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ABSTRACT

We have recorded the diffraction patterns from individual xenon clusters irradiated with intense extreme ultraviolet pulses to investigate the
influence of light-induced electronic changes on the scattering response. The clusters were irradiated with short wavelength pulses in the
wavelength regime of different 4d inner-shell resonances of neutral and ionic xenon, resulting in distinctly different optical properties from
areas in the clusters with lower or higher charge states. The data show the emergence of a transient structure with a spatial extension of tens
of nanometers within the otherwise homogeneous sample. Simulations indicate that ionization and nanoplasma formation result in a light-
induced outer shell in the cluster with a strongly altered refractive index. The presented resonant scattering approach enables imaging of
ultrafast electron dynamics on their natural timescale.

VC 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/4.0000006

I. INTRODUCTION

Intense femtosecond short-wavelength pulses from free-electron
lasers (FELs) open new avenues to investigate transient states and ultra-
fast processes with unprecedented spatial and temporal resolution.1–4

One prominent example is ultrafast x-ray diffraction methods such as
femtosecond Coherent Diffraction Imaging (CDI), which have enabled

the structure determination of individual nonperiodic nanoscale
objects.5 The elastically scattered photons of a single-shot exposure form
an interference pattern containing a snapshot of the object before it is
quickly destroyed due to the large amount of deposited energy.6,7 The
encoded structural information can be retrieved via phase retrieval
methods8 or forward simulations,9 which allowed for the structural
characterization of such fragile objects as single viruses,10,11 aerosols,12,13
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atomic clusters,9,14,15 and even superfluid helium nanodroplets contain-
ing quantum vortices.16,17 Via pump-probe techniques, laser-induced
processes in individual nanoparticles can also be studied in a time-
resolved manner with unprecedented spatiotemporal resolution.18–22

Such studies are pivotal for understanding and mitigating the damage
dynamics from ionization, plasma formation, and particle explosion,
which limit the achievable resolution in CDI experiments.7,23

While it may be possible to outrun the structural damage induced
in the nanoscale targets,6 the ultrafast changes in the electronic struc-
ture due to excitation, ionization, and plasma formation occur on a
faster, few-femtosecond or subfemtosecond timescale, unseparable
from the interaction with the intense pulse.24–27 The sensitivity of the
diffraction process to the particle’s electronic structure, on the other
hand, holds tremendous opportunities to trace electronic structure
changes with high spatial resolution in a time-resolved manner with
ultrafast diffraction methods.28 In particular, near absorption resonan-
ces, the x-ray scattering cross sections depend sensitively on the energy
of the incoming photons and the electronic structure of the target.27–30

In this work, we demonstrate that ultrafast resonant scattering can
be used to visualize the spatial distribution of transient charge states in
an evolving nanoplasma. As samples, we use submicrometer-sized
xenon clusters that are transformed to a highly excited nanoplasma dur-
ing irradiation and imaged with the same intense femtosecond FEL
pulse. On the timescale of the pulse, the position of the clusters is frozen
in space, and the measured ion kinetic energies show that ionic motion
in the generated nanoplasma can be neglected. Nevertheless, in the
radial intensity profiles of single-shot single-cluster scattering patterns,
we find an intensity dependent lobe structure corresponding to the
appearance of an additional characteristic length in the otherwise
homogeneous particle. At the FEL wavelength used in our study, neu-
tral xenon and also its low charge state ions (Xe�4þ) are strongly
absorbing, while higher charge states are almost transparent. The choice
of a resonant wavelength allows us to discriminate between areas of dif-
ferent charge states. We carried out a one-dimensional Monte Carlo
simulation of the photoionization process, suggesting the formation of a
highly charged outer shell in the evolving nanoplasma with strongly
altered optical properties. By grouping and averaging the experimental
patterns obtained at similar FEL intensities, we suppress individual clus-
ter effects, e.g. from a rough surface, while enhancing the relevant
dynamic signature. The radial profiles of the grouped patterns are fitted
with Mie-calculations for a concentric core–shell model to extract ten-
dencies of the evolution as a function of illumination intensity. The fit-
ting yields a sequence of core–shell structures with strongly altered
refractive indices and increasing shell thickness. The experiments dem-
onstrate the possibility to extract spatial information on transient
plasma formation in isolated nanoparticles with resonant ultrafast x-ray
scattering. The method provides the potential for imaging ultrafast exci-
tation, ionization, and charge transfer dynamics in complex samples
with femtosecond time and nanometer spatial resolution.

II. EXPERIMENT

The experiments were performed at beamline BL2 at the soft x-
ray free-electron laser FLASH.31,32 Intense extreme ultraviolet (XUV)
pulses at 91 eV photon energy were produced with an electron bunch
charge of 0.5 nC, yielding a pulse energy of 150 lJ as measured with
the gas monitor detector.32 An estimate for the pulse duration of 100
fs is derived for these parameters from measurements33 carried out

with the electron bunch length diagnostics LOLA.34,35 Considering a
beamline transmission of 64% and a focal spot size of 20lm (FWHM)
at the beamline BL2,32 a power density of up to 3� 1014 W/cm2 was
reached. The pulses intersected a highly diluted jet of sub-micron
xenon clusters.36 An adjustable piezo-skimmer slit ensured that only
one single cluster was present in the focus volume per FEL shot.15 The
scattering patterns were measured with a previously described14,28

large area scattering detector consisting of an MCP-phosphor stack
with a center hole and an out-of-vacuum CCD camera. In addition to
the diffraction images, coincident single-shot ion time-of-flight (tof)
spectra were recorded.37,38 In the polarization plane of the FEL, the
setup allowed us to measure diffraction patterns at scattering angles
between 3� and 30�. In the perpendicular direction, the detection angle
was limited to 10� due to a shadow of the spectrometer’s electrodes.
Prior to further analysis, the measured scattering intensities were cor-
rected for a nonlinear detector response9 by taking each pixel’s inten-
sity to the power of 2.5 and for the flat detector geometry28 by
multiplying with a factor of cosðhÞ�3.
III. RESULTS

Two representative examples of the single-shot single-particle dif-
fraction patterns are shown in Figs. 1(a) and 1(b). The difference in
brightness results from different irradiation intensities of the FEL due to
the varying positions of the xenon clusters within the focal volume.38 As
known from previous work, the basic structure of the diffraction images,
with concentric but intermittent rings, indicates nearly spherical shapes
with rough surfaces resulting from the coagulation-dominated growth
process.36 The size of each single cluster (average radius) could be deter-
mined by comparing the spacing of the extrema in the diffraction pat-
terns with Mie calculations.36 A total of 32 patterns within the size
regime of R ¼ ð4006 50Þ nmwere selected (the raw data of all patterns
were uploaded to the CXIDB39,40). Then, the patterns were radially aver-
aged and plotted on a logarithmic scale vs scattering angle in Fig. 1(c).

A. Intensity dependent evolution

A number of observations can already be made when following
the profiles’ evolution in Fig. 1(c) from the lowest to the highest inten-
sity: first, a high-frequency modulation can be observed in all profiles,
originating from the ring structures in the patterns [see Figs. 1(a) and
1(b)] and reflecting the cluster size information. In the case of the least
intense profile (yellow curve), the envelope agrees rather well with the
expected curve for a homogeneous spherical xenon cluster, dropping
linearly on a logarithmic scale. In the absence of light induced changes
in the particle, all other profiles from the clusters irradiated with
higher FEL intensity would follow a similar curve, just with a propor-
tionally higher scattering signal. Instead, the envelopes of the more
intense profiles show an additional large-scale structure.

In order to analyze only the intensity dependent signature in the
patterns and to reduce effects from irregular shapes and slightly dif-
ferent sizes, the events were sorted for increasing detector brightness
and binned into four different categories A to D [the bins are indi-
cated by the color coding in Fig. 1(c)]. The diffraction patterns within
each of the four bins A to D were averaged, and radial profiles were
extracted from the averaged patterns. These averaged profiles are
plotted in Fig. 1(d).

When following the averaged profiles of categories A to D, the
evolution of the profile envelopes can be seen even more clearly.
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A lobe structure appears with a minimum roughly at a scattering angle
of 15� that becomes more pronounced with increasing irradiation
intensity. In general, a modulation in any diffracted intensity distribu-
tion corresponds to a characteristic length scale in the scattering
object. We thus conclude that the evolving superstructure corresponds
to the development of an additional scattering structure in the sample,
an area with different optical properties. It is notable that the

modulation structure appears to be a general feature because it sur-
vives the averaging over many single-cluster patters, which themselves
incorporate the average scattering signal over the FEL pulse duration.
This raises the question of the origin of the transient refractive struc-
ture with a spatial extension on the order of a few tens of nanometers,
as estimated from an Airy pattern with a minimum at 15�.

The results from theoretical41–53 and experimental14,20,37,38,54–67

studies on clusters in intense XUV pulses provide basic knowledge
about the interaction between an intense short wavelength pulse and a
rare gas cluster. From this body of work, we can exclude ionic motion
as the origin of the observed modulation feature. A general picture
divides the dynamics in three phases.42,48,54,68 In the first phase, photo-
ionization and Auger decay lead to the emission of electrons with
residual kinetic energy from the cluster and therefore result in a
charge-up of the cluster as a whole.48,69 As soon as the Coulomb
attraction between the positively charged cluster and photoelectrons
(or Auger electrons) exceeds their kinetic energy, the second phase
starts, and subsequently, released electrons become trapped in the
cluster potential.41,56 A nanoplasma is formed in which further elec-
trons are released from the single atoms or ions, but they reside within
the cluster. Within the following pico- to nanoseconds, in the third
phase of the cluster dynamics, the electrons transfer their kinetic
energy to the ions, expelling one surface layer after the other in a
hydrodynamic expansion.20,37,38,48 Also, the net charge on the cluster
leads to ion repulsion of the unshielded surface, referred to as
Coulomb explosion.45,57,60,70 A theoretical study48 modeling argon
clusters irradiated with 90 eV radiation predicts a motion of the outer-
most cluster shell of about 1.5 Å within the first 100 fs of the interac-
tion for conditions comparable to the current experiment (the argon
ions being a factor of 3 lighter and the intensity being a factor of 6
smaller).48 Furthermore, we can get a first-order estimate for the maxi-
mum motion of ions from the ion time-of-flight spectra measured in
our experiment. An estimate for the acceleration at the surface can be
derived from the final kinetic energies of the cluster ions of up to
600 eV per charge.38 Assuming a 400nm sphere that accelerates a
Xe5þ ion to its final kinetic energy of 3000 eV yields an effective charge
of that sphere of 105e. Such a sphere drives Xe5þ, starting at the
sphere’s surface from rest, less than 1 Å within the first 100 fs.

Having excluded ionic motion, we attribute the observed modu-
lations to light-induced electronic structure changes (i) resulting from
the ionization and plasma formation within the FEL-irradiated particle
and (ii) visualized by the use of a wavelength of the FEL resonant with
neutral xenon and low charge states while being nonresonant with
higher charge states. In Sec. III B, based on a first-order model of the
cluster ionization process, we develop a physical picture of the plasma
formation and discuss the generation of an outer shell in the cluster
with strongly altered optical properties. Subsequently, using a classical
concentric core–shell Mie model, we fit the modulation features
observed in Fig. 1 in order to extract tendencies for the evolution of
the shell’s thickness and optical constants with increasing irradiation
intensity (Sec. IIIC).

B. Simulation of the charge state distributions

The appearance of the dynamic scattering features can be con-
nected to the peculiar electronic properties of xenon atoms and ions in
the vicinity of the photon energy of 91 eV. Absorption cross sections
for gas-phase xenon atoms and atomic ions have been measured71–76

FIG. 1. Isolated xenon clusters were irradiated with intense XUV pulses (91 eV pho-
ton energy and 3� 1014 W/cm2 peak intensity in the center of the focal spot). A
total of 32 events with single clusters of ð400650Þ nm radius were selected for
analysis by the characteristic spacing of the diffraction rings. (a) and (b)
Representative diffraction images (second brightest and darkest image of 32
events). (c) Radial profiles of the 32 single-shot images (corrected for the flat detec-
tor and nonlinear response, averaged over the scattering angle /; see text). The
color coding indicates the binning of events with similar intensities (the least intense
category only contains a single pattern). (d) Radial profiles of averaged patterns
from bins A to D. For increasing scattered intensity, an upward shift of the profiles
(linear response) and an additional modulation of the profiles (corresponding to the
ionization and plasma formation) can be observed.
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and are summarized in Fig. 2. A clear step from high to low absorption
between Xe4þ and Xe5þ can be observed, with extremely high values
for the charge state 4þ, which exhibits a large ionic resonance at
91 eV. Correspondingly, the penetration depth, i.e., the depth into the
material for the intensity to decay to 1/e, increases from about 30 to
300nm.

To gain a first-order model of the radial distributions of different
charge states in an irradiated cluster, we investigate the photoioniza-
tion of a one-dimensional chain of atoms using an atomistic Monte
Carlo approach. The results are presented in Fig. 3. For the simulation,
each photon is “propagated” along the chain, starting at x¼ 0 from
the first atom, by probing at every atomic position whether an absorp-
tion is taking place. If the random drawing dictates an absorption pro-
cess, the photon is annihilated, and the charge state of the
corresponding atom is increased by 1 (or 2 in the case of an Auger
process), followed by the start of the propagation of the next photon,
again at x¼ 0. According to the number density of solid xenon77 of
na ¼ 1:67� 1028 particles per m3, we consider 824 atoms for a chain
length of 400nm. The charge state dependent absorption probabilities
for each atom are derived from the absorption cross sections of differ-
ent xenon charge states.71–76 Only linear photoabsorption and subse-
quent Auger processes are taken into account, while nonlinear effects,
light scattering, and plasma processes such as collisional ionization are
neglected. The derivation of the absorption probabilities and the num-
ber of photons impinging on the one-dimensional chain of atoms, as
well as a benchmarking of the model by simulating the penetration
depth for individual charge states, are given in the supplementary
material.

In Fig. 3(a), the simulated distributions of the relative charge state
abundances qqðxÞ with q¼ 0 to 8þ are presented for an irradiation
intensity of 1014 W/cm2, corresponding to 870 photons falling on the
respective area of a single xenon atom (calculated via p � r2Xe with the
atomic radius of xenon rXe being determined from the solid density
value77 given above). From the relative charge state abundances, the
distribution of the average charge state �qðxÞ and an effective imaginary
part of the refractive index bðxÞ along the chain are calculated,78 as
given in Fig. 3(b). Note that the complex refractive index n ¼ 1� d
þ ib is a dimensionless quantity with the absorption index b and the

so-called refractive index decrement d, which is related to the phase
shift of light traveling through matter. The effective absorption index
along the chain is derived as

bðxÞ ¼
X8

q¼0
qqðrÞ � bq withbq ¼

1
4p

k � na � rabs;q;

using the atomic/ionic cross sections given in Fig. 2 and the wave-
length k. Both curves given in Fig. 3(b) indicate that after irradiation,
an outer shell exists up to a propagation depth of about 120nm. In
this depth, the average charge state �qðrÞ drastically drops in a transi-
tion region of about 80 nm thickness from about six to zero, while the
effective absorption index bðrÞ jumps from 0.004 to 0.05, revealing an
even more pronounced kink.

Our basic one-dimensional Monte Carlo simulation therefore
indicates the formation of an outer shell in the cluster with only highly
charged ions, which is rather transparent as compared to the opaque
core. As mentioned above, the simulation omits nonlinear effects, the
light scattering process itself, and all plasma related processes such as
collisional ionization. While it yields simulated values of the imaginary
part of the refractive index b, it does not allow for a prediction of pos-
sible changes in the refraction (d) of the shell. Nevertheless, it provides
a first-order explanation for the dynamic diffraction feature arising
from the resonant interaction of 91 eV radiation with the xenon
clusters.

C. Core–shell Mie fitting

The ionization model described above indicates the formation of
an outer part in the cluster with altered optical properties, but it is

FIG. 2. Absorption of neutral xenon atoms and atomic ions at 91 eV. Total absorp-
tion cross sections rabs in Mbarn of neutral Xe,

71 Xeþ,72 Xe2þ,73 Xe3þ,74 Xe4þ,75

and Xe5;6;7þ76 (colored points). Note that the value of 2 Mbarn for 5 to 7þ consti-
tutes an upper bound. The corresponding penetration depth in nm (black crosses)
is calculated using labs ¼ 1

na �rabs
, with na being the atomic density of solid

xenon.77,78

FIG. 3. (a) Simulation of the distributions of the relative charge state abundances
qqðxÞ for a one-dimensional chain of 824 atoms, i.e., 400 nm length. 870 photons
(corresponding to 1014 W=cm2) fall on the geometric cross section of one xenon
atom and are propagated along the chain. Absorption cross sections of atomic
xenon and its ions from Fig. 2 are used for calculating absorption probabilities. (b)
The average charge state �qðxÞ drops from around 6þ to neutral within 80 nm. The
relative charge state abundances further allow us to determine an effective absorp-
tion index bðxÞ, revealing a transition within 50 nm by an order of magnitude.
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important to note that the geometrical nanoplasma structure may con-
siderably deviate from a concentric core–shell system. Instead, the con-
siderations of the ionization process suggest a distribution that is
asymmetric in the direction of the incident light, with a transparent
part at the irradiated side of the cluster, while the back of the cluster
remains neutral. However, assuming a concentric core–shell offers the
advantage that the patterns can be further analyzed using classical
core–shell Mie theory,79,80 i.e., the analytic solution of the Maxwell
equations for the case of a concentric core–shell system. The input val-
ues and parameters of the Mie simulation—the size of particle and
shell, the complex refractive index in both areas, and the wavelength
and intensity of the incoming light—provide important handles to
capture main tendencies of the nanoplasma formation. While the
influence of the expected asymmetry needs to be tested with advanced
theoretical models,70 we note that the contribution from the back of
the cluster to the diffraction should be also small in a concentric Mie-
model with a highly absorbing core, shadowing the back of the cluster
from irradiation.

For the Mie analysis, not the averaged patterns A to D obtained
at similar irradiation intensities [radial profiles are shown in Fig. 1(d)]
are considered but their difference signal. This approach is conceptu-
ally similar to resonant x-ray imaging, e.g., of the ultrafast switching of
magnetic domains,81 where the difference signal between patterns
obtained at different helicities of circularly polarized light is analyzed,
or of buried structures,30 where diffraction patterns just above and
below an absorption edge are subtracted from each other to enhance
the difference signal in the location of a certain element.

Using a difference signal approach in combination with Mie fit-
ting is based on the following considerations: the measured patterns
(and also averaged data) do not correspond to a single, intermediate
plasma state that can be approximated by a single nanoplasma struc-
ture such as a single core–shell system. Always, the onset of the FEL
pulse intercepts a cluster that is neutral and unchanged, and the last
photons of the pulse interact with an evolved nanoplasma. By analyz-
ing the difference spectra with Mie core–shell fits, we discretize this
evolution and link the intensity-resolved information in different pro-
files with the idea of a common plasma dynamics (see also the mathe-
matical derivation in the supplementary material).

This includes the simplifying assumption that the patterns
belonging to groups A to D, obtained at different irradiation intensi-
ties, all result in principle from the same continuous evolution of
nanoparticle ionization and plasma formation but up to different
stages. In other words, profile A corresponds to an only weakly irradi-
ated cluster, profile B contains the response of this initial phase and
additionally the response of a more advanced nanoplasma, and so on.
This perspective is equivalent to the statement that the number of
impinged photons is the decisive factor for the plasma state reached.
This assumption allows us to replace the variable of time by the vari-
able of energy, but it can only be a rough approximation. Implicitly,
this means that all nonlinear processes such as multiphoton absorp-
tion are neglected (for the instantaneous absorption of two photons,
the intensity, i.e., the number of photons per time interval, is relevant,
not only the number of photons in total).

Now, instead of a gradually evolving and changing system, we
may approximate the nanoplasma formation process by a sequence of
a few discrete steps. The profiles of the difference signals D–C, C–B,
and so on are fitted with a concentric core–shell Mie model (note that

profile A can be seen as the difference between A and 0). In Fig. 4(a),
the radial profiles from the difference signal of the averaged patterns
A � 0, B � A, C � B, and D � C are given. The difference profiles
reveal even more distinct features in the superstructure: with increasing
irradiation intensity, a broad lobe appears, which becomes more and
more pronounced, narrows, and shifts toward higher scattering angles.

With a Mie code that was extended for spheres with a core–shell
structure,79,80,82 profiles were simulated and fitted to the experimental
curves [see Fig. 4(b)]. A global optimization was carried out using a
differential genetic algorithm.83 This approach, even if it is among the
slowest optimization methods, has the advantage of being flexible, and
it does not require an initial guess for the solution. The scattering angle
in a range between 10� and 30� was selected for the fitting because
smaller angles are prone to detector saturation effects [see single pro-
files in Fig. 1(c)]. The optimization target was set to the L2-norm of
the logarithm of the profiles (i.e., least squares minimization on the
logarithmic scale). The shell thickness d, the refraction decrement
dshell, and the absorption index bshell were varied within the parameter
bounds given in Table I. For the core, the values of neutral xenon at
91 eV photon energy84 were used (see Table I). It is noted that the fit-
ting results were rather insensitive to the choice of the core’s refractive
index, as long as the absorption of the core was considerably higher
than that of the shell. Instead of using a single particle size, the average
profiles from several spheres with different sizes, following a distribu-
tion given by the scaling parameter r, were fitted to the experimental
profiles. This allows us to make the fitting insensitive to influences
from the high-frequency oscillations of the profiles corresponding to
the cluster size by taking into account the individual particles’ devia-
tion from spherical shape and the difference in sizes. For further
details and observations on the fitting procedure, see the supplemen-
tary material.

The parameters of the shell resulting from the global optimiza-
tion are given in Fig. 4(c). We find (i) a compared to the core low value
of b around 0.02, which indicates a transparent shell, (ii) an increasing
shell thickness of 20–55nm, and (iii) a refractive index decrement d
increasing with intensity with positive values up to 0.08. The same
fitting results are obtained for a broad range of starting values (cf.
Table I). Systematic Mie simulations, in which the three parameters
are varied separately, are shown in the supplementary material. They
support the assumption of a single optimal parameter set, as they
show that the three parameters d, b, and d have a separable influence
on different characteristics of the core–shell signature. The fitting
results also provide a scaling factor for the incoming number of pho-
tons and thus enable an estimate of the incoming intensities for the
average profiles A to D in Fig. 1(d). Assigning the maximum irradia-
tion intensity, ID ¼ 3� 1014 W/cm2 to groupD, the values for the other
average profiles can be determined according to IA ¼ 6� 1013 W/cm2,
IB ¼ 1� 1014 W/cm2, and IC ¼ 2� 1014 W/cm2.

IV. DISCUSSION

Our one-dimensional first-order ionization model indicates that
the transient characteristic length, revealed by the observed modula-
tions, is connected to the formation and evolution of a highly charged
outer shell with dramatically changed optical properties. The fact that
we are able to fit the experimental profiles well with a sequence of con-
centric core–shell Mie models further supports the general physical
picture, even though both models are clearly limited. For gaining a
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clearer picture, a full description of the light propagation via sophisti-
cated many-particle simulations will be needed, which includes also
other processes such as impact ionization, charge transfer, plasma
shifts of the energy levels, and further nanoplasma dynamics.85–87

Nevertheless, our general considerations provide a first step toward
understanding the observed results.

The results from the Mie-calculations are in good qualitative
agreement with the atomistic ionization model. They show the same
general trend of a rather transparent outer shell, whose thickness
increases with the irradiation level. From the Mie-fitting, we further

FIG. 4. (a) Difference profiles from the averaged profiles shown in Fig. 1(d). For better visibility, the upper curves were shifted by multiplication with a factor. (b) Fitted core–-
shell Mie profiles using the code from Shen.82 The refractive index of the core was kept constant to n ¼ 1:004þi�0:045 [values of neutral xenon at 91 eV (Ref. 84)]. See text
for details. Analog to (a), the profiles II–IV were shifted by a multiplicative factor for better visibility. Dashed lines in (a) and (b) show the profiles below an angle of 10�, where
the experimental data were excluded from the fitting process. (c) Parameters of the shell obtained from the fitting, i.e., shell thickness d (in nm), absorption index b, and refrac-
tive index decrement d. (d) Visualization of the sequence of core–shell structures derived from the fitting with changing parameters of the shell [for the exact values of the
refractive indices, compare with the 2D color map or with the graphs for b and d given in (c)].

TABLE I. Fixed values and parameter bounds of the input parameters for the fitting rou-
tine. The literature values of neutral solid xenon at 91 eV are taken from Henke tables.84

Literature values dXe;91eV �0.004
bXe;91eV 0.045

Parameter bounds dshell (0, 100) (nm)
dshell (�0.1, 0.1)
bshell (0, 0.1)
rshell (0, 50) (nm)
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extract a tendency for the real part of the refractive index, indicating a
strong change in the refraction between the core and the shell, which
grows with the incoming intensity. This general agreement in combi-
nation with the robustness of the fitting results indicates that key
trends are captured in the analysis.

On the other hand, the large differences in the absolute values of
shell thickness and absorption index demonstrate the limitations of
our modeling approaches. In addition, while the Mie approach
assumes a discontinuous transition between the core and the shell, the
ionization model indicates a transition range on the order of 50 nm
thickness. This may partly explain the higher absorption values in the
Mie fits since a higher absorption can in principle take over the effect
of a gradual transition (see the variation of beta in the supplementary
material). Nevertheless, a transition region of such broadness cannot
actually explain the formation of an observable scattering feature. We
have tested with a simple scattering simulation (see the supplementary
material) that the modulation in the scattering profiles disappears
already for a transition region of half that thickness. The required
sharp transition is puzzling and cannot be explained by our simple
models.

The following considerations may allow us to hypothesize on the
origin of a narrow reflective layer tens of nanometers deep in the
nanoplasma. In general, a high reflectivity is connected to a strong
change in the real part of the refractive index. The above discussed
first-order ionization simulation only describes the absorption of the
nanoplasma, i.e., the imaginary part b, and a model of its radial depen-
dence. For the optical response of the cluster, both the real and imagi-
nary parts of the refractive index, 1� d and b, are relevant, which are
interrelated through the Kramers–Kronig dispersion relations. In this
context, the optical properties of the charge state Xe3þ are worth a
closer look. Plasma calculations of the atomic scattering factors of
Xe3þ indicate that between 90 eV and 98 eV, the real part of the
atomic scattering factor f1 (proportional to the refractive index decre-
ment d) rapidly changes from strongly positive to negative values and
back several times.88 Now, we have to take into account that in the
environment of the nanoplasma, the Xe3þ ions are not isolated (as in
the gas-phase measurements carried out to determine the atomic
absorption cross sections74) but instead surrounded by other ionic spe-
cies and quasi-free electrons in the nanoplasma. By comparing the
Xe3þ-distribution [orange curve in Fig. 3(a)], peaking between 150
and 200nm in depth with the average charge state at the same x-
positions [magenta curve in Fig. 3(b)], we find that the neighborhood
of the Xe3þ ions drastically changes. In a plasma environment, atomic
or ionic resonances can be shifted in energy up to several eV.89 It is to
be expected that the change in the environment as a function of the
propagation depth translates into an energy shift, possibly from just
below a sharp resonance to just above the resonance. This would result
in a drastic change of the real part of the refractive index within a short
distance, acting like a transient plasma mirror. A similar argument
could be made for other xenon charge states Xe4þ to Xe6þ, which also
exhibit narrow and very strong absorption resonances in the vicinity
of 91 eV.74,75 For testing this hypothesis, more sophisticated theoretical
approaches will be required.

V. CONCLUSION

In summary, we have presented scattering patterns of single large
xenon clusters resonantly excited with intense XUV pulses. The

patterns reveal strong intensity dependent modulations in the radial
distribution of the diffracted light, indicating the formation of an addi-
tional characteristic scattering length scale in an otherwise homoge-
neous nanoscale particle. Using a first-order modeling of the
ionization in combination with Mie-based simulations, we assigned
the transient diffraction signal to light induced electronic core–shell
structures with an increasingly thick outer shell of low absorption and
high refraction. An abrupt change in refraction, needed to explain the
prominent diffraction feature observed, may be correlated with the
radially changing plasma environment of higher charge states, trans-
lating into a radially changing shift of the electronic resonances. Our
work shows that ultrafast resonant light scattering can map the tran-
sient spatial charge distributions in laser-excited nanoscale matter.
The method can be employed to develop a deeper understanding of
nanoplasma formation and charge transfer dynamics, which play a
key role in many areas ranging from single-shot x-ray imaging to
fusion and warm dense matter research and condensed matter physics.
In the future, the approach provides an avenue to resolve ultrafast elec-
tron dynamics in extended systems on their natural timescale with
intense attosecond pulses currently under development at FELs and
lab-based sources.90–95

SUPPLEMENTARY MATERIAL

See the supplementary material for a mathematical expression of
the discretization approach, further details on the fitting procedure, a
systematic investigation of the influence of each input parameter on
the modulation features, simulations for sharp and smooth interfaces,
and the derivation of the radial absorption index.
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