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Abstract. A new time-discretization method for the development of nonlinear collocated 

multivariable mass-damper-spring (MDS) intelligent mechanical vibration systems is proposed. 

It is based on the Runge-Kutta series expansion method and zero-order hold assumption. In this 

paper, we show that the mathematical structure of the new discretization scheme is explored and 

characterized in order to represent the discrete dynamics properties for nonlinear collocated 

multivariable MDS intelligent mechanical vibration systems. In particular, the decent effects of 

the time-discretization method on key properties of nonlinear multivariable MDS mechanical 

vibration systems, such as discrete zero dynamics and asymptotic stability, are examined. The 

resulting time-discretization provides discrete dynamics behavior for nonlinear MDS mechanical 

vibration systems, which enabling the application of existing controller design techniques. The 

ideas presented here generalize well-known results from the linear case to nonlinear plants. 

Keywords: discrete dynamics, nonlinear MDS vibration system, discrete-time model, sampling 

zero dynamics. 

1. Introduction 

It is generally known that the classical mass-damper-spring (MDS) intelligent mechanical 

vibration systems have been studied by some researchers [1-3]. The MDS system is a simple 

mechanical vibration model, and is widely applied in many fields [4-9]. However, to analyze or 

utilize such systems in practice invariably requires discretization. Thus, the discrete-time plant or 

sampled-data model play an important role in the intelligent mechanical vibration systems. For 

example, it is well known that modern controllers and signal processing devices invariably operate 

in discrete time, in particular, employing digital technology. 

In the linear case, some famous scholars, such as Ishitobi [1], Lin [2, 3] and Zhu [5, 6], have 

represented the discrete dynamics behavior of the MDS vibration systems. In this context, topics 

such as discrete-time plant (normal form), relative degree and degree-of-freedom (DOF), chaos 

and bifurcations, and zero-pole have been definitely shown. And these ideas presented generalize 

well-known notion from the continuous-time case to discrete-time and sampled systems, although 

the theory for the discrete-time case is less well developed than for the continuous-time case, both 

linear and nonlinear systems. 

One would reasonably expect similar results to hold for nonlinear MDS systems. However, 

the situation for the nonlinear case is more complex than for linear case. Indeed, to the best of our 

knowledge, the discrete dynamics properties for nonlinear MDS systems are still open problems. 

Moreover, we feel deeply that this research is well very important, especially for discrete dynamics 

analysis of intelligent mechanical vibration systems and their applications. 

Zero dynamics of the nonlinear MDS plant, corresponding to the zero of linear case, are 

fundamental characteristics of nonlinear intelligent mechanical vibration systems [10]. The 

occurrence of nonlinear zero dynamics is relevant to the discrete dynamics behavior of nonlinear 

intelligent mechanical systems. However, the previous results cannot be applied to the nonlinear 

MDS mechanical vibration systems. Hence, it is an important research topic to find criteria which 

guarantee that the discrete dynamics properties of nonlinear MDS systems are obtained. 
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The objective of this paper is to analyze the discrete dynamics behavior of nonlinear MDS 

intelligent mechanical vibration systems with collocated sensors and actuators, irrespectively of 

whether these systems are single-input single-output (SISO) plant or multivariable case. Our aim 

is only to analyze the multivariable MDS vibration systems because the SISO plant is a particular 

example of multivariable case. More importantly, we show how a particular strategy can be used 

to present the discrete dynamics properties, which is accurate to some order in the sampling period. 

An insightful interpretation of the obtained discrete dynamics behavior can be made in terms of 

additional discrete zero dynamics. Moreover, the current paper extends the well-known idea from 

the linear case to nonlinear systems, which including extra discrete zeros or zero dynamics due to 

the sampling process. Finally, numerical experimental example is given to illustrate the theories 

developed in this paper. 

2. Discrete-time models of nonlinear collocated multivariable vibration MDS systems 

The dynamics of such intelligent mechanical vibration system can be described by Newton’s 

Second Law, and further consider an 𝑛-mode , 𝑚-input , 𝑚-output  nonlinear collocated 

multivariable MDS intelligent mechanical vibration system described by [11]: 

𝑚�̈� + 𝐹𝑓 + 𝐹𝑠𝑝 = 𝐹, (1) 

where 𝐹𝑓 is the frictional damping force, 𝐹𝑠𝑝 is the spring dynamics force and 𝐹 is the force acting 

on the mass. In order to reduce the computation complexity of such mechanical system, and in 

particular, without loss of generality, the two-DOF (2-DOF) MDS mechanical vibration system is 

primarily considered, and also depicted in Figure 1. More importantly, 2-DOF MDS mechanical 

vibration plant has been mainly employed as a research subject since it is used most commonly in 

practice. In particular, a 2-DOF mechanical vibration MDS model, which constitutes a slider, 

spring, damping components and a pendulum is consider, as shown in Fig. 1. Therefore, the whole 

idea is given for the case of a two-input-two-output (2-DOF) mechanical vibration system for 

simplicity of description. 

m1m2

c1

k1k2

f2

q1q2

f1

 
Fig. 1. Multivariable 2-DOF MDS intelligent mechanical vibration model 

In this case, we can represent the discrete dynamics behavior of nonlinear 2-DOF MDS 

mechanical vibration model, which discretized zero dynamics have been also discussed owing to 

their significance. Furthermore, it is straightforward to extend the particular case (2-DOF) to the 

general case, such as multi-DOF. 

The discrete dynamics analysis of nonlinear 2-DOF MDS mechanical vibration system is 

derived below. First, a 2-input and 2-output nonlinear multivariable MDS mechanical vibration 

system can be expressed in its so-called normal form [11]: 



1179. DISCRETE DYNAMICS ANALYSIS FOR NONLINEAR COLLOCATED MULTIVARIABLE MASS-DAMPER-SPRING INTELLIGENT MECHANICAL 

VIBRATION SYSTEMS. CHENG ZENG, SHAN LIANG, YONGSHENG SUN, YINGYING SU 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MARCH 2014. VOLUME 16, ISSUE 2. ISSN 1392-8716 635 

{
 
 
 
 
 

 
 
 
 
 
�̇�1
1 = 𝑧2

1,

�̇�2
1 = −

𝑘1
𝑚1

(𝑧1
1 − 𝑧1

2) −
�̅�1
𝑚1

(𝑧1
1 − 𝑧1

2)3 −
𝑐1
𝑚1

(𝑧2
1 − 𝑧2

2) +
𝑢1
𝑚1

,

�̇�1
2 = 𝑧,

�̇�2
2 =

𝑘1
𝑚2

(𝑧1
1 − 𝑧1

2) +
�̅�1
𝑚2

(𝑧1
1 − 𝑧1

2)3 +
𝑐1
𝑚2

(𝑧2
1 − 𝑧2

2)

      −
𝑘2
𝑚2

(𝑧1
1 − 𝑧1

2) −
�̅�2
𝑚2

(𝑧1
1 − 𝑧1

2)3 −
𝑐2
𝑚2

(𝑧2
1 − 𝑧2

2) +
𝑢2
𝑚2

,

𝑦1 = 𝑧1
1.

 (2) 

Remark 1: It is obvious that the relative degrees 𝑟1, 𝑟2 of the system (2) are two. In fact, the 

relative degrees of many nonlinear mechanical vibration systems in the practical field are two. 

We are interested in the discrete-time plant or sampled-data model for the nonlinear MDS 

mechanical vibration system (2) when the input is a piecewise constant signal generated by a 

zero-order hold (ZOH); i.e.: 

𝑢(𝑡) = 𝑢(𝑘𝑇),   𝑘𝑇 ≤ 𝑡 < (𝑘 + 1)𝑇,   𝑘 = 0,1,…, (3) 

where 𝑇 is a sampling period. 

For small sampling periods, a more accurate sampled-data model of nonlinear 2-DOF 

multivariable MDS mechanical vibration system is definitely obtained when applying a 

higher-order Runge-Kutta (RK) expansion such as: 

𝑧𝑙+1,𝑘+1
𝑖 = 𝑦𝑖,𝑘+1

(𝑙) ≈ 𝑦𝑖,𝑘
(𝑙) + 𝑇𝑦𝑖,𝑘

(𝑙+1) +
𝑇2

2!
𝑦𝑖,𝑘
(𝑙+2)⋯+

𝑇𝑟𝑖−𝑙

(𝑟𝑖 − 𝑙)!
𝑦𝑖,𝑘
(𝑟𝑖) +

𝑇𝑟𝑖−𝑙+1

(𝑟𝑖 − 𝑙 + 1)!
𝑦𝑖,𝑘
(𝑟𝑖+1), 

𝑖 = 1,… ,𝑚,   𝑙 = 0,… , 𝑟𝑖 − 1. 

(4) 

Remark 2: Consider here a higher-order RK expansion (4) instead of the uniformly valid 

asymptotic expansion with the continuous-time system relative degrees 𝑟𝑖. The reason is that the 

closed-loop system becomes unstable in the case of the latter when a discrete-time controller 

design method based on the assumption of the stability of the zero dynamics is applied [12]. The 

sampled-data model cannot be used for discrete-time controller design because of the existence of 

the unstable sampling zero dynamics. More precisely, when the input is imposed through a ZOH 

on the original continuous-time system, the output does not converge to the origin. 

Before proceeding, the following assumption is needed here for the preservation of an affine 

property in the process of sampling. 

Assumption 1: The unique equilibrium point lies on the origin. 

Next, note here that: 

�̇�𝑖(𝑡) = 0,   �̈�𝑖(𝑡) = 0,   𝑡 ∈ [𝑘𝑇, (𝑘 + 1)𝑇],   𝑖 = 1, 2, (5) 

and that: 

{

�̇�𝑖 = �̇�1
𝑖 = 𝑧2

𝑖 ,

�̈�𝑖 = �̇�2
𝑖 = 𝑏𝑖 + 𝑎𝑖𝑢𝑖,

𝑦𝑖
(3)
= �̇�𝑖 + �̇�𝑖𝑢𝑖 = �̅�𝑖 + �̅�𝑖𝑢𝑖 ,

 (6) 

where 𝑖 = 1, 2, 
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Thus, a more accurate discrete-time model of nonlinear 2-DOF multivariable MDS mechanical 

vibration system is precisely derived by substituting (6) into the RK expansion forms of  

𝑦𝑖((𝑘 + 1)𝑇) and �̇�𝑖((𝑘 + 1)𝑇) and neglecting higher order terms as follows:  

{
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 (8) 

We next analyze the local and global truncation errors between the true system output and the 

𝑖th output of the obtained sampled-data model (8), assuming that, at 𝑡 = 𝐾𝑇, the state 𝑧 is equal 

to the true system state 𝑧(𝑘𝑇). We compare the true system output 𝑦(𝑘𝑇 + 𝑇) with the first (third) 

state of the approximate sampled-data model in (8) at the end of the sampling interval. This yields 

the following local truncation output error: 

|𝑦𝑖(𝑘𝑇 + 𝑇) − 𝑞𝑧1,𝑘
𝑖 | =

= |(𝑧1,𝑖(𝑘𝑇) − 𝑧1,𝑘
𝑖 ) + 𝑇(𝑧2,𝑖(𝑘𝑇) − 𝑧2,𝑘

𝑖 )       

+
𝑇2

2!
[(𝑏𝑖,𝑘 + 𝑎𝑖,𝑘𝑢𝑖,𝑘)𝑡=𝜉1

− (𝑏𝑖,𝑘 + 𝑎𝑖,𝑘𝑢𝑖,𝑘)𝑡=𝑘𝑇]

+
𝑇3

3!
[(�̅�𝑖,𝑘 + �̅�𝑖,𝑘𝑢𝑖,𝑘)𝑡=𝜉1

− (�̅�𝑖,𝑘 + �̅�𝑖,𝑘𝑢𝑖,𝑘)𝑡=𝑘𝑇]|. 

(9) 

From the assumptions used in the local truncation error we have [13]: 

𝑧1,𝑖(0) − 𝑧1,𝑘
𝑖 (0) ∈ 𝑂(𝑇4),   𝑇 (𝑧2,𝑖(0) − 𝑧2,𝑘

𝑖 (0)) ∈ 𝑂(𝑇4). (10) 

For the last two terms in (9), since the control input is generated by a ZOH, we know that: 
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𝑒𝑖 = |
𝑇2

2!
[(𝑏𝑖,𝑘(𝜍, 𝜂) + 𝑎𝑖,𝑘(𝜍, 𝜂)𝑢𝑖,𝑘)𝑡=𝜉1

− (𝑏𝑖,𝑘(𝜍, 𝜂) + 𝑎𝑖,𝑘(𝜍, 𝜂)𝑢𝑖,𝑘)𝑡=𝑘𝑇]

+
𝑇3

3!
[(�̅�𝑖,𝑘(𝜍, 𝜂) + �̅�𝑖,𝑘(𝜍, 𝜂)𝑢𝑖,𝑘)𝑡=𝜉1

− (�̅�𝑖,𝑘(𝜍, 𝜂) + �̅�𝑖,𝑘(𝜍, 𝜂)𝑢𝑖,𝑘)𝑡=𝑘𝑇]|

≤
𝑇2

2!
⋅ 𝐿1‖𝑧(𝜉1) − 𝑧(𝑘𝑇)‖ +

𝑇3

3!
⋅ 𝐿2‖𝑧(𝜉1) − 𝑧(𝑘𝑇)‖, 

(11) 

where 𝐿1 and 𝐿2 are Lipschitz constants. Furthermore, according to [13], the Lipschitz condition 

guarantees that the variation of the state trajectory 𝑧(𝑡) can be bounded as: 

‖𝑧(𝜉1) − 𝑧(𝑘𝑇)‖ ≤ 𝐶 ⋅
𝑒𝐿2|𝜉1−𝑘𝑇| − 1

𝐿2
< 𝐶 ⋅

𝑒𝐿2𝑇 − 1

𝐿2
∈ 𝑂(𝑇). (12) 

Therefore, the local truncation error between the 𝑖th output of the resulting sampled-data 

model and the corresponding true continuous-time system output is of order 𝑇4 by following the 

equation (11). 

In the following section, the focus is on the global truncation error of the approximate 

discrete-time model for nonlinear 2-DOF multivariable MDS mechanical vibration system. The 

proof for the global truncation error is completely analogous to the proof for the local truncation 

error. In particular, the key difference between the local and global truncation errors arise from 

the fact that the global truncation error is associated with the number of steps 𝑁, and has practical 

relevance to applications in which the asymptotic discrete dynamics behaviors of the proposed 

model is of interest. Consider: 

𝜃(𝑘 + 1) = 𝐴 ⋅ 𝜃(𝑘) + 𝜙 ⋅ 𝐸, (13) 

where: 

𝐴 = [
1 𝑇
0 1

] ,   𝜙 =

[
 
 
 
𝑇2

2!
+
𝑇3

3!

𝑇 +
𝑇2

2! ]
 
 
 

,   𝜃(𝑘) = [
𝑦𝑖(𝑘𝑇 + 𝑇) − 𝑞𝑧1,𝑘

𝑖

�̇�𝑖(𝑘𝑇 + 𝑇) − 𝑞𝑧2,𝑘
𝑖
], 

𝐸 = (𝑏𝑖,𝑘(𝜍, 𝜂) + 𝑎𝑖,𝑘(𝜍, 𝜂)𝑢𝑖,𝑘)𝑡=𝜉1 − (𝑏𝑖,𝑘(𝜍, 𝜂) + 𝑎𝑖,𝑘(𝜍, 𝜂)𝑢𝑖,𝑘)𝑡=𝑘𝑇 . 

 

Then, after 𝑁 steps, we have: 

𝜃(𝑘 + 𝑁) = 𝐴𝑁 ⋅ 𝜃(𝑘) +∑ 𝐴𝑖
𝑁−1

𝑖=0

⋅ 𝜙 ⋅ 𝐸. (14) 

As shown in the proof of the local truncation error, 𝐸 ∈ 𝑂(𝑇), and by simple straightforward 

calculation, every element in the last column of the matrix ∑ 𝐴𝑖
𝑁−1

𝑖=0
 is of order 𝑂(1). In addition, 

given that the last row of 𝜙 is 𝑇 +
𝑇2

2!
 such that there will always be a term of order 𝑂(𝑇2) for 

every state, and note that all the elements of 𝐴𝑁 are of order 𝑂(1). So the global truncation error 

is obvious that: 

∑𝐴𝑖
𝑁−1

𝑖=0

⋅ 𝜙 ⋅ 𝐸 ∈ 𝑂(𝑇3) ⇒ 𝜃(𝑘 + 𝑁) ∈ 𝑂(𝑇3). (15) 
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On the other hand, the known Euler integration leads to a model having local truncation error 

𝑇2 and global truncation error 𝑇. The local and global truncation errors between the 𝑖th output of 

the resulting sampled-data model (8) and the corresponding true continuous-time output are of 

order 𝑇4 and 𝑇3 respectively. This fact means that the approximate sampled-data model (8) is 

closer to the true system than that by Euler.  

Remark 3: A key result from nonlinear systems theory is that a nonlinear system of degree and 

uniform relative degree can be described by a model in normal form. The approximate 

sampled-data model of interest here is obtained by using a truncated RK series expansion of the 

states in normal form. Moreover, it has been shown that the model possesses previously unknown 

properties, regarding the propagation of truncation errors. 

Remark 4: The Euler model is well-known as an approximate model, it is difficult to obtain 

good discrete dynamics performance because of the poor approximation. An insightful 

observation is that the proposed model (8) is more accurate than the Euler model in terms of the 

discretization of nonlinear 2-DOF multivariable MDS mechanical vibration system. Therefore, a 

controller design by the Euler model is easier but better discrete dynamics performance could be 

obtained if the discrete-time model (8) is used for controller design. 

3. Discrete dynamics analysis of nonlinear collocated multivariable 2-DOF MDS intelligent 

mechanical vibration systems 

In this section, we obtain the discrete dynamics analysis of nonlinear collocated multivariable 

2-DOF MDS intelligent mechanical vibration system. First, we present the result that shows the 

discrete zero dynamics, which play an important role in the area of discrete dynamics analysis. 

Substituting 𝑧1,𝑘+1
𝑖 = 𝑧1,𝑘

𝑖 = 0 into (8) yields: 

{
 
 
 
 

 
 
 
 0 = 𝑇�̇�1,𝑘

1 +
𝑇2

2!
(𝑏1,𝑘0 + 𝑎1,𝑘0𝑢1,𝑘) +

𝑇3

3!
(�̅�1,𝑘0 + �̅�1,𝑘0𝑢1,𝑘),

𝑧2,𝑘+1
1 = �̇�1,𝑘

1 + 𝑇(𝑏1,𝑘0 + 𝑎1,𝑘0𝑢1,𝑘) +
𝑇2

2!
(�̅�1,𝑘0 + �̅�1,𝑘0𝑢1,𝑘),

0 = 𝑇�̇�1,𝑘
2 +

𝑇2

2!
(𝑏2,𝑘0 + 𝑎2,𝑘0𝑢2,𝑘) +

𝑇3

3!
(�̅�2,𝑘0 + �̅�2,𝑘0𝑢2,𝑘),

𝑧2,𝑘+1
2 = �̇�1,𝑘

2 + 𝑇(𝑏2,𝑘0 + 𝑎2,𝑘0𝑢2,𝑘) +
𝑇2

2!
(�̅�2,𝑘0 + �̅�2,𝑘0𝑢2,𝑘).

 (16) 

Here, 𝑎𝑖,𝑘0 and 𝑏𝑖,𝑘0  denote the values of 𝑎𝑖,𝑘  and 𝑏𝑖,𝑘 , respectively. Therefore, noting that 

constant terms 𝑏𝑖,𝑘0  is definite higher order with respect to 𝑇  than the corresponding one of 

variable terms 𝑧𝑖,𝑘. In addition, when applying 𝑧-transform to (16), then it leads to: 

Φ(𝑧)𝑣 = 0, (17) 

Φ(𝑧) =

[
 
 
 
 
 
 
 
 𝑧 − 1 0 𝑇𝑎1,𝑘0 +

𝑇2

2
�̅�1,𝑘0 0

0 𝑧 − 1 0 𝑇𝑎2,𝑘0 +
𝑇2

2
�̅�2,𝑘0

−𝑇 0
𝑇2

2
𝑎1,𝑘0 +

𝑇3

6
�̅�1,𝑘0 0

0 −𝑇 0
𝑇2

2
𝑎2,𝑘0 +

𝑇3

6
�̅�2,𝑘0]

 
 
 
 
 
 
 
 

,   𝑣 =

[
 
 
 
𝑧2,𝑘
1

𝑧2,𝑘
2

𝑢1,𝑘
𝑢2,𝑘]

 
 
 

. (18) 

As a result, the sampled counterpart of the discrete zero dynamics (sampling zero dynamics) 

are obtained from |Φ(𝑧)| = 0. 
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Next, the matrix 𝑆 is defined as: 

𝑆 =

[
 
 
 
 
 1 0 −

2

𝑇
0

0 1 0 −
2

𝑇
0 0 1 0
0 0 0 1 ]

 
 
 
 
 

. (19) 

Multiplying (18) by the matrix 𝑆 from the left hand side leads to: 

𝑆Φ(𝑧) =

[
 
 
 
 
 
 
 
 𝑧 + 1 0

𝑇2

6
�̅�1,𝑘0 0

0 𝑧 + 1 0
𝑇2

6
�̅�2,𝑘0

−𝑇 0
𝑇2

2
𝑎1,𝑘0 +

𝑇3

6
�̅�1,𝑘0 0

0 −𝑇 0
𝑇2

2
𝑎2,𝑘0 +

𝑇3

6
�̅�2,𝑘0]

 
 
 
 
 
 
 
 

. (20) 

Using the computational formula for determinant of block matrix: 

|
𝐸 𝐹
𝐺 𝐻

| = |𝐻||𝐸 − 𝐹𝐻(−1)𝐺|. (21) 

We can obtain: 

|𝑆Φ(𝑧)| = ||

𝑇2

2
𝑎1,𝑘0 +

𝑇3

6
�̅�1,𝑘0 0

0
𝑇2

2
𝑎2,𝑘0 +

𝑇3

6
�̅�2,𝑘0

|| 

     × |
|[
𝑧 + 1 0
0 𝑧 + 1

] +
𝑇3

6
[
�̅�1,𝑘0 0

0 �̅�2,𝑘0
]

[
 
 
 
𝑇2

2
𝑎1,𝑘0 +

𝑇3

6
�̅�1,𝑘0 0

0
𝑇2

2
𝑎2,𝑘0 +

𝑇3

6
�̅�2,𝑘0]

 
 
 
(−1)

|
|. 

(22) 

Further, it is obvious that the discrete zero dynamics of nonlinear collocated multivariable 

2-DOF MDS intelligent mechanical vibration system are given by |𝑆Φ(𝑧)| = 0. In particular, 

these discrete zero dynamics are mainly determined in the second half of (22) due to the existence 

of variable 𝑧. Thus: 

|𝑆Φ(𝑧)| = ||[
𝑧 + 1 0
0 𝑧 + 1

] +
𝑇3

6
[
�̅�1,𝑘0 0

0 �̅�2,𝑘0
]

[
 
 
 
𝑇2

2
𝑎1,𝑘0 +

𝑇3

6
�̅�1,𝑘0 0

0
𝑇2

2
𝑎2,𝑘0 +

𝑇3

6
�̅�2,𝑘0]

 
 
 
(−1)

||

= ||
𝑧 + 1 +

�̅�1,𝑘
3𝑎1,𝑘 + 𝑇�̅�1,𝑘

𝑇 0

0 𝑧 + 1 +
�̅�2,𝑘

3𝑎2,𝑘 + 𝑇�̅�2,𝑘
𝑇
|| = 0. 

(23) 
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Remark 5: The discrete zero dynamics of nonlinear sampled-data collocated multivariable 

2-DOF MDS intelligent mechanical vibration model are classified into two categories. The former 

ones have counterpart in the underlying continuous-time system and they are called intrinsic zero 

dynamics. The latter ones are generated in the sampling process and they are called sampling zero 

dynamics. More importantly, we are focused primarily on the latter ones in these two kinds of the 

discrete zero dynamics in terms of the discrete dynamics analysis of nonlinear collocated 

multivariable 2-DOF MDS intelligent mechanical vibration system. 

Finally, we consider the stability of nonlinear discrete zero dynamics because of the 

importance of discrete zero dynamics in the nonlinear collocated multivariable 2-DOF MDS 

intelligent mechanical vibration system. The determinant (23) can be expanded as follows when 

supposing 𝛽1 = 𝑧 + 1 +
�̅�1,𝑘

3𝑎1,𝑘+𝑇�̅�1,𝑘
, 𝛽2 = 𝑇𝑧 + 1 +

�̅�2,𝑘

3𝑎2,𝑘+𝑇�̅�2,𝑘
𝑇: 

(𝑧 + 1)2 + 𝑇(𝛽1 + 𝛽2)(𝑧 + 1) + 𝛽1𝛽2𝑇
2 = 0. (24) 

When we perform the bilinear transformation 𝑧 =
𝜆+1

𝜆−1
 on the above formula, the equation is 

written as: 

[4 + 2𝑇(𝛽1 + 𝛽2) + 𝑇
2𝛽1𝛽2]𝜆

2 − [2𝑇(𝛽1 + 𝛽2) + 2𝑇
2𝛽1𝛽2]𝜆 + 𝑇

2𝛽1𝛽2 = 0. (25) 

It is clear that the two roots of (25) lie in the open left half of 𝜆-plane if: 

−
2𝑇(𝛽1 + 𝛽2) + 2𝑇

2𝛽1𝛽2
4 + 2𝑇(𝛽1 + 𝛽2) + 𝑇2𝛽1𝛽2

≈ −𝑇
𝛽1 + 𝛽2
2

> 0, (26) 

𝑇2𝛽1𝛽2
4 + 2𝑇(𝛽1 + 𝛽2) + 𝑇2𝛽1𝛽2

≈
𝛽1𝛽2
4

> 0. (27) 

Furthermore, for sufficiently small sampling periods, the discrete zero dynamics of the 

nonlinear collocated multivariable 2-DOF MDS intelligent mechanical vibration system are stable 

if: 

𝛽1𝛽2(𝛽1 + 𝛽2) < 0. (28) 

Remark 6: Discrete dynamics behaviors of nonlinear collocated multivariable MDS intelligent 

mechanical vibration systems, like in the 2-DOF analysis above, can be readily extended to more 

complex MDS models such as three-DOF (3-DOF) (see also Fig. 2.), and so on. On the other hand, 

2-DOF case also reduces a single DOF immediately. 

m3 m1m2

η1 ξ1ξ2

c1c2c3

k1k2k3
u1u2

k1k2k3

  
Fig. 2. Multivariable 3-DOF MDS intelligent mechanical vibration model 

4. Numerical experimental results of nonlinear discrete dynamics analysis 

In the above discussion, we have definitely focused on the discrete dynamics analysis of the 

nonlinear collocated multivariable 2-DOF MDS intelligent mechanical vibration systems, and the 

performance of the proposed time-discretization method for nonlinear input-driven systems by 

using RK approach is evaluated by applying it to a nonlinear collocated multivariable MDS 
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mechanical vibration system. In particular, discrete-time open-loop responses to a MDS 

mechanical vibration system are considered. In this paper, the discrete dynamics exact or 

approximate values obtained at every time step using the proposed time-discretization method are 

represented to the values obtained using the MATLAB solver and RK method at the corresponding 

time steps. 

  

  
Fig. 3. State response of the 2-DOF mechanical MDS vibration system 

This numerical experiment is simulated under various combinations of sampling periods and 

the local truncation error by using MATLAB. Acceptably accurate results are obtained when the 

sampling period is 𝑇 = 0.01 with a local truncation error. If the sampling period is further reduced, 

then more accurate results could be obtained. Results obtained from the MATLAB solver and the 

RK series discretization method are shown in Fig. 3 when the sampling period is 𝑇 = 0.001. Thus, 

Figure 3 shows the state response of the nonlinear collocated multivariable 2-DOF MDS 

mechanical vibration system by using this method. Additionally, this special system clearly 

presents that the proposed RK series expansion method discretizes a nonlinear MDS intelligent 

mechanical vibration system quite accurately. 

Next, we design a discrete-time model following controller on the basis of the nonlinear 

2-DOF MDS mechanical multivariable discrete-time vibration model with ZOH, and apply it to 

the original continuous-time MDS system to further analyze the discrete dynamics behavior of the 

nonlinear collocated multivariable 2-DOF MDS mechanical vibration system. It is obvious that 

the desired tracking objective of the output error results can be readily approached by generated 

from the plant control input sequences in simulation (see also Figure 4 and 5). 

In addition, the good performance of the discrete dynamics behavior for the nonlinear 

collocated multivariable 2-DOF MDS mechanical vibration controlled system can be achieved 

because the stability of the discrete zero dynamics of nonlinear multivariable 2-DOF MDS 

mechanical vibration system are significantly improved in the Figure 6. 
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Fig. 4. Inputs of model following control for the 2-DOF MDS mechanical vibration system 

  
Fig. 5. Error between the desired outputs and the true plant outputs for the 2-DOF MDS mechanical 

vibration system 

Finally, as an example of such application, these above results about nonlinear collocated 

multivariable 2-DOF MDS mechanical vibration controlled system can be also applied to 2-DOF 

half-vehicle suspension model with nonlinear springs and dampers shown in Figure 7. 

 
Fig. 6. The magnitudes of discrete zero dynamics for nonlinear MDS mechanical vibration system 
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Based on the above analysis, we can now utilize the MTATLAB to build up the discrete 

dynamics behavior of the nonlinear 2-DOF half-vehicle suspension model. The corresponding 

response curves of acceleration signal in time domain with different amplitude of input are shown 

in Figure 8. 

As can be seen from the Figure 8, as soon as pulse signals begin, the acceleration signals 

change acutely and further decay rapidly under the action of damping, though low frequency 

oscillation will still maintain a period of time. With the input signals amplitude increasing, the 

amplitude of the output acceleration signals also increase accordingly, and vice versa. 

 
Fig. 7. Nonlinear 2-DOF half-vehicle suspension model 

 
(a) The response curve with the input of +0.1 

 
(b) The response curve with the input of –0.1 

Fig. 8. The corresponding response curve of acceleration signal with different amplitude of input 

5. Conclusions 

This paper has developed a new approach to propose the discrete dynamics behavior of 

nonlinear collocated multivariable MDS intelligent mechanical vibration systems. It is based on 

the RK series expansion method which uses a more sophisticated derivative approximation than 

the simple Euler approach. Moreover, an insightful interpretation is given in terms of an explicit 

characterization of the nonlinear sampling zero dynamics of the obtained discrete-time models, 

which can be used effectively to analyze and process the discrete dynamics properties. An 

application is given here for the nonlinear 2-DOF half-vehicle suspension model with springs and 

dampers. This extends the well-known results for discrete dynamics behavior of linear systems to 

the nonlinear case. These results are believed to give important insights which are relevant to 

many aspects of nonlinear intelligent mechanical vibration systems theory. 
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