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Abstract. A simple and easy-to-implement method that guarantees the effective active 

synchronization of a chaotic gyroscopic system within a specified settling time limit is 

presented. A closed-form expression is given for the determination of the appropriate 

synchronizing control signal. The method is successfully validated through simulations for 

various initial conditions of the gyroscopic system.  
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Introduction 

 

Gyroscopic systems pervade in modern systems such as aerospace systems, 

electromechanical devices and telecommunication systems. Furthermore, since they are used for 

precise angular measurements in critical systems, they require accurate control to ascertain the 

validity of their measurements. Therefore, they deserve rigorous processing mainly when their 

dynamics are subject to chaos. Some nonlinear dynamical systems may exhibit chaotic behavior 

due to specific values of their parameters. Besides, in some applications such as secure signal 

transmission, it may be necessary to control a regular or chaotic signal to make it track the 

motion of another chaotic system. Basically, the principle of active control of chaotic systems 

consists in perturbing the dynamics of a given chaotic system by adding control terms to its 

dynamic model so as to force its overall dynamics to be identical to that of the same or another 

system departing from totally different initial conditions. The tracking control process of chaotic 

systems is known as chaos synchronization. Chaos synchronization deals with driving a chaotic 

system (called the driven system) to track the dynamics of the same or another chaotic system 

(called the main system) with different initial conditions. The difficulty is that chaotic systems 

are known to behave in significantly different manner even for relatively close initial conditions. 

Therefore, the problem of chaos synchronization deserves a special treatment that mostly 

requires special tools borrowed from control theory. Chaos synchronization has received a high 

interest in nonlinear science during the last two decades [1-10]. This is due to the fact that many 

mechanical, electrical and natural systems are prone to vibration phenomena that are in general 

governed by highly nonlinear dynamics and which may in some conditions degenerate to chaos 

[11-13]. The present paper deals with the active synchronization of a chaotic gyroscopic system 

[7]. Existing methods in the research literature [7-9] on the synchronization of such a system 

mainly deal with a mere asymptotic synchronization without any guarantee that the 

synchronization will effectively occur within a specified time limit. Furthermore, the methods in 

use for synchronizing chaotic systems [1-10] require either linearizing the nonlinear model of 

the system, or finding Lyapunov function candidates that are usually cumbersome to achieve for 

time-varying systems. The present paper proposes a nonlinear control method that guarantees 

the synchronization of a chaotic gyroscopic system within a pre-specified settling time. The 

paper is organized as follows: the following section describes the model of the chaotic 

gyroscopic system that is subject to the synchronization problem and states the problem to be 

solved in the paper; then the next section deals with a nonlinear control law to ascertain an 

actual synchronization process under settling time constraints; numerical simulation results 

based on different initial conditions of the main and the driven system are analyzed in a 

subsequent section to demonstrate the effectiveness of the proposed method. 
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Problem Statement 

 

Before stating the problem to be solved, let us explain formally what the word 

synchronization means when it comes to dynamical systems [4]. 

Consider a controlled system described by the following differential equation: 

 

( , , )x f t x u=ɺ  (1) 

 

where t represents time, and x and u are respectively the state vector and the control vector. 

Let 
0 0

( , , ; )s t x u t  be the solution of the controlled differential equation (1) with initial state 

0
x  at initial time 

0
t  for a given control trajectory u. Let now consider the state trajectory 

( )
ref

t x t֏  of another system taken as reference. Then, the synchronization problem between 

the system described by equation (1) and the reference system consists in finding an appropriate 

control function ˆ ˆ: ( )u u t u t= ֏  such that the solution trajectory 0 0
ˆ( , , ; )s t x u t  be as close as 

possible to the reference trajectory, that is: 

 

0 0
ˆlim ( , , ; ) ( ) 0ref

t
s t x u t x t

→+∞
− =   (2) 

 

The condition described by equation (2) shall be met even when the initial reference signal 

( )ref 0x t  differs from the initial state 0x  of the driven system described by equation (1). That 

condition simply means that for a given tolerance 0ε > , there exists a time-instant 0tτ >  such 

that for any t τ≥  the following inequality holds: 

 

0 0
ˆ( , , ; ) ( )refs t x u t x t ε− ≤  (3) 

 

where .  represents an appropriate norm on the state space. The inequality (3) means that the 

driven system behaves practically exactly as the reference system from time τ , thus the two 

systems are synchronized. 

Now, let us state the main problem to be solved in the present paper. The normalized 

equation of a single axis gyroscopic system is established by Chen [7] as:  

 

1 2

3

2 1 1 2 2 2 1 1( ) sin sin sin

x x

x g x c x c x x f t xβ ω

=

= − − + + ⋅

ɺ

ɺ
 (4) 

 

where 2 2 3

1 1 1
( ) (1 cos ) sing x x xα= − − , t  is the time, the system being chaotic if the parameters 

have the following values: 10α = , 1β = , 
1

0.5c = , 
2

0.05c = , 2ω =  and 35.5f = .  

The problem to be solved is to synchronize such two chaotic gyroscopic systems departing 

from different initial states so that the motion of the driven system be synchronized with that of 

the main system from a specified settling time 
s

T . 

 

Proposed Method 

 

Let equation (4) be the model of the main system, then consider the driven system with the 

following model: 
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1 2

3

2 1 1 2 2 2 1 1( ) sin sin sin

y y

y g y c y c y y f t y uβ ω

=

= − − + + ⋅ +

ɺ

ɺ

 (5) 

 

where function (.)g  is defined accordingly as in equation (4), the parameters being identical to 

those in equation (4) and u  is a time-varying perturbation that has been added to the gyroscopic 

model to act as a control variable for the driven system. One may observe that assuming 0u =  

makes the driven system have the same model as the main system. 

Basically, the problem to be solved is to control the state 
1 2

( )Ty y y=  of the driven system 

to make it equal to the state 
1 2

( )Tx x x=  of the main system across time, that is, the control shall 

aim at driving the synchronization error ( ) ( ) ( )e t x t y t= −  to zero within a pre-specified time 

limit 
s

T . Meanwhile, since 
1 2

x x=ɺ  and 
1 2

y y=ɺ , equaling 
1

y  to 
1

x  across time necessarily 

forces 
2

y  to be then equal to 
2

x . Therefore, to synchronize the two systems, it is necessary and 

sufficient to drive 
1

y  to 
1

x . 

From equations (4) and (5), we get: 

 

1 1 2

1 1 2

( , , )

( , , )

x h t x x

y h t y y u

=

= +

ɺɺ

ɺɺ
 (6) 

 

where function (.,.,.)h  is defined for any pair 
1 2

( , )v v  and any time t  as:  

 
3

1 2 1 1 2 2 2 1 1
( , , ) ( ) sin sin sinh t v v g v c v c v v f t vβ ω= − − + +  (7) 

 

Equations (6) imply that the tracking error 
1 1 1

e x y= −  has a second order dynamics since it 

is the difference of two different second order dynamic systems. However, to drive 
1

e  to zero, 

we would like it to follow a linear second order dynamics through an appropriate choice of 

control variable u . Therefore, since the reference value of the tracking error shall be zero, this 

requires an error dynamics which should be modeled as equation (8) below according to single-

input single-output linear control theory [14]: 

 
2

1 1 1
2 0

n n
e e eζω ω+ + =ɺɺ ɺ  (8) 

 

where 
n

ω  is the natural frequency, and ζ  the damping ratio of the error dynamics. 

Using equations (4-7) and the expression of the tracking error, we can write equation (8) 

explicitly as: 

 
2

1 2 1 2 2 2 1 1
( ( , , ) ( , , ) ) 2 ( ) ( ) 0

n n
h t x x h t y y u x y x yζω ω− − + − + − =  (9) 

 

Then, equation (9) is solved for the unknown control u  to get the time-varying 

synchronizing control, which gives:  

 
2

1 2 1 2 2 2 1 1
( ) ( , , ) ( , , ) 2 ( ) ( )

n n
u t h t x x h t y y x y x yζω ω= − + − + −  (10) 

 

Equation (10) provides a way to compute the appropriate control for synchronizing the 

driven system with the main one. That control depends on the natural frequency (
n

ω ) and 
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damping ratio (ζ ). Therefore, the settling time, that is the necessary time to acceptable 

synchronization between the two systems will depend on these two parameters. 

Let 
0
t  be the time from which the secondary system starts to track the main system, and 

assume that we want the two systems to fully synchronize at time 
0
t T+  with an error that 

equals ε  percent of the initial error 
1 0 1 0 1 0
( ) ( ) ( )e t x t y t= − , that is, for any time-length Tτ ≥  we 

would like to have 
1 0 1 0
( ) ( ) 100e t e tτ ε+ ≤ ⋅ . From second order systems dynamics in linear 

control theory [14], it is known that the minimum 
s

T  of such time-lengths T  is equal to the 

settling time for  %ε  error and is computed as: 

 
1( ) ln(100 )

s n
T ζω ε−=  (11) 

 

where ‘ln’ is the natural logarithm. 

Therefore, for a specified settling time 
s

T , equation (11) gives means to determine the 

appropriate values of parameters 
n

ω  and ζ  in equation (10) so that the driven system 

synchronizes with the main one at the given settling time 
s

T  with a guaranteed static tracking 

error less than  %ε . In that case, since there are two unknown parameters (
n

ω  and ζ ) for one 

equation, the idea is to assume a value for one of the parameters (for instance ζ ), and to 

compute the other parameter accordingly, for a specified settling time 
s

T  and acceptable error 

level ε  specified as well.  

 

Numerical Simulations 

 

Example 1 

 

The behavior of the main system in the phase plane is depicted in Fig. 1(a), with initial 

conditions (0) (0)
1 2( 1, 1)x x= = −  and for the driven system in Fig. 1(b) with different initial 

conditions (0) (0)

1 2( 1, 2)y y=− = . The objective is to synchronize the driven system with the main 

system at required settling time 5  s
s

T =  with less than 2 %  static error. We chose a damping 

ratio of the error dynamics as 0.8ζ = , which, by equation (11), provides a corresponding value 

of the natural frequency as 0.978 rad/s
n

ω = .  

The simulation results of the synchronization errors are displayed in Fig. 2(a), representing 

the synchronization error while tracking the angle, whereas Fig. 2(b) displays the error related to 

the synchronization of the angular rate. Both errors converge to zero, meaning that the driven 

system tracks accurately the main system. The practical settling time in both cases is equal to 

4.94 seconds corresponding to the 2 %  static error, which is consistent with the required 

5 s
s

T =  settling time. Thus the specifications about the settling time and the static error are 

fulfilled in practice using the control law given in equation (10). 

 

Example 2 

 

The initial conditions for both the main and the driven systems are chosen different from 

those used in the first example. The behavior of the main system in the phase plane is depicted 

in Fig. 3(a), with initial conditions (0) (0)

1 2( 0.5, 1)x x= − =  and for the driven system with initial 

conditions (0) (0)

1 2( 1.5, 0.5)y y= − =  in Fig. 3(b). The objective is again to synchronize the driven 
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system with the main system but here at required settling time 7  s
s

T =  with less than 1 %  static 

error. The damping ratio of the error dynamics is set to be 0.7ζ = , which, by equation (11), 

provides a corresponding value of the natural frequency as 0.9398  rad/s
n

ω = .  
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Fig. 1. (a) Main system with initial conditions: (0) (0)

1 2( 1, 1)x x= =− ; 

(b) Driven system with initial conditions: (0) (0)

1 2( 1, 2)y y=− =  
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Fig. 2. (a) Angle synchronization error (

1 1 1
e x y= − );  

(b) Angular rate synchronization error (
2 2 2

e x y= − ) 
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Fig. 3. (a) Main system with initial conditions: (0) (0)

1 2( 0.5, 1)x x=− = ; 

(b) Driven system with initial conditions: (0) (0)

1 2( 1.5, 0.5)y y=− =  

 
The simulation results of the synchronization errors across-time are displayed in Fig. 4(a), 

representing the synchronization error while tracking the angle, whereas Fig. 4(b) displays the 

error related to the synchronization of the angular rate. Here too, the synchronization errors 

converge to zero. The practical settling time in both cases is equal to 6.96 seconds corresponding 

to the 1 %  static error, which is consistent with the required 7 s
s

T =  settling time. Thus the 

specifications about the settling time and the static error are again practically fulfilled as in the 

first example using the proposed control law (equation 10). 
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Fig. 4. (a) Angle synchronization error (
1 1 1

e x y= − ); 

(b) Angular rate synchronization error (
2 2 2

e x y= − ) 
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Conclusion 

 

A method that guarantees the effective synchronization of a chaotic gyroscopic system 

within a specified time limit has been proposed in the paper. The method is based on compelling 

the tracking error to have a linear second order dynamics that stabilizes to zero. The advantages 

of the proposed method over existing ones are threefold: first, it does not resort to Lyapunov 

function candidates that are usually cumbersome to find for time-varying systems like the 

considered gyroscopic system; second, it does not require the linearization of the actual 

nonlinear model; and finally, it guarantees actual synchronization within a specified time limit. 

Two illustrative examples have shown the effectiveness of the proposed method in practice. 

Further extensions of the method will deal with higher order gyroscopic systems in the 

framework of aerospace system design. 
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