
 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MARCH 2014. VOLUME 16, ISSUE 2. ISSN 1392-8716 901 

1203. Identification and diagnosis of concurrent faults in 

rotor-bearing system with WPT and zero space 

classifiers 

Fan Jiang1, Zhencai Zhu2, Wei Li3, Guoan Chen4, Gongbo Zhou5 
School of Mechatronic Engineering, China University of Mining and Technology, China 
2Corresponding author 

E-mail: 1jiangfan25709@163.com, 2zzc_cmee@163.com, 3liwei_cmee@163.com, 4cga0608@163.com, 
5zhougongbo1985@163.com 

(Received 6 September 2013; received in revised form 10 October 2013; accepted 17 October 2013) 

Abstract. An effective method for identifying and diagnosing the concurrent fault combined by 

two or more single faults is yet to be further developed because most existing approaches focus 

on single faults. On the other hand, rotor-bearing system is an important part of rotating 

machinery. Therefore a new fault identification and diagnosis method based on wavelet packet 

transform (WPT) and zero space classifiers is presented in this paper. Firstly, the vibration signals 

collected from the rotor-bearing system are decomposed into several time-frequency compositions 

by WPT. Then the appropriate composition characterizing fault signatures is selected to extract 

features for constructing zero space classifiers. Finally, the effectiveness of the proposed method 

is demonstrated by an experiment carried out on a machinery fault simulator. The experimental 

results show that the proposed approach is feasible and effective to identify and diagnose the 

concurrent faults in a rotor-bearing system. 

Keywords: concurrent fault diagnosis, wavelet packet transform, rotor-bearing system, zero 

space classifier. 

1. Introduction 

Rotor-bearing system is an important part of rotating machinery. In this system, bearing failure 

may cause performance deterioration of overall machine and even lead to fatal machine 

breakdowns or disastrous accidents [1]. On the other hand, rotor unbalance is a frequent fault in a 

rotor-bearing system, which may be also with great potential dangerous [2]. Thus it is significant 

to construct an effective fault identification and diagnosis method to reduce unscheduled 

downtime and economical loss of rotating machinery with a rotor-bearing system. 

As vibration signals usually carry rich information about mechanical conditions, vibration 

analysis has received extensive and intensive research for fault diagnosis [3-5]. Many useful signal 

processing methods have been proposed to analyze vibration signals for mechanical fault 

diagnosis. Fast Fourier transform (FFT) is the simplest frequency analysis method proposed in 

1971 [6]. Theoretically, bearing faults can be diagnosed by analyzing the frequency compositions 

with FFT. However, the vibration signals collected from a rotor-bearing system usually carry noise 

and other vibration components, thus the primitive FFT will be helplessness in extracting the 

overwhelmed remarkable information for fault diagnosis [7]. In order to solve this problem, 

time-frequency analysis techniques such as short-time Fourier transform (STFT) [8], 

Wigner-Ville distribution (WVD) [9, 10], continuous wavelet transform (CWT) [11-13], discrete 

wavelet transform (DWT) [14, 15] and wavelet packet transform (WPT) [16, 17] have been put 

forward for fault diagnosis. WPT, by contrast, has better frequency resolution in the whole time-

frequency plane and is more suitable to process the non-stationary and non-linear vibration signals 

for fault diagnosis [17]. 

To date, many methods have been developed for fault diagnosis of rotating machinery with 

vibration analysis technique. Unfortunately, most of them focused on single faults. The problem 

becomes rather complex when different faults act themselves in a combined manner which is 

called as concurrent fault [18]. Moreover, these concurrent faults are also difficult to be described 

by an accurate model with mathematical method [19]. Therefore, few studies have focused on the 
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diagnosis of concurrent faults. The diagnosis work of three single faults and a combined defect 

was studied for bearings by using CWT [11, 12]. Prabhakar et al. [15] proposed a method based 

on DWT for the detection of a multiple fault (defects both on inner race and outer race). Zarei and 

Poshtan [16] developed a method based on WPT and stator current analysis to detect the faults of 

two holes on the outer race and one hole on other bearing parts. In [20], these conditions combined 

by some single faults on inner race, outer race and ball were successfully identified with wavelet 

analysis and hidden Markov model. Saimurugan et al. [21] introduced a fault diagnosis method 

based on decision tree and support vector machines (SVM) for multi-component faults which were 

combinations of various shaft faults and bearing faults. Jing and Meng [22] employed blind source 

separation technique to separate the vibration features produced by multi-faults such as unbalance 

and impact-rub, crack and impact-rub existing in a rotor. In [23] and [24], the multiple faults in a 

rotor system were identified by model-based analysis methods. Although above methods were 

able to deal with concurrent fault diagnosis, they assumed that the failure of mechanical system 

was a single fault (the concurrent fault regarded as an isolated status like a single fault). As the 

coupling between the rotor and bearing, it is difficult to develop an accurate mathematical model 

for concurrent faults of a rotor-bearing system. Meanwhile a model is also just suitable for some 

specific concurrent faults. 

In this study, a new method based on WPT and zero space classifiers is proposed for the 

identification and diagnosis of concurrent faults in a rotor-bearing system. The flow chart of the 

proposed method is shown in Figure 1. Firstly, with WPT used, the collected vibration signals are 

decomposed into several time-frequency compositions. Then the appropriate composition is 

selected for features in time domain and frequency domain. Finally, zero space classifiers are 

constructed to identify and diagnose the concurrent faults in a rotor-bearing system. The rest of 

this paper is structured as follows. Section 2 introduces a WPT based feature extraction method. 

The implementation of the proposed method is given in section 3. In section 4, an experiment is 

carried out to illustrate the effectiveness of the proposed approach. Finally, the conclusion of this 

paper is made in section 5. 
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Fig. 1. Flow chart of the proposed method 

2. Feature extraction 

2.1. Wavelet packet transform 

In wavelet transform (WT), the lost information of the low frequency part will be acquired by 

the high frequency part in each decomposition layer and the frequency resolution of wavelet 

decomposition decreases with the frequency increases. However WPT has a better frequency 

resolution because both the low-pass and high-pass are split in all layers. On the other hand, WPT 

splits not only details (D) but also approximations (A), which means that different faulty 

information of various frequency bands can be extracted from original vibration signals [25, 26]. 

Therefore WPT is more suitable for complicated signal processing than WT. Figure 2 shows a 

three-level WPT, in which the vibration signal 𝑋  is decomposed into various low and high 

frequency components. 
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Fig. 2. A WPT tree with three levels 

2.2. Characteristic damage frequency (CDF) 

A normal bearing will move itself smoothly until a defect appears. For a bearing fault, the 

vibration signal contains its own unique periodic impulse composition called as characteristic 

damage frequency (CDF). The CDFs of bearings are determined by shaft rotational speed, fault 

location and bearing dimensions, and which can be represented as [3, 4]: 

{
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where 𝑓𝑐 , 𝑓𝑜, 𝑓𝑖 and 𝑓𝑏  are the CDFs of cage fault, outer race fault, inner race fault and ball fault, 

respectively; 𝐵𝑑 and 𝑃𝑑  are the ball and pitch diameter, respectively; 𝑁𝑟 is the number of ball 

elements; and 𝜃 is the angle of the load from the radial plane. 

2.3. WPT based feature extraction 

When a fault appears, the amplitude and distribution of its vibration signal are different from 

those of normal in time domain and the energies of CDFs also will change markedly in frequency 

domain [27]. A feature extraction method based on WPT is prospected in this subsection. In this 

method, the appropriate decomposition, including useful information, i. e., the compositions of 

bearing CDFs and mechanical rotating frequency are decomposed into one node in which the other 

frequency compositions should be as few as possible, is selected for feature extraction. 

Seventeen time-domain feature parameters and twelve frequency-domain feature parameters 

shown in Table 1 are selected for features. Feature parameters 𝑃1–𝑃10  indicate the vibration 

amplitude and energy in time domain. Feature parameters 𝑃11–𝑃17  represent the time series 

distribution of the signal in time domain. Feature parameter 𝐹1 delegates the vibration energy in 

frequency domain. Feature parameters 𝐹2–𝐹5  and 𝐹10–𝐹13  describe the convergence of the 

spectrum power. Features parameters 𝐹6–𝐹9 show the position change of the main frequencies 

[27, 28]. Vibration signals obtained from a rotor-bearing system usually contain noise interference, 

so the values of the same feature parameter extracted at different time may be various, which may 

reduce the accuracy of concurrent fault identification and diagnosis. To solve this problem, the 

feature sample is averaged from these extracted features. 
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Table 1. The feature parameters 
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where 𝑥(𝑛) is a vibration signal with 𝑁 data points, 𝑦(𝑘) is a spectrum series with 𝐾 data points and 𝑓𝑘 

is the frequency value of the 𝑘th spectrum line. 

3. The proposed method for concurrent fault diagnosis 

In [29], the feature vectors are projected onto the defined zero space vectors to obtain residual 

signals for estimating fault severity. Feature decoupling vector, similar to zero space vector, was 

firstly proposed for fault diagnosis of bearings with simple algebraic computation and decision 

logic [30]. It has been demonstrated that the feature decoupling vector based fault diagnosis 

method is faster than artificial neural network and SVM in fault diagnosis. Therefore, in our work, 

zero space classifiers are constructed for identifying and diagnosing concurrent faults. 

For a fault diagnosis method, the first step is to diagnose whether a machine works properly 

or not, and the next is to identify the types of failures. Therefore the proposed method includes 

two parts: monitoring of normal condition and identification of concurrent faults. Before 

constructing the proposed method, we assume that: 

𝑈 = [

𝜇1,1 𝜇2,1 ⋯ 𝜇𝐿,1
𝜇1,2
⋮

𝜇1,𝑀

𝜇2,2
⋮

𝜇2,𝑀

⋯
⋱
⋯

𝜇𝐿,2
⋮

𝜇𝐿,𝑀

], (2) 

and: 

𝜇𝑝 = [𝜇𝑝,1 𝜇𝑝,2 … 𝜇𝑝,𝑀]𝑇 , (3) 

where 𝜇𝑝,𝑞 is the average value of the 𝑞th feature parameter of these extracted samples under the 

𝑝th mechanical conditions; 𝐿 and 𝑀 is the total number of mechanical conditions and feature 

parameters, respectively. 
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Part 1: monitoring of normal condition 

In this part, Euclidean distance is applied for the monitoring of normal condition. 𝐷𝑛𝑜𝑟  is 

defined as the Euclidean distance of the feature sample 𝐹 to the center of normal condition, and 

which is calculated by: 

𝐷𝑛𝑜𝑟 = |𝐹 − 𝑢𝑛𝑜𝑟|, (4) 

where 𝑢𝑛𝑜𝑟, equal to 𝑢1 in the matrix 𝑈, is the center of normal condition. 

Set: 

𝑅𝑛𝑜𝑟 = {
1, 𝑟𝑛𝑜𝑟 < 𝐽𝑛𝑜𝑟 ,
0, 𝑟𝑛𝑜𝑟 ≥ 𝐽𝑛𝑜𝑟 ,

 (5) 

where 𝑅𝑛𝑜𝑟 and 𝐽𝑛𝑜𝑟 are defined as the condition isolation parameter (CIP) and threshold of a 

rotor-bearing system under normal condition, respectively. The threshold is calculated by: 

𝐽𝑛𝑜𝑟 = 𝑚𝑛𝑜𝑟 + 4𝜎𝑛𝑜𝑟, (6) 

where 𝑚𝑛𝑜𝑟 and 𝜎𝑛𝑜𝑟 are the mean and standard deviation of these Euclidean distances of feature 

samples under normal condition to 𝑢𝑛𝑜𝑟. 
In Eq. (5), 𝑅𝑛𝑜𝑟 = 1  means that the rotor-bearing system is under normal condition, and 

𝑅𝑛𝑜𝑟 = 0 means that the rotor-bearing system is under abnormal condition. 

Part 2: identification of concurrent faults 

This part is mainly to identify the fault type when the rotor-bearing system is under a 

concurrent fault. As the feature samples of normal condition are no use for the fault identification, 

the normal condition is eliminated from the 𝐿 different kinds of conditions. 

Define: 

{
𝐴𝑐𝑜𝑛 = {𝑎1, 𝑎2, … , 𝑎�̂�},

𝐵𝑐𝑜𝑛 = {𝑏1, 𝑏2, … , 𝑏𝐿−1},
 (7) 

where 𝐴𝑐𝑜𝑛 is defined as the basic state set, 𝐵𝑐𝑜𝑛 is defined as the derivative state set; 𝑎1 to 𝑎�̂� are 

�̂� kinds of single faults. At the same time, 𝐴𝑐𝑜𝑛 and 𝐵𝑐𝑜𝑛 satisfy: 

{
𝐴𝑐𝑜𝑛 ∩ 𝐵𝑐𝑜𝑛 = 𝐴𝑐𝑜𝑛,

𝐵𝑐𝑜𝑛 − 𝐴𝑐𝑜𝑛 = {𝑏�̂�+1, 𝑏�̂�+2, … , 𝑏𝐿−1},
 (8) 

where 𝑏�̂�+1, 𝑏�̂�+2, ⋯ , 𝑏𝐿−1 are 𝐿 − �̂� − 1 types of concurrent faults each one is combined by 

two or more of the �̂� single faults in 𝐴𝑐𝑜𝑛. 

Assume that the intersection of a concurrent fault and any one of its combined single faults is 

not an empty set. For instance, if 𝑏�̂�+1 is combined by 𝑎1 and 𝑎2, then we can get: 

{
𝑏�̂�+1 ∩ 𝑎𝑖 = 𝑎𝑖, 𝑖 = 1, 2,

𝑏�̂�+1 ∩ 𝑎𝑖 = ∅, 𝑖 = 3, 4, … , 𝐿.̂
 (9) 

Set: 

𝐵𝑜𝑢𝑡(𝑖) ∩ 𝑎𝑖 = ∅, (10) 

where 𝑖 = 1, 2, … , �̂�. 

Denote the left zero space of 𝐵𝑜𝑢𝑡(1) as 𝐿𝑖 that is 𝐿𝑖𝑈𝑜𝑢𝑡(1) = 0 where 𝑈𝑜𝑢𝑡(𝑖) is the matrix 

with the corresponding centers of these mechanical conditions in 𝐵𝑜𝑢𝑡(𝑖). Select a vector from the 
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left zero space 𝐿𝑖 as the zero space vector 𝑧𝑖 which satisfies: 

{
𝑧𝑖 𝑢𝑗 = 0,if𝑎𝑖⋂𝑏𝑗 = ∅,

𝑧𝑖 𝑢𝑗 ≠ 0,if𝑎𝑖⋂𝑏𝑗 = 𝑎𝑖 ,
 (11) 

where 𝑖 = 1, 2,⋯ , �̂� and 𝑗 = 1, 2,⋯ , 𝐿. 

Then all the zero space vectors of �̂� types of single faults in 𝐴𝑐𝑜𝑛 can be written as: 

𝑍𝑠𝑝𝑎𝑐𝑒 = [𝑧1 𝑧2 … 𝑧�̂�]𝑇 . (12) 

Set: 

𝑟𝑖 = |𝑧𝑖𝐹|, (13) 

where 𝑟𝑖 is defined as the residual signal implying the information about the 𝑖th single fault. 

According to the discussion above, the residual signal 𝑟𝑖 is the projection of a feature sample 

on 𝑧𝑖. If the rotor-bearing system is under the 𝑖th fault condition within the �̂� kinds of single faults, 

𝑟𝑗 ≠ 0 only when 𝑗 = 𝑖. Theoretically, this rule can be used for concurrent fault identification. 

However, the residual signal, originally being zero, will be nonzero due to noise interference. Thus 

new rules should be constructed to improve the accuracy of concurrent fault identification, and 

which are defined as: 

𝑅𝑖 = {
1, 𝑟𝑖 < 𝐽𝑖 ,
0, 𝑟𝑖 ≥ 𝐽𝑖 ,

 (14) 

where 𝑅𝑖 and 𝐽𝑖 are defined as the CIP and threshold of the 𝑖th single fault in 𝐴𝑐𝑜𝑛, respectively. 

The threshold 𝐽𝑖  is calculated by: 

𝐽𝑖 = 𝜆max(|�̂�𝑖|), (15) 

where 𝜆 is a constant and �̂�𝑖 is a series of residual signals calculated from the feature samples of 

these single faults in 𝐴𝑐𝑜𝑛 except the 𝑖th one. 

In Eq. (14), 𝑅𝑖 = 1 means that the 𝑖th single fault occurs, and 𝑅𝑖 = 0 means that the 𝑖th single 

fault does not occur. The above-described implementation process is shown in Figure 3. 
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Fig. 3. Implementation process of the proposed method 
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4. Experiment validation and analysis 

4.1. Experimental set up 

An experiment is carried out to validate the effectiveness of the proposed method on a 

machinery fault simulator shown in Figure 4. In this experiment, a normal bearing without any 

defect is located in the inboard bearing housing closer to the motor. A series of test bearings with 

various defects are located in the outboard bearing housing farther to the motor in turn to simulate 

these faults: (1) fault in inner race; (2) fault in outer race; (3) fault in ball and (4) faults in inner 

race, outer race and ball at the same time. The place, middle of the shaft between the inboard 

bearing housing and outboard bearing housing, is mounted a rotor disk. The rotor unbalance fault 

is achieved by adding a screw in one of the tapped holes in the rotor disk edge. 

 
(a) 

 
(b) 

Fig. 4. Test bench: a) experimental system and b) its schematic model 

Other experimental setups contain several ICP acceleration sensors fixed on the bearing 

housings and a data acquisition system. The rotating speed of this simulator is set at 1198RPM 

with a motor controlled by a controller. The simulated conditions in this experiment are shown in 

Table 2, in which S1 is normal condition, S2-S5 represent single faults and S6-S10 mean 

concurrent faults. Ten data sets are collected from the test beach under above-noted conditions at 

a constant sampling frequency of 2000 Hz. Figure 5 shows the primordial vibration signals and 

corresponding FFT spectrums of the conditions S2, S3 and S6. Observation of these plots in 

Figure 5 reveals that the original vibration signal of S6 is particular similarity to those of both S2 

and S3, i. e., some compositions belonging to S2 or S3 manifest themselves in a nonlinear 

combined manner in S6. This is more obvious in their FFT spectrums. 

According to Eq. (1) and the user operation manual of the machinery fault simulator, the CDFs 

of bearings are not more than 100 Hz. Further analysis of Figure 2 shows that the compositions of 

bearing CDFs and rotational frequency are included in the first node of WPT. Figure 6 shows the 

normalized energies of the nodes in the third level of the WPT tree, in which 𝑋 – axis shows the 

number of the nodes and 𝑌 – axis signifies amplitude of energies in unit of percentage (%). The 

first node with the greatest energy also reveals that it includes the most useful information for fault 

identification and diagnosis. Therefore the first node is selected to further process for feature 

samples and each element of a feature sample is averaged from 100 values of the corresponding 

feature parameter. For each condition, a total of 120 feature samples are extracted, in which 100 

ones for constructing the proposed method and the other 20 ones for testing. 

Table 2. The simulated conditions 

Identifier Description Identifier Description 

S1 Normal condition S6 Fault combined by S2 and S3 

S2 Rotor unbalance S7 Fault combined by S2 and S4 

S3 Fault in the inner race S8 Fault combined by S2 and S5 

S4 Fault in the out race S9 Fault combined by S3, S4 and S5 

S5 Fault in the rolling element S10 Fault combined by S2, S3, S4 and S5 
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Fig. 5. Vibration signals and FFT spectrums of these conditions: S2, S3 and S6 

 
Fig. 6. The normalized energies of the nodes in the third level of WPT 

4.2. Results and discussion 

Figure 7(a) shows the corresponding threshold and Euclidean distances of the 200 test samples 

to the center of normal condition. As shown in this graph, the Euclidean distances of these test 

samples with No. 1-20 are smaller than those of these test samples with No. 21-200. When 

comparing these Euclidean distances and the threshold plotted in Figure 7(a), it is obviously that 

only these Euclidean distances of the test samples with No. 1-20 are smaller than the threshold. 

The corresponding CIPs are also calculated by Eq. (5) and shown in Figure 7(b) with No. 1-20. 

According to Figure 7 (a) and (b), it is obviously that the test samples with No. 1-20 belong to the 

normal condition and the other test samples belong to the abnormal condition. Therefore the task 

of the monitoring normal condition, shown in Figure 3, can be performed effectively. 
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(a) 

 
(b) 

Fig. 7. Monitoring results of normal condition: a) Euclidean distances and  

b) CIPs of the 200 test samples; 𝐷𝑛𝑜𝑟  is the Euclidean distance of a test sample to the center of normal 

condition; 𝐽𝑛𝑜𝑟  and 𝑅𝑛𝑜𝑟 are the threshold and the CIP of normal condition, respectively 

When a concurrent fault appears, the next work is to identify which fault type of the 

rotor-bearing system is under. Further analysis of these conditions in Table 2 shows that faults are 

all combined by one or more of these single faults: rotor unbalance, inner race fault, outer race 

fault and ball fault. At the same time, we can get 𝐴𝑐𝑜𝑛 = {𝑆2, 𝑆3, 𝑆4, 𝑆5},  
𝐵𝑐𝑜𝑛 = {𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆6, 𝑆7, 𝑆8, 𝑆9, 𝑆10} . Therefore total 4 zero space classifiers should be 

constructed for identifying these conditions in 𝐵𝑐𝑜𝑛. 

In Figure 8(a)-(d), solid lines represent residual signals of test samples and dotted lines signify 

the corresponding thresholds. The CIPs of Figure 8 are shown in Figure 9, where the value ‘1’ 

means that the corresponding fault appears. In Figure 8 and Figure 9, the plots with No. 1-20, 

21-40, 41-60, 61-80, 81-100, 101-120, 121-140, 141-160, 161-180 are the test results of these test 

samples under S2, S3, S6, S4, S7, S5, S8, S9 and S10, respectively. For these test samples with 

No. 1-20, the case that the residual signals are bigger than the threshold only appears in Figure 8(a), 

i.e., 𝑟𝑖 > 𝐽𝑖  and 𝑅𝑖 = 1 with sample No. 1-20 only when 𝑖 = 1. According to Eq. (14), we can 

draw a conclusion that the test samples with No. 1-20 belong to rotor unbalance fault. In the same 

way, the conditions of these samples with No. 21-40, 61-80 and 101-120 are identified as inner 

race fault, outer race fault and ball fault, respectively. These test results all accord with the fact. 

When analyzing the results of the test samples with No. 41-60, we can find that 𝑟𝑖 > 𝐽𝑖  and  

𝑅𝑖 = 1 only when 𝑖 = 1, 2. Therefore this concurrent fault combined by rotor unbalance fault and 

inner fault is successfully isolated. The rest test results show that the concurrent faults S7-S10 are 

also all successfully isolated. The isolation results indicate that the proposed method can identify 

and diagnose these concurrent faults with high accuracy when they are regarded as combination 

conditions. 

According to the above analysis, it can be seen that the proposed method can effectively 

identify the concurrent faults in a rotor-bearing system. Besides, some comparative studies such 

as back-propagation (BP) neural network and radial basis function (RBF) neural network for 

diagnosing concurrent faults also have been carried out. In almost all of the existing diagnosis 

methods, the concurrent fault was regarded as an independent failure state just like a single fault. 

Therefore ten classes will be identified by BP or RBF network. The test samples used in Figure 7 

and Figure 8 are also successful diagnosed by BP and RBF network. Unfortunately, BP and RBF 

need more time than the proposed method. Training BP and RBF with 1000 samples need 

3.455160 and 1.193935 s, but our method just requires 0.001895 s for constructed the Euclidean 

distance based classifier and the zero space classifiers with the same samples. The cost times of 

BP and RBF in testing stage are 0.012285 and 0.065949 s, respectively. However our work just 

needs 0.002911 s to do the same testing work. What is more, the testing time of the part 2 shown 

in Figure 3 is just 0.000396 s. It can be seen that the proposed method is more time-saving than 
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BP and RBF, whether in design stage or in testing stage. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 8. Identification results of concurrent faults: a) to b) are the test results of the 1th to 4th  

zero space classifier, respectively; 𝑟𝑖  and 𝐽𝑖  means the residual signals  

and the thresholds of the 𝑖th zero space classifier 

 
Fig. 9. The corresponding CIPs of these test samples shown in Fig. 8 

5. Conclusion 

In this paper, a new method based on wavelet packet transform (WPT) and zero space 

classifiers was presented to identify and diagnose the concurrent faults in rotor-bearing system for 
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improving the reliability of rotating machinery. In this method, the non-stationary and non-linear 

vibration signals were decomposed into several time-frequency compositions by using a 

three-level WPT. The first component in the third level of WPT was selected for features in 

time-domain and frequency-domain by analyzing the bearing CDFs and the energy distribution 

among the decomposition results. By observing the FFT spectrum, it can be see that the concurrent 

fault was a nonlinear combination of two or more single faults. Usually, the values of the same 

feature parameter obtained from the vibration signal at different time were various because of the 

noise interference, which may reduce the accuracy of fault diagnosis. To overcome this problem, 

the values of the used feature parameters were averaged for feature samples. In order to identify 

and diagnose the concurrent faults more convenient, the concurrent fault was no longer regarded 

as a dependent state just like a single fault and zero space classifiers were constructed to isolate 

the single faults building a concurrent fault. The experimental results showed that the new fault 

diagnosis method can successfully monitor normal condition and identify concurrent faults by 

isolating their compositions into several single faults. On the other hand, the proposed method 

needs litter computation load than BP and RBF for the same task of concurrent fault identification 

and diagnosis in a rotor-bearing system. 
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