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Abstract. Reliable use of �-value in ���[�(�)] = � − �� is critical in seismicity comparisons, 

seismic hazard analysis, prediction and comparative mechanism studies. Since earthquakes and 

the �-value are considered as stochastic processes and random variable, respectively, applying the 

probability distribution of �-value is necessary in its temporal and spatial variations assessment. 

In this paper, we propose a novel method that employs the �-value uncertainty in probabilistic 

seismic hazard analysis using normal-exponential joint distribution function. To this end, we 

calculate �-value statistics based on bootstrap sampling of the seismic catalog. Our analytical and 

experimental evaluations show that the proposed joint distribution results in a more precise 

closed-form relation for the probabilistic seismic hazard analysis accurately reducing the hazard 

in comparison to conventional methods. The benefit of the proposed approach here is improving 

the ability of assessing the effectiveness of various seismic risk mitigation strategies and so, 

allocates the available resources more efficiently. 

Keywords: bootstrap sampling, Bayes’ theorem, Gutenberg-Richter law, statistical variation of �-value. 

1. Introduction 

Probabilistic seismic hazard analysis (PSHA) estimates the probability that the ground motion 

exceeds a specified level in a certain location and time period. PSHA methods compute the 

likelihood of an aggregated hazard based on source model, recurrence model and attenuation 

relationships. The hazard is generated from the occurrence of earthquakes with various 

magnitudes in different distances. Therefore, the variability of the earthquake magnitude, location 

(source-to-site distance), and ground motion level (denoted as the number of logarithmic standard 

deviations from the logarithmic mean) are considered in the hazard calculation [1]. The inherent 

variability considered directly in the PSHA calculation is called the aleatory variability. 

Recurrence models provide cues to future earthquakes based on past earthquakes information 

and statistical assumptions. These models are divided into two categories; inter-arrival time and 

magnitude distribution models. Gutenberg-Richter law (G-R law), characteristic size model, and 

slip predictable model are examples of the first category, and Poisson model, characteristic time 

model and time predictable model lie in the second one that all suffer from uncertainty in their 

model and parameter calculation, called the epistemic uncertainty. Usually, the model uncertainty 

is regarded using the logic tree [2]. 

The G-R law, that represents the earthquake frequency, is one of the most significant and 

universal features of global seismicity [3]. The usual form of this law is written as: 

log[�(�)] = � − ��, (1)

where �  is the number of events with magnitude not less than � , and �  and �  are constant 

coefficients. This equation gives the distribution of earthquakes in terms of magnitude, i.e., the 

distribution function in the magnitude domain. The G-R law is considered versus independent 

rates in every magnitude interval. 
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The value of the slope in the Eq. (1), i.e., the �-value, gives a measure of the relative frequency 

of lower and higher magnitude earthquakes. It is also a well-known influential variable in seismic 

hazard analysis and structural design [4, 5]. High �-values show that a small fraction of the total 

earthquake events in a region has high magnitudes, whilst low b-values indicate a large fraction 

of high magnitude events. The � -value is inversely proportional to the mean magnitude of 

earthquakes: 

� = 2.3 (����� − ����⁄ ), (2)

where ���� and ����� are the minimum and mean magnitude in the dataset, respectively. Hence, 

the diagram of �-value is equivalent to that of the mean magnitude [6]. In the seismic-prone region 

evaluation, comparison of �-values is more understandable than other parameters [7]. �-value is not a single unvarying amount. Different investigators give different �-values in the 

same region [8]. Gutenberg and Richter propose to use �-value equal to 1 for the whole world or 

large volumes. The �-value estimation at different regions has been the subject of many scientific 

researches. In many cases, the results of these researches give other values for �-value [9]. Shi 

and Bolt studied the uncertainties in the �-value estimation [10]. They considered �-value as a 

random variable. Some seismologists have firmly emphasized that � -values are empirically 

constant, within the limits of statistical variation for the earthquake. Therefore, it is believed that 

the statistical fluctuations or observational uncertainties have the main responsibility in the 

variation of the �-value. 

Accurate estimation of the magnitude cumulative distribution function is necessary for the 

PSHA [11]. Thus, the rational method can be considered as the approach that can apply calculation 

errors to parameters beside their estimation. In order to apply the uncertainty in PSHA, the 

analytical methods are more appropriate than the numerical ones. Cornel believed that the main 

advantage of an analytical approach (i.e., the closed-form equation) over numerical solutions is 

that the sensitivity of the hazard curve to the parameters can be evaluated directly [12]. 

In this paper we propose a closed-form method to incorporate the �-value  estimation 

uncertainty in PSHA formulation using Bayes' theorem. We identify �-value uncertainties and 

determine their distribution to incorporate quantitatively in the hazard evaluations. Then, we 

rewrite the PSHA formulation and derive a statistical model containing the parameters uncertainty 

(i.e., the uncertainty of � -value and magnitude) based on a normal-exponential distribution. 

Finally, the effect of the proposed method on the hazard curve is studied using practical examples 

of some fault with different maximum magnitudes, lengths and source-to-site distances. 

2. �-value uncertainty resources 

In the classic PSHA, under the assumption of Poisson distribution, seismic hazard is expressed 

as the probability of an earthquake intensity measure (such as peak ground acceleration ( !")) 

exceeding a threshold value [13]: 

#( !" > �%%|'() = ) ) ) #( !" > �%%|'(: �, +, ,)-.,/,0(�, 1, ,)2� 2+ 2,, (3)

where �%% is the threshold value, -.,/,0(�, 1, ,) is the joint probability density function (PDF) of 

earthquake magnitude (�), source-to-site distance (+), and uncertainty (∆) [14], and is expressed 

as: 

-.,/,0(�, 1, ,) = -.(�)-/ .⁄ 5 1
�6 -0.,/ 5 ,

� , 16. (4)

In this relation, �, +, and ∆ are random variables, -.(�) is the PDF of �, and -/ .⁄ (1 �⁄ ) 
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and -0 .⁄ ,/(, �⁄ , 1) are conditional PDF of + and ∆, respectively. Seismic sources are usually 

assumed with a capacity to produce some maximum magnitude ��78. On the other hand, for 

engineering purposes, very small magnitude earthquakes (����) that cannot damage the structures 

are not of interest. So, in practice, experts usually use the truncated exponential model as -.(�). 

This model represents the truncation of the G-R law as: 

-.(�) = 9: ;<=(�<�>?@),   ���� ≤ � ≤ ��78, 
9 = B1 − ;<=(�>DE<�>?@)F<G, (5)

where : = �ln(10). 

Although PSHA promises to provide a framework in which decision makers can be presented 

with a quantified range of possibilities, the above equations do not consider recurrence 

relationship uncertainty in the computation. G-R law parameters are obtained using regression 

analysis. Krinitzsky states several reasons for �-value fluctuations, such as differences in the 

boundaries selected for the source, whether the earthquake tabulation are cumulative or 

non-cumulative, different normalizations of the information, additions of data to the earthquake 

catalog, processing of the catalog to eliminate duplicate listings, aftershocks and  noises [15]. The 

causes of output uncertainty can be categorized as input uncertainty, model uncertainty and 

regression uncertainty. The first category (i.e., earthquake catalog uncertainties) includes 

uncertainties related to earthquake location, time and magnitude. The second category contains 

uncertainties resulted from model assumptions which can make the process easier. Some of these 

assumptions, which are later proved to be mistakes, are the major factors in model uncertainty. 

Thus, more accurate model assumptions will increase the model reliability. For example, G-R law 

is based on the assumption of an exponential relationship between the frequency and magnitude. 

Thus, if the region seismicity is not consistent with this presumption, the G-R law excludes the 

part of data which doesn’t fit to assumption. This may cause real earthquake scaling information 

to be lost and the uncertainty to be increased. Lombardi shows that if the data doesn’t follow the 

assumed exponential distribution, the simple maximum-likelihood (ML) estimator will give a 

totally different �-value [16]. Also, the use of continuous models for rounded observation values 

lead to biased estimates [17]. The third category includes regression and parameter estimation 

uncertainties. Regression models (e.g. linear ones) are used for seismicity parameter assessment 

based on available seismic data. Linear regression methods find the best-fitting straight line 

through the existing points. The random scatters around the line (a.k.a., residuals) are identified 

as the distance of each point from the fitted line. In the next section we elaborate the role of 

residuals in PSHA. 

Shortly, three strategies have been followed for uncertainty reduction in PSHA, namely, 

re-evaluation of inputs, using best models, and considering calculation errors.  In the present paper, 

we propose a method to modify PSHA model regarding the statistical uncertainties in the G-R 

recurrence model parameter (�-value). 

3. Methodology 

As discussed previously, despite the importance of parameter uncertainty the classic PSHA 

method does not treat it correctly. Here we propose an approach to consider �-value statistical 

variation based on its distribution function. This approach assumes seismic events as independent, 

identically distributed random variables. 

The observed �-value is distorted by an observational stochastically independent error J=. The 

error is supposed to be normally distributed with the standard deviation K=  [18, 19], i.e.,  

J= = ,=K= , where ,= is the normalized residual which is a normal distribution parameter with a 

constant standard deviation of 1. Therefore, ,= is the number of standard deviations by which the 

�-value deviates from the predicted one. 
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The �-value (or :) is calculated using regression analysis. Based on the assumption of normal 

residuals, and taking it as random variable [20], its normalized residuals (,=) have a probability 

distribution as follows: 

L(:)~�(N= , K=O) ⇒ ,= = : − N=
K= ~�(0,1), (6)

where L(:) states the distribution of : and �(N, KO) denotes the normal distribution with average 

and standard deviation of N and K, respectively. N and K are unknown parameters which can be 

estimated through sampling. A large number of random sample sets can be generated from the 

seismic catalog using a bootstrap sampling procedure. In this method, sampling is done with 

replacement [21] so that the initial set of Q members is used to produce R bootstrap sets each one 

with Q members (R bootstrap duplicates). R represents a big number, like 10000 or more, which 

in turn will generate :S . Now, ordering :S  values we can determine the :��� = min{:S} ,  :�78 = max{:S}, and the empirical probability distribution (EPD) of :. Also the average (:����) 

and standard deviation (Z=O) of : can be computed. To generate a continuous EPD, we produce R 

bootstrap duplicates. The probability that :  falls in the distance between :[  and :\  equals to  (] − �)/R (:[ and :\ are arbitrary numbers so that � < ]). So we can construct the nonparametric 

PDF of :. Similarly, other statistics (such as median, range, etc.) can be calculated for the variable. 

Now, regarding the Eq. (6) we have: 

: = K=,= + N=~�aN= , K=Ob. (7)

Thus, PDF of : would be as follows: 

�(:) = 1
c2LK=O

exp f− 1
2K=O

a: − N=bOg. 
(8)

Eq. (8) is used to express the parameter uncertainty. But a more accurate mathematical 

equation can be achieved if we model the changes of �-value and the magnitude simultaneously. 

Consider a set of two or more random variables hG, hO, ... defined on a probability space. The 

probability that each of these variables fall in a particular range or discrete set of values is defined 

as the joint probability distribution for these variables. In the case of only two random variables, 

it is called a bivariate distribution. Hence the more exact formulation of the -.(�) (Eq. (5)) can 

be denoted as: 

-(�|:) = 9 : ;<=(�<�i),   ���� < � < ��78,   : ∈ +. (9)

In accord with the Bayes’ theorem, the joint PDF of � and : can be broken down as: 

-(�, :) = -(�|:). �(:), (10)

where -(�|:) is the conditional PDF of magnitude that is derived based on the G-R law, and �(:)  is the PDF of :.  Since -(�|:)  and �(:)  have exponential and normal distributios, 

respectively, the target PDF is written as: 

-(�, :) = 9:
c2LK=O

exp f− 1
2K=O

a: − N=bO − :(� − �k)g, 
(11)
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where ���� < � < ��78 and : ∈ +. 

The probability of the event {�G < � < �O, �G < : < �O} can be calculated as: 

 (�G < � < �O, �G < : < �O)
= l 9:

c2LK=O
exp f− 1

2K=O
a: − N=bO − :(� − �k)g 2�2:.

�mn�n�o,pmn=npo
 (12)

The Eq. (11) can also be denoted in terms of � and ,= as: 

-(�, ,) = 9aK=,= + N=b
√2L exp r− 1

2 ,=O − aK=,= + N=b(� − �k)s, (13)

where ���� < � < ��78 and ,= ∈ +. 

In order to incorporate the �-value uncertainty in hazard analysis, we substitute Eq. (12) (i.e., 

the G-R law) in PSHA and derive the joint-distribution-based equation as: 

#( !" > �%%|'()
= ) ) ) ) #( !" > �%%|'(: �, :, +, ,)-.,=,/,0(�, :, 1, ,)2� 2: 2+ 2,, (14)

where: 

-.,=,/,0(�, :, 1, ,) = -.,=(�, :)-/
.,= 5 1

� , :6 -0
.,=,t 5 ,

� , :, 16. (15)

Eq. (14) states a modified closed-form relation for PSHA. In this equation, uncertainties are 

covered in a broader range of parameters. So, the proposed relation gives more accurate estimates 

of hazards. Regarding its mathematical base, Eq. (14) represents a general approach to hazard 

analysis and is suitable for all purposes in seismic hazard analysis. The main application of the 

presented method is for sites where, regarding the economical and structural acpects, hazard exact 

estimation is crucial. Although the proposed solution adds a new term to the conventional PSHA 

integral and increases its dimension, it is simple enough to be calculated with little numerical 

effort. Similar to the conventional methods, while there are practical problems in processing of 

continuous values, discrete ranges of �  and :  can be considered. How to use the proposed 

relations and their impact on the results will be discussed in next sections. 

4. Examples of application 

In order to highlight the applicability of the proposed method in hazard curve, we applied the 

proposed method for a case study. We considered Tehran city, the capital of Iran, as the case study. 

Active faults of Tehran and its vicinity are shown in Fig. 1. We selected several faults of this 

region with different maximum magnitudes, fault distances, and lengths. It is worth mentioning 

that the results of this case study are an indication of the effect of �-value fluctuations in hazard 

curve. Clearly, the proposed method can be applied to other regions, although the results would 

not necessarily be the same as our results. 

We have selected six faults with different lengths and distances from the site. The selected 

faults are the major active faults of the region. Faults characteristics are shown in Table 1. For 

PSHA, the data were elicited from USGS catalog [22] for a circle with 200 km radius around 

Tehran. Other required data are taken from previous works [23, 24]. The calculations are 

performed using the logic tree method and three attenuation relationships of Ramazi [25], 

Ambraseys and Bommer [26] and Surma and Srbulov [27]. It should be noted that, except for the 
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items listed in the methodology, all assumptions and modeling are identical in both analyses. 

 
Fig. 1. Tehran and its vicinity faults map 

Table 1. Characteristics of selected Tehran faults 

Fault Length (km) Closest distance to the site (km) ��78 

NorthTehran (NR) 75 11 6.9 

Mosha (M) 200 27 7.5 

Pishva (P) 34 72 6.5 

North Ray (NR) 17 14 6.1 

South Ray (SR) 18.5 12 6.2 

Garmsar (G) 70 58 6.9 

Results of the conventional and proposed methods are shown in Fig. 2 for different faults. In 

this figure, the solid and dashed lines display hazard curves for the conventional method and the 

joint-distribution-based approach, respectively. This figure shows how employing statistical 

variations of : leads to more accurate hazard curves. It is seen that, in all cases, the hazard curve 

of the proposed method is lower than that of the conventional method, even though the difference 

between these two methods is not identical for different faults as well as within a fault. 

To evaluate the effect of the proposed method on hazard curves more precisely, we assess the 

changes of hazard curves in scenarios with constant annual probability of exceedance (APE) and 

constant intensity measure. Three values of APE are of interest: 0.01 (the probability of 

exceedance of 50 % in 50 years), 0.0021 (the probability of exceedance of 10 % in 50 years) and 

0.0004 (the probability of exceedance of 2 % in 50 years). PGAs of the conventional and proposed 

methods are given in Table 2 for the above three APEs. Similarly, APEs are shown in Table 3 for 

three constant intensity measures, namely,  !" =	0.20, 0.35 and 0.50. These tables show that the 

results of the proposed method are slightly lower than that of the traditional methods. The level of 

differences is not constant. In order to assess the results more accurately, we computed the 

percentage of PGA and APE reduction, which are shown in Table 4. According to this Table, in 

the case of constant APEs, different fault-induced PGAs are decreased 6-17 %, 3-16 % and 1-9 % 

for APEs equal to 50 %, 10 % and 2 %, respectively. It means that decrease in APEs leads to 

convergence between the two curves. Thus, hazard curve modification based on �-value 

distribution has more influences in low APEs. Especially, in the case of serviceability earthquake, 

the effects of the joint method are significant. In the case of constant intensity measure (PGAs), 
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APEs change between 8 % and 27.2 %. Regarding the order of the APE numbers, the differences 

are very small. So, we report the results with 4 decimal places. Also in this case, increase in PGAs 

leads to decrease in percentage of hazard reduction. There is no meaningful relation between faults 

characteristics and reduction percentage in hazard curves. In order to evaluate the effects of the 

parameters of the selected distribution for �-value  on the hazard curve, we performed the 

sensitivity analysis of the PSHA in terms of the mean and standard deviation. 

  

  

  
Fig. 2. Hazard curves for studied faults 

Table 2. PGAs (g) changes via different methods (in constant APEs) 

Fault 
PGA (" ' = 0.01) PGA (" ' = 0.0021) PGA (" ' = 0.0004) 

CA PA CA PA CA PA 

NT – – 0.09 0.07 0.19 0.17 

M 0.23 0.18 0.42 0.38 0.59 0.57 

P 0.27 0.22 0.48 0.52 0.66 0.69 

NR 0.18 0.17 0.42 0.40 0.66 0.65 

SR 0.20 0.17 0.41 0.37 0.62 0.59 

G – – 0.09 0.08 0.17 0.16 

CA: Conventional approach, PA: Proposed approach 

Table 3. APEs changes via different methods (in constant PGAs) 

Fault 
PGA (" ' = 0.01) PGA (" ' = 0.0021) PGA (" ' = 0.0004) 

CA PA CA PA CA PA 

NT 0.0003 0.0002 3.7E-05 2.7E-05 1.6E-06 1.2E-06 

M 0.0124 0.0091 0.0038 0.0028 0.0010 0.0007 

P 0.0159 0.0235 0.0056 0.0083 0.0017 0.0026 

NR 0.0090 0.0083 0.0033 0.0030 0.0012 0.0011 

SR 0.0104 0.0077 0.0034 0.0025 0.0011 0.0008 

G 0.0001 0.0001 3.9E-07 2.9E-07 1.4E-10 1.1E-10 

CA: Conventional approach, PA: Proposed approach 
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Table 4. Hazard reduction percentage via proposed method 

Faults 

PGA (g) APE  

Constant APE Constant PGA 

0.01 0.0021 0.0004 0.2 g 0.35g 0.5g 

NT 0.06 0.03 0.01 0.084189 0.083267 0.080044 

M – 0.16 0.09 0.259857 0.256192 0.254253 

P – 0.11 0.08 0.351090 0.345390 0.340937 

NR 0.17 0.08 0.04 0.261914 0.263420 0.262841 

SR 0.16 0.08 0.04 0.260958 0.263117 0.262680 

G – 0.15 0.08 0.258325 0.256846 0.256244 

The results are shown in Fig. 3 for the " ' = 0.0021. As can be seen from this figure, �-value 

averages have no significant effects on the reduction percentage. But, the increase of standard 

deviation leads to more reduction in hazard. In this situation, the level of hazard decrease tends to 

become uniform.  

It seems that the level of hazard reduction depends on the �-value distribution parameters more 

than fault characteristics. It is worth mentioning that the distribution parameters are a function of 

seismicity of the region. In other words, lower seismicity fluctuations and higher numbers of 

earthquakes make the standard deviation to decrease. 

  
Fig. 3. Effects of �-value distribution parameters on hazard curves 

5. Discussion 

Eq. (14) is a new development of PSHA formulation that considers recurrence law parameters 

uncertainty. The direct effect of this development is the improvement of the accuracy of 

computational results. In the previous section, we considered a broad range of examples to 

evaluate the proposed method. It is expected that the proposed method has similar effects in other 

situations.  

From Fig. 2, it is observed that the beginning and the end of the curve of the proposed method 

are much lower than that of the conventional method. The slopes of both curves also show a similar 

behavior. In the middle part of the curves (i.e., for PGAs from 0.3 to 0.55), the curves of the both 

methods converge. 

This behavior is due to the correction effects of the normal distribution. According to G-R law, 

magnitude-frequency distribution in relationship to �-value is exponential (see Fig. 4(a)) and �-value follows normal distribution (Fig. 4(b)). Thus, the joint distribution of the magnitude and � -value is equal to the product of normal and exponential distributions. To illustrate more 

graphically the effect of the joint PDF, the product of the two PDFs is shown in Fig. 3(c) In the 

conventional method with fixed : , it is assumed that :  has a uniform distribution. In these 

circumstances, all values of the magnitude exponential function are scaled with a constant number 

equal to :. Obviously, scaling maintains the shape of the G-R curve. But if : residuals change 

according to the normal distribution, the resulting curve decreases in the beginning and the end 

and increases in the central part due to the scale factor changes. 
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a) 

 
b) 

 
c) 

Fig. 4. Magnitude-frequency distribution modification via normal distribution  

(numbers are scaled for better illustration): a) Primary exponential distribution; b) Normal distribution;  

c) Comparing the product of the two distributions with the primary distribution 

Fig. 5 shows the 3D diagram of the joint PDF (Eq. (13)) and its behavior in the direction of 

each variable. This figure demonstrates a more intuitive picture of how �-value variations will 

affect the computed hazard. So, Eq. (13) represents an extended formulation of the G-R law that 

contains parameter uncertainty and can be considered as a probabilistic G-R law. In contrast to 

the conventional G-R law which is only a function of the magnitude, the proposed probabilistic 

G-R law has two dimensions, namely, magnitude and :. 

 
a) 

 
b) 

 
c) 

Fig. 5. a) Joint distribution behavior; b) Normal in one direction; c) Exponential in the other 

Analogous to the procedures developed to deal with uncertainties in attenuation relationships 

[28] and the peak-velocity effect [29], inserting the probabilistic G-R law in the triple integral of 

the conventional PSHA adds new dimension (:) to it. Although this will slightly increase the 

computational cost, the accuracy of the hazard curves will improve. While written for PGA, the 

PSHA equation (i.e. Eq. (14)) also holds if PGA is replaced by virtually any other candidate scalar 

intensity measure. 

6. Conclusion 

Hazard curve uncertainty is a key difficulty in PSHA. This uncertainty results from data, 
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models and parameters uncertainties. �-value is one of the well-known effective parameters in 

PSHA. An analytical method of evaluating the seismic hazard uncertainties has the advantage that 

consistent estimates of hazard can be prepared for various sites. The proposed method provides a 

novel approach to quantify the parameter uncertainty of �-value and express it in a closed-form 

relation. This relation explicitly exerts regression errors and the corresponding distribution into 

the analysis. Simplicity, applicability and efficiency of the method are illustrated via the practical 

examples of faults for different conditions. The results show that the maximum magnitude and the 

length of the faults as well as its distance to the site have no noticeable effect on the level of hazard 

curve improvement. The level of improvement varies with distribution standard deviation 

obtained for �-value. This parameter in turn depends on the seismicity of the region. 

The proposed method will improve the usefulness and precision of PSHA results. It can be 

used to test the variability of hazard maps of codes and to evaluate the sufficiency of the original 

design loads and possible need for upgrading the facility. 
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