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Abstract. The air squeeze film damping effect on the dynamic responses of clamped micro- 

electromechanical resonators is investigated in this study. A dynamic model for a clamped 

micro-electromechanical resonator with the damping consideration is derived using Lagrange’s 

equation. The corresponding resonator eigen solutions are formulated and solved by employing 

the assumed-mode method. The effect of different parameters; i.e. the resonator size, ambient 

temperature and pressure on the squeeze film damping characteristics were simulated and 

investigated. The results indicate that the squeeze film damping effect may significantly affect 

the dynamic responses of micro-scale electromechanical resonator. 
 

Keywords: resonators, damping effect, quality factor, assumed mode method. 

 

Introduction  

 

Micro-electro-mechanical resonators [1-2] have been widely used as sensors in various 

applications. A micro-scale poly-crystalline silicon beam type resonator was proposed by 

Stemme [3]. The effect of different size parameters on the resonant frequencies was measured 

and studied. Zook et al. [4] and Tilmans et al. [5] designed different micro-polysilicon-

resonators to replace the conventional silicon piezoresistors in precision sensor applications. 

Legtenberg et al. [6] studied the nonlinear pull-in behavior of electrodes. Zurn et al. [7] 

compared the difference in dynamic response simulated from the ANSYS finite element method 

and measured using AFM. 

The damping effect introduced from air molecules in nano- or micro scale beams were 

investigated by Kádá et al. [8]. The Q-factor was proposed to indicate the degree of this 

damping effect in low vacuum. Hosaka et al. [9-11] were used the Navier-stokes and Reynolds 

equations to calculate and illustrate these damping characteristics and the corresponding 

dynamic performance. Li [12] illustrated that the damping effect in micro beam vibration is 

introduced from the impact velocity variation of molecules on both sides of a micro-beam. 

Abdel-Rahman et al. [13] presented a nonlinear model of electrically actuated micro-beams 

accounting for the electrostatic force of the air gap capacitor. An energy transfer mechanism 

was proposed by Bao et al. [14] instead of the momentum transfer mechanism in Christian’s 

model for microstructures air damping in low vacuum. Chen and Kuo [15] introduced squeeze 

damping and viscous damping effects into the micro-electrostatic comb drive; and found the 

gap distance extension between the oscillating and fixed electrodes may significantly reduce the 

damping. Hutcherson and Ye [16] investigated air damping on oscillating structures in the free-

molecule regime. Kwak [17] provided admissible functions to approximate the dynamic 

characteristics of slewing beams. 

The micro resonator is surrounded with gas. A squeeze film effect leads to a damping model 

and changes the resonator natural frequencies at different ambient pressures. The scale of the 

beams may cause the air squeeze damping effect to dominate the beam dynamic behavior. 
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Various continuum damping models [18-20] have been proposed in last decade. However, these 

models were all unsuitable for micro-systems at low vacuum. To overcome this difficulty, Bao 

et al. [14] provided an energy transfer model to describe the air damping effect on MEMs at low 

pressure. 

This study investigates a plate driven by an alternating electrostatic force as shown in Fig. 1. 

The residual vibration of micro-electromechanical resonator is usually vibrated at its lowest 

resonant frequency which is dependent upon the squeeze film damping effect between 

electrodes. This damping effect is introduced from free molecular moment [21] and energy 

transfer models [14] at low vacuum. The parameter effects, i.e. beam size, ambient temperature, 

ambient pressure and gap distance, on the damping effect are studied. 

  

 
Fig. 1. Air squeeze film model 

 

Simulation Method 
 

The air squeeze damping effect introduced from the molecular interaction motion between a 

micro-scale beam type plate and electrostatic plate at low vacuum is simulated. Bao’s Energy 

transfer model [14] is employed in this work to calculate the damping factor. 

Energy transfer model [14]. The air squeeze damping effect between a clamped micro-

beam and micro-electromechanical resonator electrostatic plate at low vacuum is studied in this 

research. The model is shown in Fig. 1. The gap distance between the micro-beam and 

electrostatic plate is 0.d  Six admissible modes with a driving frequency of eω  are utilized to 

approximate the dynamic response of the excited beam: 
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where A0 is the amplitude of the micro-beam as shown in Fig. 2. 

 

 
Fig. 2. The clamped micro-electromechanical resonator schematic 

 

The energy loss from the micro-beam in the energy transfer model at low vacuum in an 

oscillation cycle can be approximated as: 
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here l, b, L are the length, width and circumference, respectively; and p, T are the sourrounding 

ambient pressure and absolute temperature; Mm is the mole of gas molecules; R is the gas 

constant in ideal gas equation; ui and uj are the i
th
 and j

th
 modes of vibration. The Knudsen 

number (Kn) is defined as the mean free path ratio of gas molecules over the characteristic 

length of the structure: 

 

cL
Kn

λ
=  (3) 

 

For micro-electromechanical resonator with a gap distance of 1 µm and operated at a 

pressure of 10 torr, the Kn is 5.1. The air status in this case can be considered in the transition 

regime. Therefore, the intermolecular collision effect can be neglected and the air molecule 

collisions with resonator dominate. For simplicity the collisions between gas molecules and the 

resonant beam are assumed to be perfect elastic collision. In other words, the collisions between 

the molecules and the vibrating beam maintain the conservation linear momentum and kinetic 

energy laws. 

The viscous damping model is employed in this study, e.g. the damping force is defined as 

0 / ,Df C w t= ∂ ∂  and where C0 is the damping factor. The energy loss in a micro-beam in 

oscillation introduced from the air damping is: 
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From Eqs. (2) and (4), the damping factor (C0) can be derived as:  
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Equation (5) indicates that the damping factor is dependent upon the ambient temperature, 

pressure and micro-beam size and etc. This damping factor may significantly affect the dynamic 

responses of the small scale resonator. 

Equation of damped micro-resonator. The equation of motion for the beam type micro-

resonator is: 
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where bρ  is the density of resonator, and Ta is the axial force of micro-resonator. By applying 

the assumed-mode method, the discrete equation of motion for the micro-resonator can be 

derived in matrix with employing Lagrange’s equation: 

 

[ ]{ } [ ]{ } [ ]{ } 0M q C q K q∗ ∗ ∗+ + =ɺɺ ɺ  (7) 

 

where [ ],M ∗  [ ]C ∗  and [ ]K ∗  are the corresponding mass, damping and stiffness matrices, 

respectively. From the simulated eigen solutions of Eq. (7), i.e., the natural frequencies, 

damping ratios and normalized modes, the corresponding frequency response ( )H ω  can be 

derived as: 
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Fig. 3 shows the natural frequencies of the clamped micro-resonator (without considering 

the air squeeze effect and the axial force effects) simulated from the finite element, the 

proposed methods and measured by Zook [14]. The length, width and thickness of this micro-

plate are 200 µm, 45 µm and 2 µm respectively. Numerical results indicate a maximum of 15 % 

error was observed for the lowest few natural frequencies. 

Figure 3 shows the natural frequencies of the clamped micro-resonator (without considering 

the air squeeze effect and the axial force effects) simulated from the finite element, the 

proposed methods and measured by Zook [14]. The length, width and thickness of this micro-

plate are 200 µm, 45 µm and 2 µm respectively. The numerical results indicate a maximum of 

15 % error was observed for the lowest few natural frequencies.  
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Fig. 3. Comparisons of natural frequencies of 

clamped micro-resonator simulated in FEM, 

proposed theory and measured by Zook [4] 
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Fig. 4. Comparisons of natural frequencies in 

FEM, proposed theory and Zook [4] measured 

when there is 782.6 dyne tension force on the 

micro-beam resonator 
 

However, these errors can be significantly improved by including the air squeeze and axial 

load effects in the dynamic model. Figure 4 shows the results for the same clamped micro-

resonator considering the air squeeze damping and the axial loading effects. The errors for the 

simulated lowest four natural frequencies are all less than 3.2 %. 

 

Results and discussion 

 

As mentioned previously, the air squeeze damping may affect significantly the dynamic 

response in the micro- or nano-scale resonator. However, the damping effect in this clamped 

micro- resonator may be dependent on a few parameters, e.g. the gap distance, the ambient 

pressure and the ambient temperature. The damping ratio (ζ) and the Quality factor (Q-factor) 

for this micro-resonator are approximated by applying the half-power method on the simulated 

frequency response function (FRF) curves. The variation in damping ratio and Q-factor values 

on four major parameters are simulated and discussed below. 

Gap distance. By ignoring the edge effect the electrostatic force for a micro- resonator with 

a driving voltage can be approximated as 2 2
/ 2 ( )AV w xε . The A, ε and ( )w x  are the electrostatic 

plate area, the dielectric constant of the air and beam deformation, respectively. The variation in 

air squeeze film damping ratio with the initial gap distance 
0d  is shown in  Fig. 5 with the 

ambient temperature T = 27 
o
C and the pressure p = 1 torr and the silicon micro-beam size as 

200 45 2 µm.× ×  The modal damping ratios for the lowest four modes are shown in Figure 5. 
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The results indicate that the damping effect introduced from the squeeze air is quite significant 

as the initial gap distance 0d  is less than 0.7 µm. 
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Fig. 5. At T = 27 oC and p = 1 torr. The variation of modal damping 

iζ  with initial gap distance d0: 

(a) for the first mode i = 1; (b) for the second mode i = 2; 

(c) for the third mode i = 3; (d) for the fourth mode i = 4 

 

Ambient Pressure. The ambient pressure effect on the air squeeze damping is simulated 

and illustrated in Figure 6. The results are simulated with the ambient temperature (T) is 27 
o
C, 

and the initial gap distance 0d  is 1. The micro-beam size is 200 45 2 µm.× ×  The simulated 

results indicate that the modal damping ratios for the lowest four modes are increased with the 

ambient pressure for this micro-resonator. However, the damping ratio values of the top four 

resonant frequencies are smaller than 10
-4
 when the pressure is less than 0.1 torr. The numerical 

results also indicate that the air squeeze damping effect is very sensitive to ambient pressure 

between 1 torr and 10 torr. This results from the increase in the number of air molecule 

collisions in the proposed model. 
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Fig. 6. At T = 27 oC and 0 1 µm.d =  The variation of modal damping iζ  with ambient pressure p:  

(a) for the first mode i = 1; (b) for the second mode i = 2;  

(c) for the third mode i = 3; (d) for the fourth mode i = 4 
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Ambient Temperature. Similarly, the ambient temperature effect on the air squeeze 

damping ratio is simulated and discussed in Figure 7 with p = 1 torr, 0 1 µm.d =  The change in 

ambient temperature may also induce thermal stress in the axial direction to alter the natural 

frequencies of the silicon beam system. This thermal loading effect was also included in the 

proposed model. The simulated results in Fig. 7 indicate that the modal damping value rises 

with the temperature. The increase in damping is introduced from the increase in air molecular 

velocity leading to an increase in the number of collisions per unit time. Increasing the number 

of air molecule collisions will consume the kinetic energy of the micro-beam. However, the 

numerical results reveal that the ambient temperature influence is not as sensitive as the effects 

introduced from the gap size and the ambient pressure. 
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Fig. 7. At p = 1 torr and 0 1 µm.d =  The variation of modal damping iζ  with ambient temperature: 

(a) for the first mode i = 1; (b) for the second mode i = 2; 

(c) for the third mode i = 3; (d) for the fourth mode i = 4 

 
Micro-beam size. Equations (5) and (6) indicate that the size parameters may affect the 

damping ratio and the natural frequencies of the micro-resonator system. To focus on the 

damping subject, two size parameters, i.e. the length and width of this micro-resonator system 

are analyzed. The parameter ‘thickness’ which does not affect the contact area is not discussed 

in this section. Figure 8 shows the variation in the modal damping with different beam lengths 

based on the beam width 45 µmb =  and the gap distance 0 1 µm.d =  Simulated results 

indicate that the modal damping ratios increase suddenly as the micro-beam length becomes 

larger than 500 µm.l =  The increase in damping effect results from the increase in contact area 

and the resulting increase in molecular collision. However, a beam length less than 500 µm  

may also induce a significant damping effect increase with the decrease in beam length. This 

increase is induced from the rapid increase in micro-beam natural frequencies. 

Similarly, the beam width effects on the modal damping ratios for a silicon micro-beam with 

a beam length 200 µml =  were simulated and shown in Figure 9. The simulation results reveal 

that the damping ratios increase with the beam width. 
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Fig. 8. At T = 27 oC, p = 1 torr and 0 1 µm.d =  The variation of modal damping iζ  with micro-beam 

length: (a) for the first mode i = 1; (b) for the second mode i =2;  

(c) for the third mode i = 3; (d) for the fourth mode i = 4 
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Fig. 9. At T = 27 oC, p = 1 torr and 0 1 µm.d =  The variation of modal damping iζ  with micro-beam 

width: (a) for the first mode i = 1; (b) for the second mode i = 2; 

(c) for the third mode i = 3; (d) for the fourth mode i = 4 

 
Conclusions 

 

A molecular energy transfer model was employed to evaluate the air squeeze damping effect 

on the dynamic responses of a micro-scale silicon electromechanical resonator. A comparison 

between the simulated and measured results indicates that the proposed model is feasible for 

illustrating and analyzing the air squeeze damping in micro-scale beam vibration in the low 

vacuum case. The possible damping parameter effects, i.e. gap distance, ambient pressure, 

ambient temperature and micro-beam size on the variation in modal damping ratios were also 

investigated and discussed in this work. The results indicate that the air squeeze damping is 

quite sensitive to these parameters in different parameter regions. This work includes both 

modeling and experimental results, and validation of the modeling results with the data is 

emphasized. 
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