyrolysis. Hydrochars are typically
produced at temperatures between 180 and 250 ◦C in the presence of water, which creates autogenous
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pressure. The advantage of transforming SS into hydrochar rather than pyrochar lies in lower energy
costs due to the lower process temperatures and the fact that pre-process drying of the feedstock is not
necessary. On the other hand, they are considered to be biochemically less stable than biochar [2,3].

Commonly, SS is characterized by a high ash content yielding in pyrolyzed products with organic
matter contents which are too low to meet the requirements of the International Biochar Initiative or
the European Biochar Certificate [4,5] to be called biochars [6]. Therefore, we will refer to pyrolyzed SS
as pyrochar.

Despite the potential of pyrochars and hydrochars to increase the amount of stable carbon stored in
soils, its use in agriculture will only be economically feasible if they provide additional benefits such as
increasing crop production. Whereas pyrolysis of green waste and wood commonly results in products
with a high porosity which may improve some physical properties of the soil [6,7], the pyrolysis of SS
turns into carbonized residues with fertilizing potential [8–11].

Solid-state 15N nuclear magnetic resonance (NMR) spectroscopic studies confirmed that most of
the organic N (Norg) in pyro- and hydrochars from SS occurs as heterocyclic N [10]. Bearing in mind
that this so-called black nitrogen (BN) [12] is less bioavailable than inorganic N (Ni), a big advantage
of applying such fertilizers lies in the fact that N losses due to the fact of leaching can be reduced.
On the other hand, despite pyrolysis and HTC of SS decreasing P mobility [13], pyrolyzed-SS was
able to increase P contents in plant tissues [11], which demonstrates that at least part of the P was
bioavailable. These observations point towards the potential of HTC-treated and pyrolyzed SS to act
both as P and N sources for plants once applied to the soil.

These promising results are counteracted by the fact that phytotoxic compounds may be formed
during thermal treatments. Indeed, negative impacts on germination and seedling growth have been
observed in other studies [14–17]. They may be eliminated by well-designed pyrolysis conditions [18]
and washing treatments [16]. However, the knowledge about the most appropriate conditions for
converting SS into thermally treated products suitable for agriculture is still scarce.

Bearing this in mind, the goal of the present work was to fill those knowledge gaps by
complementing a former investigation on the chemical transformation of organic C and N forms during
HTC and pyrolysis of two different SS [10] with an 80 day greenhouse experiment. The focus of those
experiments was to obtain insights on the impact of the application of the respective hydrochars and
pyrochars on germination, survival, and biomass production of Lolium perenne. In addition, the char
properties were related to the growth of Lolium.

2. Materials and Methods

2.1. Characteristics of the Sample Material

Two different SS were collected at the Experimental Wastewater Treatment plant (CENTA), located
in Carrion de los Céspedes, near Seville, southern Spain. The first sample, further called “A_SS”, was
a primary sludge produced by the settlement of suspended organic matter in a pond. The second
sample, assigned “T_SS”, was a secondary sludge accumulated in an extended aeration treatment
system and later stored in a thickener, in order to reduce its water content. In addition, “W” pyrochar
was yielded from wood chips. Our previous work [10] showed that the material collected from the
pond (A_SS) was more humified, thus biochemically stabilized, than that derived from the thickener
(T_SS). The total N (NT) contents of A_SS and T_SS were 19 and 32 g kg−1, respectively (Table 1), and
occurred mainly as peptides and in amino sugars [10]. Regarding heavy metal content, only Zinc (Zn)
for A_SS and Cadmium (Cd) for both A_SS and T_SS slightly exceeded the thresholds established in
the Working document on sludge [19] (Table 1).
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Table 1. The pH, organic carbon (Corg), total nitrogen (NT), organic nitrogen (Norg), inorganic nitrogen (Ni) of NT, Corg/NT ratio, PT, KT, Cd, Cu, and Zn contents of
primary (A_SS) and secondary (T_SS) sewage sludges and the respective hydrochars produced at 200 ◦C (_HTC_200) and 260 ◦C (_HTC_260) for 0.5 and 3 h (_0.5, _3,
respectively), as well as the pyrochars (_Py) [10].

pH Corg NT Norg Ni
a of NT Corg/NT PT KT Cd Cu Zn

g kg−1 g kg−1 g kg−1 % (w/w) g kg−1 g kg−1 mg kg−1 mg kg−1 mg kg−1

A_SS 7.4 228 19.2 18.9 0.5 11.9 12.3 6.8 3.2 401 1329
A_HTC_200_0.5 6.5 224 16.0 15.6 2.6 14.0 13.9 7.3 3.5 423 1399
A_ HTC_200_3 6.5 214 13.9 13.7 2.5 15.4 14.5 7.6 3.7 446 1459
A_ HTC_260_0.5 6.4 213 11.2 10.8 1.5 19.1 15.4 8.0 4.0 477 1585
A_ HTC_260_3 6.6 221 12.1 11.8 1.9 18.2 14.9 7.9 4.0 464 1554

A_Py 9.3 134 8.6 9.0 0.0 15.5 17.0 9.5 4.6 533 1766
T_SS 7.5 245 32.3 31.9 0.4 7.6 16.7 6.1 3.5 418 1821

T_ HTC_200_0.5 6.7 233 25.0 24.5 2.2 9.3 20.0 6.8 4.2 493 1983
T_ HTC_200_3 6.2 233 23.9 23.7 1.4 9.7 20.8 7.1 4.3 506 2017
T_ HTC_260_0.5 6.3 225 19.7 19.8 1.2 11.4 21.6 7.3 4.6 528 2128
T_ HTC_260_3 6.4 224 19.0 18.7 1.4 11.8 21.6 7.6 4.8 530 2162

T_Py 10.0 168 16.3 16.0 0.0 10.3 25.2 9.2 5.3 618 2432
W_Py 9.3 829 1.80 n.a. b n.a. 922 0.7 4.5 n.a. n.a. n.a.
Soil 8.4 10 1 n.a. n.a. 7 0.4 1.7 n.a. n.a. n.a.

a Ni: inorganic nitrogen (sum of NH4-N, NO2-N, and NO3-N in %); b n.a.: not available.
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Hydrochars were produced from the primary (A) and secondary (T) SS at 200 ◦C (_HTC_200) and
260 ◦C (_HTC_260) for 0.5 and 3 h (_0.5, _3, respectively) as described in Reference [10] in a 1 L stirred
pressure reactor (Parr reactor series 4520, IL, USA). The reaction water was removed through a filter
and the material was rinsed with distilled water until the rinsing water turned clear.

To obtain the A and T pyrochars, further called A_Py and T_Py, 200 g of dry SS were pyrolyzed
in a closed steel container in a preheated muffle oven at 600 ◦C for 1 h. W_Py carries the European
Biochar Certificate and was produced at 600 ◦C for 20 min by Swiss Biochar, Lausanne, Switzerland.

The heavy metals content of the chars tended to increase compared to the non-treated SS; however,
only Cd and Zn exceeded the limits [19], similar to the non-treated SS (Table 1). The concentrations of
selective volatile organic compounds in process liquid (5-hydroxymethylfurfural 2-furfural, phenol,
catechol, cresol, and resorcinol) was measured using a modified ICS 3000 Dionex (Thermo Scientific)
with a UV detector (wavelength 280 nm) and Knaur Eurosphere II (C 18) column. A 15% acetonitrile (85%
deionizedwater) was used as mobile phase in the ion chromatography system. Column temperature
was set at 23 ◦C and flow rate was 1.0 mL min−1. No presence of these molecules was found in A_SS,
T_SS or in their chars.

According to the International Biochar Initiative [4], the organic C (Corg) content of the hydro-
and pyrochars (Table 1) allows their classification as class 3 biochar; however, only the pyrochars fulfill
the second requirement of having an atomic H/C ratio <0.7. A detailed characterization of the organic
matter composition is given in Reference [10]. Due to the high N contents of the source materials,
all chars contained considerable amounts of N between 1% and 3%, most of which (>97%) occurred in
an organic form (Table 1). In contrast to the HTC chars, the pyrochars did not concentrate Ni. Total
phosphorus (PT) and potassium (KT) contents were determined after digestion with aqua regia (1:3 v/v
concentration HNO3/HCl) in a microwave oven (Microwave Laboratory Station Mileston ETHOS 900,
Milestone s.r.l., Sorisole, Italy) by inductively coupled plasma-optical emission spectrometer (ICP-OES)
spectrophotometer Varian ICP720-ES (Table 1). The pH of the samples was measured in distilled water
(1:10, w/v) (Table 1).

2.2. Greenhouse Experiment

For the greenhouse experiment, 250 mL pots (16 cm height) were perforated and filled with 250 g
of dried fine earth (<2 mm) from the Ah horizon of a sandy loamy Calcic Cambisol [20] mixed with
amounts equivalent to 5 and 25 t ha−1 of each char (0.8 and 4% w/w, respectively) and topped with
25 certified grass seeds (Lolium perenne, ILURO Seeds Company, Barcelona, Spain). The soil derived
from the experimental station “La Hampa” of the Instituto de Recursos Naturales y Agrobiología de
Sevilla, in the Guadalquivir River Valley (SW Spain; 37◦21.32′ N, 6◦4.07′ W), Coria del Río, Seville.
After sampling, the soil was dried at 40 ◦C for 48 h and sieved (<2 mm). Small branches, fresh mosses,
and plant remains, as well as roots were removed manually. The soil material contained 21 g C kg−1,
of which 10 g kg−1 was attributed to Corg and 1 g N kg−1. Its pH in water was 8.5 and its water holding
capacity (WHC), according to Reference [21], was 24%.

For each treatment, four replicates were prepared (n = 4). Additionally, 6 controls without any
char amendment but with plants were included (n = 6). However, of those 6, only 4 were used for
the final analysis. Growing conditions were similar as previously described by Reference [7]. Briefly,
soil moisture was adjusted to 60% of the maximum WHC, the samples were placed in a greenhouse at
25 ± 2 ◦C/17 ± 2 ◦C (day/night) maintaining a 14 h light day−1 cycle with the support of growing lights
(120 µE m−2 s−1 of photosynthetically active radiation) for 80 days. Average relative humidity of the
air in the greenhouse was maintained during the experiment in the range 60 ± 10%. The position of
the samples was changed three times per week to assure comparable light and growing conditions.
Chars were dried (40 ◦C), grounded, and sieved (<2 mm) prior to being applied to the Calcic Cambisol
to avoid possible differences due to the contrasting textures or heterogeneity. No nutrient solution
was added. Although the pots were placed on saucers to collect possible excess water, there was no
leaching after watering. The same amount of water was added to each sample three times per week,
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which summed up to 145 L m−2 at the end of the experiment. This was equivalent to 662 L m−2 per year
and is similar to the natural average annual precipitation in the region around the experimental station.

The number of living grass shoots was counted after 5, 9, 13, 18, 20, 25, 30, 60, and 80 days.
The germination rate was determined from measurements after 20 days of incubation, since it
represented the time with the highest number of living plants. The survival rate was calculated by
using the 80 count-day data. In addition, the shoots were cut and then left to regrow after 18, 33, 47,
and 61 days. The final harvest was after 80 days of incubation. The harvested shoot biomass was dried
(48 h at 40 ◦C) and weighed in order to determine the shoot biomass production. After the experiment,
the roots were manually separated from the soil, rinsed with distilled water, dried (48 h at 40 ◦C), and
weighed to determine the root biomass.

2.3. Statistical Analysis

All measured variables were submitted to the same statistical analysis using SPSS version
17.0 (SPSS, Chicago, IL, USA). Shapiro–Wilk and Levene tests were used to test for normality and
homoscedasticity of the data, respectively. Transformations were applied to meet model assumptions
when necessary. A t-test was used to identify significant effects between the control and each treatment.
The same test was used to evaluate the application dose effect within each char. In addition, an analysis
of variance was performed followed by a comparison of means (Tukey’s test) to test for significant
differences among chars, independently of the dose applied. Effects were considered significant at
p ≤ 0.05.

The R version 3.4.1 was used to conduct the non-metric multidimensional scaling (NMDS)
ordination. Samples variation was represented by an ordination using a Euclidean distance matrix.
The “envfit” function in the “vegan” package [22] was used to draw vectors representing chars
properties with a statistical effect on Lolium perenne response onto the NMDS ordination. The SigmaPlot
version 13.0 was used to plot the previously obtained NMDS data.

3. Results

3.1. Germination and Survival Rates

Figure 1 shows that the addition of pyrochars to the soil did not affect the germination or survival
rate of Lolium perenne. Only W_Py applied at 25 t ha−1 decreased both parameters (Figures 1 and 2).
Hydrochars derived from the “T” sewage sludge showed lower germination and survival rates than
the control. In contrast, most of the tested A hydrochars revealed no major impact on the germination
or survival rate. In addition, no differences were found when comparing the different production
conditions or application doses between each other.

3.2. Biomass Production

The biomass production was determined as the sum of the shoot and the root biomass. The use of
pyrochars had no effect on biomass production of Lolium perenne except for T_Py applied at 25 t ha−1

(Figure 3). The total biomass production after hydrochar application was always higher or equal to
the control. Note that the greatest biomass was obtained with the hydrochars produced at the lowest
temperature for both A and T hydrochars, A_HTC_200 and T_HTC_200, respectively. Residence
time seems to have a lower impact than temperature on this parameter. In addition, increasing the
application rate did not significantly alter the total biomass production.

3.3. Root-to-Shoot Ratios

The pyrochars’ addition significantly increased the root-to-shoot (R:S) ratio of Lolium perenne,
whereas the presence of A and T hydrochars resulted in lower or equal values than the control (Figure 4).
Within hydrochars, production conditions did not affect this parameter; however, the R:S ratio tended
to decrease with increasing rates of hydrochar application. These changes were mainly due to the
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higher root biomass in the case of pyrochars and a higher shoot biomass in the case of hydrochars
(data not shown).Agronomy 2019, 9, x FOR PEER REVIEW 3 of 14 
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according to the t-test. 
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hydrochars derived from T_SS. Hydrochars were produced from primary (A_) and secondary (T_) sewage
sludges at 200 ◦C (_HTC_200) and 260 ◦C (_HTC_260) for 0.5 and 3 h (_0.5, _3, respectively). Pyrochars
were produced from primary (A_) and secondary (T_) sewage sludges (_Py). NS: no significance.
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ratios together with higher root biomass, and to a lower extent, by higher germination and survival 
rates than hydrochars. In contrast, hydrochars were characterized by larger shoot and total biomass 
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higher than 0.01, and hence, were not considered significant variables. 

Figure 4. Root-to-shoot ratio of Lolium perenne in: (A) Control and pyrochars-amended pots, (B) Control
and pots amended with hydrochars derived from A_SS and (C) Control and pots amended with hydrochars
derived from T_SS. Hydrochars were produced from primary (A_) and secondary (T_) sewage sludges
at 200 ◦C (_HTC_200) and 260 ◦C (_HTC_260) for 0.5 and 3 h (_0.5, _3, respectively). Pyrochars were
produced from primary (A_) and secondary (T_) sewage sludges (_Py). NS: no significance. Asterisks
inside the bars show significant differences with the control according to the t-test. The above-line
asterisks indicate significant differences among doses according to the t-test.
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3.4. Relationship between Plant Response and Chars’ Properties

The NMDS graph showed that carbonization type had an overall effect on all parameters since
pyrochars were separated from hydrochars (Figure 5). Pyrochars were characterized by higher R:S
ratios together with higher root biomass, and to a lower extent, by higher germination and survival
rates than hydrochars. In contrast, hydrochars were characterized by larger shoot and total biomass
per plant. Regarding the feedstock type, T hydrochars showed larger shoots and total plant biomass
than A hydrochars. In addition, total biomass per plant and shoot biomass significantly correlated
with increased Ni and Norg contents of the chars. To a lower extent, total biomass per plant and shoot
biomass also correlated with increased Corg levels of the chars. The p-values of the abovementioned
correlations were less or equal to 0.01. The Corg/N ratio, PT, and KT parameters showed p-values higher
than 0.01, and hence, were not considered significant variables.Agronomy 2019, 9, x FOR PEER REVIEW 7 of 14 
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of fit was 0.05.

4. Discussion

4.1. Germination and Survival Rates

Our data did not allow an unbiased assignment of factors causing the observed differences
in germination and survival rates between hydrochars and pyrochars. The germination rates of
Lolium perenne were similar to those previously obtained using biochars produced from different
vegetation residues as an amendment to the same Calcic Cambisol [7]. Considering that both SS-derived
hydrochars and pyrochars showed Cd and Zn values slightly higher than the limits and that only the
hydrochars decreased the germination rate, the presence of heavy metals does not explain our results.
A decrease in germination after addition of hydrochars has also been observed by others [14–17] and
was attributed to phytotoxic volatile organic compounds adsorbed on the surface of the hydrochar.
These compounds are mostly water soluble and can be removed by washing the hydrochars with
distillate water [16] but soluble nutrients are expected to be at least partially lost during this process.
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The fermentation of hydrochars in an anaerobic biogas reactor has also been proposed to eliminate
toxic compounds since it avoids the loss of nutrients [23,24]. However, analysis of our chars prior to
incubation did not indicate the presence of HMF, furfural, resorcinol, catechol, phenol, and kresol.
Thus, either other non-measured phytotoxic compounds were present in our hydrochars or other
factors were responsible. Previous works have also found diverse germination responses among
hydrochars produced from different feedstocks [14,16].

Dry pyrolysis performed at temperatures greater than 500 ◦C in appropriate pyrolysis reactors
reduces the presence of volatile compounds, including polycyclic aromatic compounds and other
phytotoxics [25]. Thus, the possible negative impact of pyrochars on germination rates should be less
prominent than that of hydrochars. Previous works have shown both neutral and positive effects of
pyrochars [7,15,17,26]. This is in agreement with our results indicating no major impact of pyrochar
addition except for W_Py applied at 25 t ha−1. This effect caused by W_Py could be due to its extremely
high aromaticity (H/Cat ≤ 0.4; [10]) together with the probable immobilization of nitrogen, especially
when adding the highest dose of this amendment (C/N = 922; Table 1).

4.2. Biomass Production and Chars Properties

Despite some hydrochars decreasing the survival rate of Lolium perenne, the total biomass
production was always higher or equal in the hydrochar amended soils, compared to the control.
This is best explained by the size of the remaining plants, since hydrochars tended to increased biomass
production per plant (data not shown). However, our pyrochars had no effect on biomass production.
The latter is in contrast to Reference [7] who observed a significant increase of Lolium perenne yields in
pyrochar amended soils compared to the control. However, here it has to be taken into account that in
the former study, inorganic N fertilizer was added.

The positive correlation between Ni and Norg contents of the chars with the total and shoot
biomass production per plant suggests that the availability of nitrogen of the chars represents an
important factor determining the additional growth of Lolium in the amended soils. Accordingly,
the pyrochars showed the lowest Norg contents along with absence of Ni, which is in line with the lack
of increase of Lolium biomass production. The hydrochars produced at 260 ◦C exhibited higher Norg

than the pyrochars and contained some Ni which may explain the slight increase of plant biomass
production. However, amendment of the hydrochars produced at 200 ◦C, containing the highest
concentrations of Norg and Ni, yielded the highest amount of Lolium biomass. This is in line with
former experiments showing that green-waste-derived hydrochars produced at 200 ◦C also produced
higher plant yields than hydrochars produced at higher temperatures [27].

In contrast to N, the PT and KT contents of the chars revealed no correlation with growth parameters.
Either the soil already contained sufficient plant-available P and K prior to char application or the P
and K of the chars were less plant available. In both cases, our results indicated that factors other than
PT and KT contents had a stronger impact on plant growth. The correlation of Corg contents of the chars
with the total and shoot biomass production may be due to the improvement of some soil physical
properties, such as a decrease in soil density, an increase of the soil water holding capacity or providing
a habitat for soil microorganisms. Note that hydrochars exhibited higher Corg contents, and thus,
higher biomass production than pyrochars. Since the latter are expected to exhibit a higher biochemical
stability than hydrochars, one has to keep in mind that increasing the potential of soils to act as a C
sink via addition of charcoal does not necessarily coincide with enhancement of biomass production.

4.3. Root-to-Shoot Ratios and Char Properties

Although pyrochar addition had no impact on Lolium biomass production, their presence increased
their R:S ratios compared to the control. Considering that increased R:S ratios have been observed
when growth is limited by N or P supply [28], our observation may be related to the absence of Ni in
our pyrochars. This deficiency may have been increased by adsorption of NO3

− and NH4
+ from the

soil solution to the char surface as it was suggested to occur for some biochars [29,30].
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Hydrochars applied at 25 t ha−1 showed lower R:S ratios than the control, whereas the 5 t ha−1

application rate produced no significant impact or a lower decrease of this parameter. In general, when
nutrient availability increases, plants can develop their aboveground vegetation in detriment to their
subsoil part because less effort is required to acquire nutrients [31]. This is in agreement with our
results, since char amendment with 25 t ha−1 delivered higher nutrients levels than addition of 5 t ha−1.

4.4. Fertilization Potential of Thermally Treated SS

This work indicates that low-temperature HTC of SS results in a product with N fertilization
potential, whereas chars yielded from HTC with higher temperatures and pyrolysis do not exhibit
the same suitability. This potential depends on the amount of Ni contained in the chars together
with the bioavailability of their organic N. Whereas Ni provides fast and immediate N fertilization,
the degradation rate of the organic N compounds determines the slow-release N fertilization potential of
the amendments. Our previous work [10] showed that organic N in SS occurred mainly in peptide-like
structures, part of which may be easily degradable. During both HTC and pyrolysis, these compounds
were partially transformed into N-heterocyclic aromatic entities [32], which are microbiologically less
accessible. This transformation was more efficient for pyrolysis than for HTC, which suggested a
quicker degradation of the Norg in hydrochars than in pyrochars. Therefore, not only the total nutrient
content values but also their speciation should be considered since their bioavailability from chars is
modified with processing conditions.

In addition, it also has to be considered that the same hydrochars/pyrochars may exhibit a
different crop response depending on the crop type as well as on the soil properties and the climatic
conditions [33,34].

5. Conclusions

The pyrolysis process and conditions together with the composition of the sludge were determinant
in the properties of the resulting chars and therefore in their applicability as soil amendment. This study
showed that although the problem of reduced germination after HTC application still has to be solved,
SS-derived hydrochars have the potential to be used as soil amendment with immediate fertilizing effect.
Bearing in mind that plant growth parameters correlated better with N than with P and K contents,
the increase of plant yields in the hydrochar amended pots is best explained by the concomitant
presence of Ni and easily available organic N forms. However, further and long-term experiments are
needed to discern if the presence of less microbially accessible N from the pyrochars may turn into an
advantage for crops which need low but constant N fertilization.

From an energetic, and thus, economic point of view, HTC may be advantageous over dry pyrolysis
since drying of the SS prior to its thermal treatment can be avoided. In addition, lower temperatures
have to be applied during HTC, which considerably reduce the costs for energy. Our studies reveal
further that hydrochars produced at 200 ◦C caused higher plant growth than those yielded at 260 ◦C,
which allows even less energy consumption. In addition, aside from economic considerations, the role
of low temperature hydrochar as N-supplier may be of environmental interest since the use of mineral
fertilizer could be reduced and the release of greenhouse gases into the atmosphere occurring during
disposal of untreated SS can be avoided.
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