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Abstract. This paper proposes an adaptive backstepping sliding mode flight control method that 
is compatible with heavyweight cargo airdrop. The goal is to maintain the plane states during 
cargo extraction process, in the presence of uncertainties of both constant and time-varying types, 
as well as matched and unmatched types. A backstepping sliding mode flight control law with 
parameter adaptation is presented based on the plane-cargo dynamics in strict-feedback form. The 
control approach consists in having an adaptation law that approximates the disturbance and 
uncertain aerodynamic function, which is separated from the complex nonlinearities. Also, the 
adaptation algorithm with projection can bound the estimated function. This ensures the 
robustness of the controller against time-varying disturbance and uncertainty. The convergence 
performance and robustness property of the control law are proved by the Lyapunov theory. The 
control effect is evaluated on a transport plane performing a maximum load airdrop task in a 
number of simulation scenarios. 
Keywords: flight control, flight dynamics, time-varying uncertainty, adaptive control, 
backstepping control, sliding mode control. 

1. Introduction 

Heavyweight cargo airdrop is a main function of a transport plane, and it has been widely used 
in modern military tasks and humanitarian aid [1-3]. The successful release and landing of heavy 
payloads greatly depends on the operations of the flight control system of the plane, which is 
imperative to reject sudden and large disturbances caused by the heavy cargo and also to 
accommodate various system uncertainties [4, 5]. 

Over recent years, some achievements have been reported in developing advanced flight 
control laws that are compatible with the heavyweight cargo airdrop. Based on the linear system 
at a given trimming position, [6] investigated the L1 adaptive control approach subject to system 
uncertainties, [7] and [8] made a research on the use of active disturbance rejection control 
technique, and [9] proposed a robust control approach to achieve specified handing qualities. A 
key problem is that thus linear design controllers may cause unsatisfactory performance in the 
event that the cargo becomes increasingly heavy. In such an event, the plane dynamics would 
deviate far from the operating point in cargo extraction, thus leading to a highly nonlinear system. 
It is interesting to linearize the model at a train of operating points throughout the airdrop process 
[9], but this is really a tedious work and cannot fundamentally solve the aforementioned problem. 
Many nonlinear control methods have been proposed to overcome the shortcomings of the linear 
design controllers. The theoretically established feedback linearization method is the one that is 
most widely applied [10]. 

A nonlinear system can be transformed into a constant linear system rather than linear 
approximations via nonlinear feedback and exact state transformations. However, precise 
knowledge of the plant model must be known for achieving perfect feedback linearization. It is 
generally not the case for the airdrop flight controller design, as the complex nonlinear 
aerodynamic characteristics are very difficult to ascertain and model precisely [5, 6, 11].  
Moreover, aerodynamic data obtained from wind tunnel tests always contain a certain degree of 
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uncertainty. Sliding mode control (SMC) is an efficient method to deal with model deficiencies. 
Based on the feedback linearization model of the airdrop process, a preliminary research on the 
use of linear SMC techniques to stabilize the plane speed and pitch attitude is introduced in [12], 
and an iterative SMC strategy that integrates the merits of the global sliding mode and integral 
sliding mode is proposed in [11]. In spite of their interesting ideas, these methods require the upper 
bounds of the uncertainties to specify the control gains to satisfy the requirement of stability and 
robustness. However, the complex uncertainties are always unavailable. In this case, the control 
gains are usually required to be selected large enough to operate correctly under a variety of 
conditions, which is generally a very conservative strategy [13], and might result in severe 
chattering phenomena that even damage systems and actuators [14]. 

Additionally, the aforementioned approaches cannot handle unmatched uncertainties. This 
also limits their implementations in the design of airdrop flight controllers from a purely practical 
perspective. Backstepping control is a recursive method for stabilizing systems with both matched 
and unmatched uncertainties. Combining with the sliding mode method, authors of [15] designed 
a backstepping SMC law, which solves the unmatched uncertain control problem for cargo  
airdrop, but their approach still has the conservative problem as mentioned above. As the 
motivation is the non-requirement of the bounds on the complex nonlinear uncertainties, the idea 
of employing adaptation algorithms to approximate the uncertainties have attracted much attention. 
Papers [16-18] developed a class of online learning algorithm which is compatible with 
uncertainties estimation of complex systems. Authors of [19, 20] proposed a novel estimation 
method based on swarm intelligence optimization algorithms, and this method also provide a 
feasible solution to deal with uncertainties of complex plants. Papers [21, 22] introduced neural 
networks to parameterize the complex uncertainties in designing adaptive backstepping controller, 
so that the update laws can adapt the network weights. Paper [23] separated the uncertain 
parameters from the complex nonlinearities and directly estimated the uncertain parameters using 
adaptation algorithms. The design procedure, as well as the performance analysis of such an 
approach, is relatively easy when compared with that using the neural networks method. 

The main motivation for this work is to present a flight controller design that can accommodate 
large changes in plane dynamics and reject uncertainties of both constant and time-varying types, 
as well as matched and unmatched types. The contributions include 1) a flight controller design 
that inherits the merits of the SMC and backstepping methods, thus solving the unmatched control 
problem of cargo airdrop; 2) the employment of adaptation techniques to approximate the 
disturbance and uncertain aerodynamic function, which is separated from the complex 
nonlinearities; 3) the formation of adaptation laws using the projection operator to bound the 
estimated function [24, 25], which theoretically ensures the robustness of the controller against 
time-varying uncertainties; and 4) a proof of the convergence performance and robustness 
property of the control approach based on the Lyapunov theory. 

2. Plane-cargo dynamics 

The airdrop process starts as the plane adjusts to a steady flight at the target area. The cargo 
moves along the rail and is pulled out of the cabin with the help of the extraction system, as shown 
in Fig. 1. We assumed that the cargo is a particle and the rail coincides with the longitudinal axis 
of the plane. Thus, the cargo only affects the lateral dynamics of the plane. The disturbances that 
the cargo imposes on the plane are the contact force , friction force , and additional moment 

. The aerodynamic forces imposing on the plane include  and , which are the lift and drag 
forces. The thrust and pitch aerodynamic moment are denoted by  and , respectively. The 
pitch flight is characterized by the airspeed , climb angle , attack angle (AOA) , and pitch 
angle , respectively. 

The plane dynamics during airdrop are as follows [11]: 
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= ( cos − − sin − ), (1)= ( sin + − cos − ) , (2)= ( + ), (3)= , (4)

where  stands for the pitch rate;  stands for the mass of the plane; and  stands for the pitch 
moment of inertia. 
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Fig. 1. Forces analysis of the plane during airdrop 

The lift and drag forces are found by: = + ( − ) + , (5)= + ( − ) + , (6)

where  stands for the dynamic pressure;  stands for the wing area;  stands for the elevator 
deflection; ∗ and ∗ represent the drag and lift coefficients, respectively.  

 is given by: = + ( − ) + 2 + , (7)

where ∗  represent the pitch aerodynamic moment coefficients and  stands for the mean 
aerodynamic chord. 

The thrust force is given by: = , (8)

where  is the throttle opening ranging from 0 to 100 % and  is the maximal thrust. 
The expressions of , , and  derived from the cargo dynamics. As shown in Fig. 2, the 

cargo dynamics can be obtained as: = − − sin , (9)= − + cos , (10)= , (11)

where  stands for the mass of the cargo;  and  are the -acceleration and -acceleration 
of the cargo in the wind-axes frame, respectively;  stands for the coefficient of cargo to friction; 
and  is the extraction force found by =  with  denoting the extraction ratio. 

Using the theorem of composition of particles’ acceleration, it follows that the acceleration of 
the cargo is the sum of its implicated acceleration, Coriolis acceleration, and relative 
acceleration [11]: 
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= + sin + cos + 2 sin − cos , (12)= cos − − sin + 2 cos + sin , (13)

where  is the distance of point  to point . 
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Fig. 2. Forces analysis of the cargo 

Substituting Eqs. (12) and (13) into Eqs. (9) and (10) yields: = + sin + − ( cos − 2 )sin        +( sin + − )cos , (14)= ( cos − 2 )cos + − cos         +( sin + − )sin , (15)

with: 

= cos + sin + sin − cos + sin + + cos        + sin − cos + + 2 . (16)

From Fig. 1, the disturbance moment can be obtained as: = ⋅ ( cos − sin )       = cos − sin − sin − cos + + 2 . (17)

Remark 1. Eqs. (1)-(3) are the acceleration equation, centripetal acceleration equation, and 
angular acceleration equation of the plane. Eq. (4) is the pitch angle kinematic equation. It is 
observed from Eqs. (1)-(3) and (14)-(17) that the plane-cargo dynamics form a strongly nonlinear 
system subject to the coupling of the plane and cargo states. Also, the system contains various 
uncertainties, such as aerodynamic data perturbation. Readers can refer to [11] for detailed 
discussions about the model. 

Combining Eqs. (1)-(17), together with the consideration of uncertainties, we can written the 
plane dynamics in cargo extraction as follows: ( ) = ( ) + ( ),( ) = ( ) + ( ) ( ) + Δ ( ), (18)

where = , = [ , ] , = [ , ] , = [0, 1], = [ , ] , and = ; ( ) 
stands for the time-varying disturbance; and Δ = [Δ , Δ ]  stands for the time-varying 
uncertainty.  and  ( = 1, 2; = 1, 2) are: = [− sin + cos − sin − Λ cos        +Λ sin − ( + ( − )) − ]( + ) , (19)



2378. ADAPTIVE BACKSTEPPING SLIDING MODE CONTROL FOR HEAVY-WEIGHT AIRDROP OPERATIONS.  
RI LIU, XIUXIA SUN, WENHAN DONG, XUNING GUAN 

1120 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MAR 2017, VOL. 19, ISSUE 2. ISSN 1392-8716  

= + ( − ) + 2 Λ + ΛΛ        − sinΛ + [−Λ + sin + sin sin − cos cos        + sin + ( − ) + cos + ( − ) [( + )Λ ]⁄ , (20)

= − sin +( + ) , (21)= cos( + ), (22)= ( sin + cos )[( + )Λ ] + Λ , (23)= 0, (24)

with Λ  ( = 1, 2, 3) being defined as: Λ = sin + − , (25)Λ = cos − 2 , (26)Λ = + − ( + ). (27)

The uncertainty functions Δ  ( = 1, 2) introduced by the aerodynamic data perturbation are 
obtained as: 

Δ = [− sin Δ − (Δ + Δ ( − ))]( + ) , (28)Δ = Δ + Δ ( − ) + Δ 2 Λ        + [sin (Δ + Δ ( − ))       +cos (Δ + Δ ( − ))] [( + )Λ ]⁄ , (29)

where Δ ∗ , Δ ∗, and Δ ∗ denote the uncertainties of the drag, lift, and pitch aerodynamic 
moment coefficients, respectively. By introducing the following notations: 

= − sin cos[( + ) Λ ] , (30)= − ( + ) − sin[( + ) Λ ], (31)= − sin[( + )Λ ], (32)= cos[( + )Λ ], (33)= sin[( + )Λ ], (34)= Λ , (35)

( ) = ⋅ 1 − 0 0 0 0 00 0 1 − 0 0 00 0 0 0 1 − 2⁄ , (36)( ) = [Δ , Δ , Δ , Δ , Δ , Δ , Δ ] , (37)
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the uncertainty Δ ( ) can be written as: Δ ( ) = ( ) ( ). (38)

Assumption 1. (Uniform boundedness of the uncertainties): | ( )| ≤  and ( ) ∈ Θ, where > 0 is a known bound of ( ) and Θ is a known compact set. 
Assumption 2. (Uniform boundedness of the rate of variation of the uncertainties): ( ) and ( ) are continuously differentiable with uniformly bounded derivatives, i.e., | ( )| ≤ < ∞ 

and ( ) ≤ < ∞ with ‖(⋅)‖ being the 2-norm of the vector. 
Assumption 3. [11] The control input matrix ( )  is nonsingular within the scope of  − 2⁄ < < 2⁄ .  

3. Control law and convergence performance 

As shown in Fig. 3, the overall control system contains three feedback loops. In the outer loop, 
an altitude controller is designed by the use of the proportion-differentiation (PD) method. This 
loop generates a command  for the pitch angle controller in the second layer. The controlled 
variables of the inner loop are [ , ], and the pitch rate command  is generated by pitch angle 
controller. The altitude and airspeed commands are characterized by  and , which are defined 
as those of the trimming position. The design of the pitch angle, pitch rate and speed controllers 
is the main work.  
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Fig. 3. Autopilot control architecture with three layers of feedback 

First, consider the first subsystem in Eq. (18), which is rewritten here for convenience: ( ) = ( ) + ( ). (39)

We define: ( ) = ( ) − ( ), (40)

where ( ) =  and ( ) is the tracking error of ( ). We can design the control law of 
Eq. (39) as: ( ) = − [ ( ) + ( ) − ( )] + [ 0] , (41)
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where > 0, and ( ) stands for the approximation to ( ). 
Then, consider the second subsystem in Eq. (18), which is rewritten here for convenience: ( ) = ( ) + ( ) ( ) + ( ) ( ). (42)

We define the tracking error of ( ) as: ( ) = ( ) − ( ). (43)

We then define sliding manifolds: ( ) = ( ) + ( ), (44)

to shape the tracking errors. Here = [0, ]  with > 0. We design the control law as: ( ) = ( ) ⋅ [− ( ) − ( ) + ( ) − ( )       + ( ) − Ε( ) ( ) − − sgn(s)], (45)

where , > 0, and ( ) stands for the approximation to ( ).  ( ) and ( ) are governed by the following adaptation laws: ( ) = Γ ⋅ Proj[ ( ), ( ) + ( )], (46)( ) = Γ ⋅ Proj ( ), ( ) ( ) , (47)

where Γ > 0 is the adaptation gain and Proj(⋅,⋅) is the projection operator (see Appendix for 
details) which ensures that | | ≤ , ( ) ∈ Θ. 

Theorem 1. Given the system defined in Eq. (18) controlled by Eq. (45) with the sliding 
manifold in Eq. (44) and the adaptation laws in Eqs. (46) and (47), the states tracking errors ( ) 
and ( ) are bounded as: ( ), ( ) ∈ + ‖ ‖ < 2Γ ,     ∀ > 0, (48)

where: 

= 1 + max∈ ‖ ‖ + 2 + max∈ ‖ ‖ , (49)

with = min{ , + }. 
Proof. To proceed with the proof, we define the approximator parameter errors as: ( ) = ( ) − ( ), (50)( ) = ( ) − ( ). (51)

The tracking error dynamics of ( ) and ( ) can be obtained as: ( ) = ( ) − ( ) = ( ) + ( ) − ( )      = ( ) − ( ) − ( ) − ( ) + ( ) = − ( ) − ( ) + ( ), (52)( ) = ( ) − ( ) = ( ) + ( ) ( ) + ( ) ( ) − ( )      = − ( ) ( ) − ( ) − ( ) + ( ) − − sgn(s). (53)

Consider the Lyapunov candidate function: 
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( ) = 12 + 12 + 12Γ + . (54)

We first prove ( ) ≤ . Since the plane should maintain a straight and level flight condition 
before the cargo is unlocked [4-6, 8, 9], we can write (0) = 0 for = 1, 2. Also, we have: (0) ≤ 12Γ 4 + 4max∈ ‖ ‖ ≤ Γ. (55)

Taking the derivative of ( ) along the solutions of Eqs. (52) and (53) yields: 

( ) = + + 1Γ ( ) ( ) + ( ) ( ) − 1Γ ( ) ( ) + ( ) ( )        = [ (− ( ) − ( ) + ( )) − ( ) ( ) − ( ) − ( )       + ( ) − − sgn(s)] + [− ( ) − ( ) + ( )]       + 1Γ ( ) ( ) + ( ) ( ) − 1Γ ( ) ( ) + ( ) ( )        = − ( ) − ( ) ( ) − ( ) − − sgn(s) − ( )       − ( ) + ( ) + 1Γ ( ) ( ) + ( ) ( ) − 1Γ ( ) ( ) + ( ) ( )        = −( + ) ( ) − − sgn(s)       + ( ) 1Γ ( ) − + ( ) + ( ) 1Γ ( ) − ( )        − 1Γ ( ) ( ) + ( ) ( ) . 

(56)

Substituting Eqs. (46) and (47) into Eq. (56) leads to: ( ) = −( + ) ( ) − − sgn(s)       + ( )[Proj( ( ), ( ) + ( )) − ( + ( ))]       + ( ) Proj ( ), ( ) ( ) − ( ) − 1Γ ( ) ( ) + ( ) ( ) . (57)

Property A2 (see Appendix for details) implies that: ( ) Proj ( ), ( ) + ( ) − + ( ) ≤ 0, (58)( ) Proj ( ), ( ) ( ) − ( ) ≤ 0, (59)

which yields: 

( ) ≤ −( + ) ( ) − − 1Γ ( ) ( ) + ( ) ( )        ≤ −( + ) ( ) − + 1Γ ( ) ( ) + ( ) ( ) . (60)

It follows from | ( )| ≤  and ( ) ∈ Θ that: 1Γ ( ) ( ) + ( ) ( ) ≤ 2Γ + max∈ ‖ ‖ . (61)

Suppose there exists a > 0 so that ( ) > . Because: 
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12Γ [ ( ) + ( ) ( )] ≤ 12Γ 4 + 4max∈ ‖ ‖ , (62)

it then follows from Eq. (49) that: 12 + 12 > 1 Γ + max∈ ‖ ‖ , (63)

which further leads to: 

+ > 2Γ + max∈ ‖ ‖ . (64)

Combining Eqs. (60), (61), and (64), the ( ) dynamics is such that: ( ) < 0. (65)

Since (0) ≤ , it follows that ( ) ≤  for every ≥ 0. Note that if + ‖ ‖ < ( ), 

then + ‖ ‖ < . This completes the proof. 
Remark 2. Such a projection-based adaptation law can bound the estimated function. This 

theoretically ensures the robustness of the controller against time-varying disturbance and 
uncertainty. 

Remark 3. It follows from Eq. (48) that one can obtain the arbitrary desired tracking 
performance by increasing the adaptation gain Γ. However, a big gain yields large control power, 
which can also lead to control signal oscillations. Thus, the adaptation gain needs to be tuned using 
trial and error. 

4. Simulation results 

We simulate a 24,955 kg transport plane airdrop with an 8,000 kg cargo for example. The 
cargo is initially fixed at the center of gravity of the plane. The trimming position of the plane is 
as follows: the altitude = 100 m, airspeed = 80 m/s, AOA = = 3.8134 deg, elevator = 0 deg, and throttle opening = 27.1 %.  

 
Fig. 4. The responses of the plane in cargo extraction in the presence of constant uncertainty 
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The parameters of the proposed adaptive backstepping SMC are set as = 1, = 0.5,  = 1, = 0.001, and Γ = 0.5 after experimental tuning. The compact sets are conservatively 
set to = 0.3, Θ = { = ( ) × ∈ × : ∈ [−2,2]}. The outer-loop altitude-hold PD control 
parameters are selected as = 0.05 and = 0.02. To test the requirements of task performance 
and flight safety, the evaluation criteria for the heavyweight airdrop can be given as [11]: 
(1) |Δ | ≤  13 m; (2) |Δ | ≤  5 deg; (3) |Δ | ≤ 0.13 ; and (4) ≤ 0.7  with  being the 
stalling AOA. The performance and robustness of the controller is first tested in the presence of 
constant aerodynamic uncertainty. As shown in Fig. 4, for all the three scenarios, the altitude and 
speed are maintained at the trimming position and fully stabilized at about 10 s and 6 s, 
respectively. The final pitch angle becomes smaller compared to that of the trimming position due 
to the loss of heavy weight. Note that the observed change in value of the pitch angle is less than 
5 deg. The criteria for a successful drop have all been met for the three scenarios. Fig. 5 illustrates 
that the throttle opening and elevator deflection remain within the limits and they do not occur 
severe chattering phenomenon. Overall, the pitch up movement of the plane caused by the 
releasing of the payload is effectively restrained through regulating the throttle and elevator 
appropriately. 

 
Fig. 5. Curves of the elevator and throttle in the presence of constant uncertainty 

 
Fig. 6. The response of the plane in cargo extraction in the presence of time-varying uncertainty 

Next, we test the robustness of the controller against time-varying uncertainty, without 
updating the control parameters. It is observed from Fig. 6 that the altitude increment is controlled 
within 0.3 m, the speed is finally almost stabilized at the trimming position, and the AOA as well 
as the pitch angle converges to within [2.5 deg, 3 deg] in the presence of setting the pitch rate 
disturbance as 0.01sin(2 ) rad/s. While we change the aerodynamic uncertainty by 15 % sin(2 ), 
the responses of the plane are similar to the previous scenario, which also satisfy the task 
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performance evaluation criteria. The elevator deflection and throttle opening change periodically 
to reject the time-varying uncertainty, and there is no severe chattering, as presented in Fig. 7. 

 
Fig. 7. Curves of the elevator and throttle in the presence of time-varying uncertainty 

 
Fig. 8. Responses comparison of the dropping process with the proposed method and the SMC method [11] 

(in the presence of 0.01 rad/s pitch rate disturbance and 15 % aerodynamic coefficients uncertainty) 

We further make a comparison of control performance between the proposed control method 
and the SMC method in [11], in the presence of 0.01 rad/s pitch rate disturbance and 15 % 
aerodynamic coefficients uncertainty. The sliding mode controller is recalled from [11] as 
following: 

= − + − 0( − )        + − ( (0) − (0))− ( (0) − (0)) + (0) − (0)        − | || | − (‖ ‖⁄ ) ⋅ ( ‖ ‖⁄ )(‖ ‖⁄ ) ⋅ ( ‖ ‖⁄ ) , (66)

where , , , > 0 are exponentially approaching constants; ,  are robust terms which 
need to be chosen larger than the bounds of the system uncertainties; ,  and  are positive 
constants; , ,  and  are sliding manifolds with = [ , ] ;  is the boundary 
layer thickness; and (⋅) is defined as: 
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‖ ‖ ‖ ‖ = sgn( ),     ‖ ‖ ≥ ,,     ‖ ‖ < ,  (67)

with sgn(⋅)  being the sign function. We set = =  5, =  2, =  3, =  2, =  1,  =  3.3, =  3, =  0.1 and =  2 after referring to [11]. The outer-loop altitude-hold 
controller parameters are set as that of the proposed method. Fig. 8 illustrates that the altitude and 
speed are well maintained within 10 seconds for both of these two controllers, in the presence of 
uncertainties, and the results meet the task performance evaluation criteria. However, the curves 
of the throttle opening and speed imply that the SMC method might lead to severe chattering. This 
is unfavorable for real applications. While using the proposed controller, the undesired chattering 
is reduced significantly. This is because the projection-based adaptation technique is employed to 
estimate the uncertainties, and the uncertainties can be compensated by the estimated value in the 
control input. To summarize, the proposed method not only guarantees tracking performance but 
also yields a moderate control behavior. 

5. Conclusions 

This paper proposes a flight control approach that integrates backstepping sliding mode control 
with parameter adaptation for the heavyweight cargo airdrop. The controller is capable of 
stabilizing the plane dynamics in cargo extraction, while being robust to uncertainties of both 
constant and time-varying types, as well as matched and unmatched types. The method uses 
projection-based adaptation strategies to achieve robustness against uncertainties, and this 
overcomes the conservation of the SMC method that relies on the knowledge of the bounds on the 
complex uncertainties. The convergence and stability properties of the controller are proved by 
the Lyapunov theory. The control performance is evaluated on a 24,955 kg transport plane airdrop 
with an 8,000 kg payload. The responses of the plane satisfy the airdrop task performance criteria 
in the presence of pitch rate disturbance and aerodynamic uncertainty. The application of this 
research can be used to achieve higher levels of performance and safety in practical airdrop tasks. 

The control gains are tuned in a trial and error way, which is a tedious work. The investigation 
of developing a criterion to specify the control parameters is interesting. This will be one of our 
future studies. Also, the well-known problems such as input constraints and dead zones have not 
been discussed in the current work. While a flight control system is actually implemented using 
this approach, these problems will of course have to be considered. 
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Appendix 

The projection operator introduced in [24] bounds the estimated parameters by definition. We 
recall the main definitions from [24]: 
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Definition A1. Consider a convex compact set with a smooth boundary given by: Ω = { ∈ | ( ) ≤ },   0 ≤ ≤ 1, 
where : →  is the following smooth convex function: 

( ) = − , 
where  is the norm bound imposed on the vector , and 0 < < 1 stands for the projection 
tolerance bound of our choice. For any given ∈ , the projection operator is defined as: 

Proj( , y) = ,     ( ) < 0,,     ( ) ≥ 0,   ∇ ≤ 0,− ( , ),    ( ) ≥ 0,   ∇ > 0, 
where ∇ ( ) is the gradient vector of (⋅) evaluated at , and: 

( , ) = ∇ ∇‖∇ ‖ ( ). 
The properties of the projection operator are given by the following lemma: 
Lemma A1. Let: ∗ ∈ Ω = { ∈ | ( ) ≤ 0}, 

and let the parameter ( ) evolve according to the following dynamics: ( ) = Proj( ( ), ),    ( ) ∈ Ω . 
Then: ( ) ∈ Ω , 

for all ≥ , and: ( − ∗) (Proj( , ) − ) ≤ 0. 
Property A1. The projection operator Proj( , ) does not alter  if  belongs to the set Ω . In 

the set {0 ≤ ( ) ≤ 1}, Proj( , ) subtracts a vector normal to the boundary of Ω  to obtain a 
smooth transformation from the original vector field  to an inward or tangent vector field for  = 1. Therefore, on the boundary of Ω , ( ) always points toward the inside of Ω  and ( ) 
never leaves the set Ω . 

Property A2. From the convexity of function ( ) , it follows that for any ∗ ∈ Ω  and  ∈ Ω , the inequality: ( − ∗) ∇ ( ) ≤ 0, 
holds. It then follows from Definition A1 that: 



2378. ADAPTIVE BACKSTEPPING SLIDING MODE CONTROL FOR HEAVY-WEIGHT AIRDROP OPERATIONS.  
RI LIU, XIUXIA SUN, WENHAN DONG, XUNING GUAN 

1130 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MAR 2017, VOL. 19, ISSUE 2. ISSN 1392-8716  

( − ∗) (Proj( , ) − ) =
0,    ( ) < 0,0,    ( ) ≥ 0,    ∇ ≤ 0,( − ∗) ∇ ( ) ∇ ( )‖∇ ‖ ,     ( ) ≥ 0,    ∇ > 0. (68)
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