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A friend of mine, an expert in statistical genomics,
told me the following story: At a dinner party, an
attractive lady asked him, “What do you do for a liv-
ing?” He replied, “I model.” As my friend is a hand-
some man, the lady did not question his statement
and continued, “What do you model?” “Genes.” She
then looked at him up and down and said, “Mh, you
must be very much in demand.” “Yes, very much so,
especially after I helped discover a new culprit gene
for a common childhood disease.” The lady looked
puzzled.
In this snapshot, I will give you an insight into Sta-
tistics, the field that fascinated my friend (and my-
self) so much. I will concentrate on phenomena that
change over time, in other words, dynamical events.
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1 Chaos and autoregressive models

Consider the following doubling map, where n denotes an integer: We choose
y0 > 0, and define a series whose nth element is given by

yn = 2yn−1 mod 1. (1)

In words this means that we double the previous y-value, throw away the integer
part and keep only the decimal part 1 . The map is also called a saw-tooth map
because it is equivalent to the iteration defined by the saw-tooth function

f(y) =
{

2y, 0 ≤ y < 0.5
2y − 1, 0.5 ≤ y < 1.

(2)

Plotting the graph of the function shows that it contains two straight lines with
a break (threshold) at 0.5. Such a function is nonlinear, although the single
pieces are linear.
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Figure 1: A plot of the saw-tooth function with threshold at 0.5

Now, select any positive number as a starting point and iterate forward to
get

y1, y2 = f(y1), y3 = f(y2), . . . .

We will quickly realize that the output shows no regularity no matter how
long we run it, that is, the output looks quite chaotic (hence we need Chaos
Theory), almost indistinguishable from a random series. This seemingly puzzling
feature of generating randomness from a wholly deterministic mechanism can be
understood as soon as we realize that the function f is highly sensitive to initial
values: Two initial values differing only in, say, the 8th decimal place will quickly
diverge (that is, spread apart) upon repeated application of f . The famous

1 For example if y0 = 0.7, we get y1 = 2y0 − 1 = 0.4.
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French mathematician Henry Poincaré (1854-1912) listed such sensitivity as
one of the sources of randomness. Another curious thing about the doubling
(or saw tooth) map is that if we think of n as a parameter for time and run the
map “backwards” in time, we will discover that we need to introduce “external
randomness” denoted by εn. We set

Xn = 0.5 ·Xn−1 + εn, (3)

where n is an integer, εn equals 0 and 0.5 with equal probability, and the
connection to the series of the yn given above is Xn = y−n. The εn term
appears because the inverse of f maps one point to two possible points equally
likely. For example we get f−1(0.5) = 0.25 or 0.75.
This leads us to yet another curious feature: We started with a deterministic 2

nonlinear map (2) and end up with a random (a more fancy word is stochastic)
linear equation (3).

An equation like (3) defines what is called a time series model in Statistics,
and it describes the dynamics of a system over discrete time (n). In general,
the εn can have a more general probability distribution than the uniform
distribution from our example, such as the Gaussian distribution (after the
famous German mathematical genius Carl Friedrich Gauß (1977-1855)) over
the set of real numbers. An equation of the form

Xn = a1 ·Xn−1 + . . .+ ap ·Xn−p + εn (4)

is called a (linear) autoregressive model (AR model for short), which was
invented by the British statistician Udny Yule (1871-1951) in 1927 when he
studied the annual number of sunspots. Here, the coefficients aj are the defining
parameters to be estimated from observations.

The AR model finds appliciations in a broad variety of fields both in its
original form and its multidimensional or piecewise linear generalizations. We
will illustrate this by considering some real-life exmaples.

2 Some real examples

• US hog data
Professors George Box and George Tiao from the USA analyzed the data
seen in Figure 2 by using a 5-dimesional AR model. They used the variables
Hp, Hs, Rp, Rs,W for the hog price, hog supply, corn price, corn supply and

2 Deterministic means that each time we plug in the same value into our function, it gives
us the same result. The opposite of deterministic is stochastic, such as seen in equation (3):
The input 0.5 gives 0.25 (for ε = 0) or 0.75 (for ε = 0.5) with equal probability.
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Figure 2: Hog data from the US (Box and Tiao, 1977)

the farmer’s wage respectively. They concluded that
HpHs

(RpRs)0.75W 0.50

is approximately independently distributed about a fixed mean. In other
words, using real-life observations, they have justified that

profit of the farmer
expense of the farmer

follows a stable economic law! It is a remarkable historical fact that such a
simple empirical relationship had never been discovered for the above classic
data set, until the two statisticians invented a new time series method based
on another statistical technique called canonical correlations in 1977.

• Economics and Finance
The piecewise linear deterministic model (2) has its stochastic equivalent
by adding εn. The result is commonly called the threshold AR (or TAR)
model first introduced by the author in 1978. In an even more general form,
it looks like

Xn =
{
a0 + a1Xn−1 + . . .+ apXn−p + εn, Xn−d < r
b0 + b1Xn−1 + . . .+ bpXn−q + cεn, Xn−d ≥ r.

(5)

The variable r is called the threshold parameter and has to be estimated from
the observed data, along with the aj , bj , p, q, d, c, and the variance of εn.
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The model has made an enormous impact in economics and finance.
In 2011, the US econometrician Professor Bruce Hansen published a com-
prehensive review of 75 papers related to TAR models. A typical example
for the application of the TAR model is the modelling of aggregate output
as measured by GNP growth rates. It has for instance been shown that the
GNP of the United States is subject to floor and ceiling effects. The use of
the TAR model to study the relationship between long and short interest
rates has helped to reveal the strong asymmetric response of interest rate
changes to the spread between the long and short rates.

• Plagues in Kazakhstan
Early this century, the statistician Kung-Sik Chan and his then doctoral
student, Noelle Samia, worked with a team of biologists/epidemiologists
led by Professor Nils Chr. Stenseth, formerly President of the Norwegian
Academy of Science and Letters, on an extensive scale study of plague
epidemics in Central Asia. Concerning the bacterium Yersinia pestis that
causes bubonic plague, they concluded in their report in the Proceedings of
the National Academy of Sciences (USA) in 2006 that

“Y. pestis prevalence in gerbils increases with warmer
springs and wetter summers... Climatic conditions favour-
ing plague apparently existed in Central Asia at the onset
of the Black Death as well as when the most recent plague
pandemic arose in the same region, and they are expected
to continue or become more favorable as a result of climate
change.”

This conclusion is based on a modified TAR model which the participating
statisticians developed and fitted from observed data. In the model to
be given below, Nt,` is the number of great gerbils examined at time t in
“large square” 3 `. The number of great gerbils testing positive under a
bacteriological test does not follow a Gaussian distribution. Instead, it is
more likely to follow a binomial distribution and hence we modify the TAR
model slightly while retaining the piecewise linear structure.
We distiguish between data collected in the spring and in the fall and mark
their parameters with s and f respectively. The binomial distribution model
has parameters (Nt,`, Pt,`), where if t is a spring, the true prevalence rate is
Pt,` = 0 when the lag-ds occupancy (i.e. how many burrows are occupied by
the great gerbils ds units of time ago, namely Xt−ds,`), is below the spring

3 The large squares are the result of dividing Kazakhstan into non-overlapping 40 × 40 km2

squares.
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threshold rs
` . Otherwise, it follows a logistic regression model shown below.

A similar specification applies to the fall data. We should not worry about
too many details as long as we get the message that the dynamics underlying
bacterium Yersinia pestis operates in 4 regimes depending on the season
(spring or fall) and the lag-ds occupancy rate (above or below the seasonal
threshold).

Pt,` =




0, if Xt−ds,` < rs

` and t is a spring
logit−1{(βs

0 + bs
0,`) + (βs

1 + bs
1,`)Tsp,t + bs

2,`Rsp,t + εt,`},
if Xt−ds,` ≥ rs

` and t is a spring;
0, if Xt−df ,` < rf

` and t is a fall
logit−1{(βf

0 + bf
0,`) + βf

1Rsu,t + βf
2Xt−1/2,` + εt,`},

if Xt−df ,` ≥ r
f
` and t is a fall;

Here, the superscript f signifies fall, X denotes the great gerbil occupancy,
Tsp,t is the spring temperature, Rsp,t is the log spring rainfall, and Rsu,t

is the log summer rainfall. The βs are tuning parameters to be estimated
from the observed data. The logistic function logit−1(x) = 1

1+exp(−x) is just
a mathematical trick to transform the binomial model setting into a TAR
model format.

3 Looking to the future

The present information age poses many exciting challenges to Statistics. Data
collection is so fast and plentiful that suddenly we find ourselves flooded with
data.
Let us start with a simple illustration: We saw the example of the hog data,
taken at one particular site. Suppose we have similar data at say 100 sites.
Does a similar empirical law hold for all of them? Will there be differences?
Similar panel time series can and do occur in many situations, e.g. a panel of
stock price time series across different stock markets, a panel of death rates
due to a particular infectious disease at different locations in the world, and so
on. Many interesting questions then need to be answered, e.g. are the different
stock markets equally volatile or do they cluster in some way? Is the infectious
disease spreading?
It is clear that new statistical methodologies will be necessary in order to cope
with the new challenges. This is where fresh thinking is needed. To do so,
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we may have to re-examine existing statistical methodologies and even our
philosophy. Statistics as a scientific discipline has a rather recent history, not
much longer than 100 years. Over these 100 years, the discipline has been
dominated by a concept called likelihood. It is based on the assumption that
the real underlying model is known and the only thing unknown are its tuning
parameters. The observed data then enables us to estimate them. Two schools
of thought, the frequentist school and the Bayesian school, have been the pillars
of Statistics. Despite their sometimes heated and colourful polemics, they share
the common ground of likelihood.
But what if the true model does not exist? What if we know that the model given
to us by our scientist friend is wrong but it is the best available? I think these
are legitimate questions that we need to address. Although some opening shots
have been fired by people like Professor Laurie Davies in Germany, Professor
Yingcun Xia in Singapore, the author and others, the main contributions will
have to come from younger brains like yours!
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Image credi ts

Fig. 2: U.S. hog data, original series. Cited from [1]
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